
RDS: Remote Distributed Scheme for Protecting Mobile
Agents

 Asnat Dadon-Elichai
Department of Computer Science,

Ben-Gurion University,
Beer-Sheva, Israel
+972-8-8655572

asnate@bgumail.bgu.ac.il

ABSTRACT
As of today no solely software-based solution that a priori
protects the computation of any mobile code and/or mobile agent
was presented. Furthermore, Algesheimer et al. [1], argue that
minimal trust in a third party is essential for the protection of
mobile entities. This paper shows that under very mild
assumptions, there exists a software-only based solution that can
protect any computation of mobile entities in polynomial time
bound systems, and without relaying on the minimal trust
requirement.

A novel Remote Distributed Scheme, called RDS, is described.
RDS is based on fault-tolerant and modest cryptographic
techniques and supports an a priori protection of any mobile
computation that is carried in an honest-but-curious environment
(“trusted entities”). We next show, by using on probabilistic
techniques, that RDS provides an a priori protection for any
mobile computation, in any environment, and for any required
level of secrecy. We also prove that RDS equivalents, and by thus,
provides the same level of protection that is supports by the
traditional client/server scheme.

Keywords
Security, mobile agents, mobile codes, secret-sharing, fault-
tolerant.

1. Introduction
Mobile computation is a paradigm based on the ability of a
service to launch a mobile code or a mobile agent to be executed
remotely and act on its behalf. In addition, a mobile agent is an
autonomous entity that maintains a status and roams the network
under its own control. This paper refers to mobile codes and
mobile agents as “agents”.

The mobile computation paradigm is attractive, since it supports
true parallelism. In addition, it is flexible and can surmount the
deficiencies and extends the capabilities of traditional systems,

and improves the overall utilization of system resources.
Unfortunately, the paradigm also presents new and hard security
issues that fall into two main categories: Securing and protecting
the hosts from malicious agents and protecting the computation of
the agents from malicious hosts. (cf. Figure 1).

Protection of
mobile agents

Trusted entities-based
 Schemes

Tampering Detection Tampering Prevention

SW-based Schemes

Protection of Hosts

Classifications of protection Models for
 the Mobile Computation Paradigm

Figure 1: Classification of Protection Models [14].

The first category aims to protect the status and objects of the
hosts by relaying on methodologies such as access control
mechanisms, and cryptographic techniques. The second category
aims to protect the secrecy and the integrity of the agent's
computation. In this paper we focus on the second category.

A malicious host can tamper and improperly influencing the
computation of the agent, for example, by manipulating the code
and/or intermediate results of the agent, stealing either secrets
and/or digital money, or providing inaccurate/faulty data
according to its preferences.

The protection of agents is broadly classified into two main
approaches: a) detection of tempering, that is provided posteriori
upon the completion of the agent’s computation at a given host [2,
4, 7, 12] and b) prevention of tempering, that is provided a priori
during the computation process.

Solutions that belong to the second approach are further classified
into two main categories: a) architectures that base on “trusted
entities” where an agent can safely carry its computation, or part
of it, without being tampered with [1, 2, 4], and b) software-only
based solutions. In this paper we focus on the last category that
provides an a priori protection for any mobile computation in any

polynomial bounded environment. Due to readability reasons, we
use the term protection instead of “a priori protection”.

Current software-only based solutions are either not fully
developed or tend to limit the mobile computation paradigm (e.g.
autonomous migration, asynchronous and concurrent
computation, and dissemination and assimilation of new
information and services). Furthermore, as of today none of the
presented software-only based solutions protect any computation
of mobile agents. Thus, this issue still remains to be solved.

This paper introduces a novel Remote Distributed Scheme, called
RDS, that is an only-software based solution for protecting the
computation of mobile agents. RDS launches a set of replicated
agents, instead of one agent, to carry the computation remotely,
and uses the secret sharing technique introduced by Shamir [8] to
ensure that each agent leaks as little information as possible to the
host that hosts it.

We prove that this scheme protects any mobile computation in
honest-but-curious environments. We then show, by relaying on
probabilistic techniques, the RDS protects any mobile
computation, in any environment and for any required level of
secrecy, when some conditions are met.

The paper is organized as follows: Section 2 provides a brief
background and discusses related works in the field of an a priori
protection of mobile agents. Section 3 presents a simple
traditional client/server scheme based scenario, describes the
behavior of the participants and outlines the implicit assumptions.
In Section 4, we present a trusted entity based scheme,
demonstrate its behavior and state our desired security conditions.
The novel Remote Distributed Scheme is introduced in Section 5.
We demonstrate and prove that RDS protects any mobile
computation, at any environment and for any level of certainty. In
section 6, we compare and discuss the different presented
schemes. Conclusions and suggest future directions are provided
in Section 7.

2. Related Work
The protection of mobile computation by software-only based
solutions was deemed as an impossible task [3, 5, 6, 7, 12, 13],
until Sanders and Tschudin [10] suggest the Computation with
Encrypted Function (CEF) technique that represents the ‘mobile
code’ as a polynomial.

This representation disables the possibly malicious host from
tampering with the execution of the mobile code. This approach
was further generalized to any arbitrary and polynomial-size depth
circuit (function) [4, 11]. It should be noted however that this
technique could be used only for the computation of mobile code,
and only if no information is to leak to the host that hosts it, and
only if the originator of the mobile code receives the computation
results [1, 4, 10, 11].

This is due to the fact that a malicious host is able to reactivate the
encrypted mobile code, for any number of times, until it reveals its
functionality and behavior, based on the information that leaks
during these reactivated execution. Thus, it is clear that such a
requirement is in fact inadequate for a more general task such as a
shopping agent.

Algesheimer et al. [1] address this issue and state that minimal
trust is essential in order to support a non-interactive mobile
agent. They suggest generic trusted entity based architecture, in
which some of the operations of the agent, are carried out by this
trusted entity on behalf of the agent. In their model, different
encrypted circuits reside at each of the predefined destinations of
the specified route of the mobile agent, where the output of each
circuit specify the settings of the proceeding one. Unfortunately,
the suggested architecture does not meet the requirements of the
mobile computation paradigm, nor it is resilient in case one of the
hosts crashes.

In this paper we focused on goals and schemes that are easy to
implement and maintain. We think that a software-only based
solution that does not limit the mobile computation paradigm is
preferable, if it can be provided.

As of today, no solution that does not base on encrypted agents
was presented. To best of our knowledge, the RDS, presented in
this paper, is the only scheme that relay on modest cryptographic
techniques and protects the computation of any mobile agents in
polynomial - bounded environments.

3. A Simple Client/Server based Scenario
In this section we present a digital auction scenario that based on
traditional client/server scheme, and describe the behavior of the
different parties. Based on this scenario, we highlight some of the
implicit assumptions, and state the required security goals.

Let us take as an example an automatic, digital public auction
scenario, which is carried out by using the traditional client/server
scheme. In this example, the client is the auction service (S) of the
originator (O), that executes an algorithm (A), and H is the
auction server. (cf. Figure 2).

S H

Originator
 Host Auction Server

Figure 2: Traditional Client/Server Scheme

Upon invocation, S opens a connection to H, and by thus, informs
it about its participation in the auction. This operation also causes
H to send S the current best offer. Each time a better offer is
submitted to H, by one of the other parties that participants in the
auction, H informs all the participants about the new offer,
providing them with the possibility to improve their offers. At any
point of the auction, S may (re)submit an offer. During the
computation, S may also send H a special message that includes
some address, which is different from its own, informing it to
where it should send the winning message in case the offer of S is
the preferred one. The computation of S is ended either when it
closes the connection, or when the auction is ended. When the
auction is ended, H decides the winner and sends it a message

informing it about its winning and encloses the original offer for
verification purpose.

In order to disable any party from cheating, we require that all
parties will sign the content of their messages by using their
private keys. A signed content of message is called a
‘transaction’. This requirement also disables any party from
repudiating its offers.

4. Trusted-Entity based scheme
The immediate solution, for protecting any mobile computation, is
based on trusted machines or entities. When the service (S) of the
originator (O) is invoked, it launches its agent (SA), which
executes the same algorithm (A), to some predefined trusted host
(HTrusted), as described in Figure 3.

S H

Htrusted

agent
SA

Originator
 Host

Auction Server

Figure 3: Trusted-machine based architecture

The agent is also provided with a set of transaction (TS). Since
HTrusted is a trusted one, it neither tampers with the execution of
SA, nor with its results. When SA relocates on HTusted, it first
opens a connection to the auction server (H). From this point, the
computation of the service agent (SA) is carried out in the same
manner described in Section 3, until it is ended. By then, SA
sends its status to its originator (S), or to some agreed location.

Lemma 1: The computation of the agent in the trusted entity
scheme equivalents1 the computation of the
traditional client/server scheme.

The reason that these both schemes provide the same level of
protection scheme results from the fact that the agent is relocated
on a trusted host. Furthermore, H cannot tamper with either the
code or the intermediate results of the agent, since it was not
presented with them in the first place.

Clearly the scheme meets the mobile paradigm requirements.
Nevertheless, there are several problematic issues to be
considered with this scheme. The main concern is that HTrusted, is
in fact trustworthy, or it is trustworthy but might be honest-but-
curious; means, it follows the protocol, but tries to infer more
information for later on. Secondly, the scheme is clearly not a
resilient one and introduces a serious bottleneck issue in the
network, and it seems to be inadequate for large systems, and
large volume of services and/or agents. Having these arguments,
we seek for a robust and resilient solution that leaks as little

1 Refer to [9].

information as possible to the environment and that can be
performed in any environment.

5. Remote Distributed Scheme (RDS)
The Remote Distributed Scheme (RDS) is a novel scheme that
base on fault-tolerant and modest cryptographic techniques. It is
based on two major ideas: a) replication of agents, and b) sharing
the transactions set (TS) among these agents, where each agent
holds only one share of each transaction.

In RDS, it is required that instead of launching one agent, a set of
replicated agents is launched, where all of these agents execute
the same algorithm and start with the same initial setting. All of
these agents also hold some specific number id, which uniquely
identifies the underlined set of agents. Each agent communicates
only with H, and autonomously carries its own computation. Thus
producing a star-shape communication pattern. Nevertheless, they
are synchronized, as a result of H. (cf. Figure 4).

Hk
agentk

H
Hl
H1

agent1

H2
agent2

HnHnHn
Hn

agentn

O

H4H4H4
H4

agent4

H3
agent3

Hm

agentm

Figure 4: Remote Distributed Scheme

Each of these agents holds the same id, which uniquely identifies
the set of agents it belongs to, and a set of transactions’ shares
(TS), one share of each transaction. Each of these shares is signed
by using the private key of the originator. We will elaborate on
these shares later on.

When a set of agents is launched, each agent relocates itself on a
different host, and opens a connection to H, and provides it with a
number id. Based on the messages each agent receives from H, its
algorithm (A), and its inner setting, the agent, updates its setting,
carries its computation and autonomously chooses one share from
TS, and sends it to H. Having enough shares of the same
transaction, H can uniquely construct the transaction, performs its
computation, and broadcasts its response to all the agents that
provide it with the same id number. We emphasize once again,
that there is no communication between the agents themselves,
and by thus between their hosts, and the only allowed
communication is between the agents and H. This process is
continued until the computation is ended. At the end of the
computation, each agent sends its status to its originator or to
some predefined location.

The reminder of the section is organized as follows: first, we
provide some assumptions and explanations. Next, we formalize
the construction and the distribution of the transactions shares
among the agents. Next, we prove that the RDS supports the same
level of protection that is provided by the client/server scheme.
We finalize this section with an extended example of a RDS based
scenario.

5.1 Assumptions
Assumption 1: All the hosts that participate in any computation

are polynomial time bounded.

Assumption 2: All the hosts use a public key cryptosystem, and
each host signs all its transactions by using its
private key and every party can authenticates any
transaction.

This assumption assures that cryptographic techniques can be
used without considering cases where hosts can forge the
signature of other hosts.

Assumption 3: A problem P can be solved by an algorithm A, and
a predefined set of transactions TS.

By this assumption we actually decouple between the algorithm
that implements some function (circuit) and the transactions that
specify the setting for each round of the computation.

Assumption 4: All the hosts that host the agents that participate in
some computation do not communicate with each
other.

This assumption is made to exclude the case of an advisor (oracle)
attack; an entity that correlates a collusion attack.

5.2 Construction of Shares and Transactions
Based on Assumption 3, in order to reveal the goal of an agent, we
need to have its algorithm and inner settings. Since the algorithm
A is known to all the hosts, Hl, l =1… n, that host the agents,
there is a need to distribute the transactions set among the agents,
and by thus the hosts, in such a way that:

a) Enables H to relate only to authentic shares. The reason
behind the this requirement comes from the fact that due
to the communication latency or even due to some
improper actions of one of the hosts, H might hold
shares of different transactions.

b) Enables H to easily and uniquely determines the shares
of the relevant transaction.

c) Enables H to easily resolve the transaction, having
enough shares.

d) Leaks as little information as possible to the hosts
themselves.

e) Disables a malicious host, from improperly influencing
the computation by sending all the transactions to H.

The (k, n)-secret sharing threshold scheme presented by Shamir
[8], is used to construct the shares. Let TS = {t1…tm} be a
predefined set of signed transactions, based on Assumption 2,

each t∈TS is formed as (t, γ) where γ is the legal signature of O for
t.

 For each ti∈TS, we define the set {ti1…tin} to be the n shares of ti,
that were produced by using the (k, n) secret sharing threshold.
Let stij = ((i, tij), γ), where γ is a legal signature of O, (the
originator of the agents), on (i, tij).

The honest dealer, O (i.e. the originator), computes off-line the set
{stik}, i = 1… m, j = 1…n and provides the jth agent with the set
{st1j…stmj}. (It’s shares of all the secrets).

Note that each share is signed and holds the index of the
transaction it relates to. This construction enables H to easily
authenticate each share, and to easily determine all the relevant
shares of the same a transaction within one round of the message
collection phase. Having at least k authentic shares, of the same
secret (transaction), enables one to easily resolve the transaction.

The only issue remains to be solved is how to decide the value of
k, in such a way that a correct transaction can be uniquely
resolved. Recall that the (k, n) secret-sharing threshold scheme,
described in [8], only requires that at least k shares of the same
secret are provided, while assuming that all the shares are
authentic, and not tampered with. Clearly, choosing k = (n+1)/2
resolves this issue.

Now, H flushes all the shares where their first component does
not equal the majority, and at the end of this phase, it holds a set
of authentic shares {(i, Dij)} where |{(i, Dij)}| ≥ k.

5.2.1 Secret Sharing Threshold Scheme - Overview
A secret X is divided into n shares {X1…Xn} in such a way that:

! Knowledge of k or more Xi shares makes X easily computed.

! Knowledge of less then k shares leaves X completely
undetermined (in the sense that all possible values are
equally alike).

A random polynomial k-degree function f(x) over pZ is chosen,

where f(0)=X, and f(i)= Xi , "i. Any k or more values from {Xi}
enable the resolution of f(x) and the free component X. For more
details about the (k, n) secret sharing threshold scheme, please
refer to [8].

5.3 The Correctness of RDS
In this section we prove that RDS supports the same level of
secrecy as provided by the client/server scheme. We first prove
this claim for honest-but-curious environments, by then we prove
that it holds for any environment.

5.3.1 Protecting Mobile Computation in “Good”
Environment

We start by providing a definition of what is a good environment.
This definition is valid for the appropriate values of k and n, as
described in Section 5.2. Note that a good environment is not a
one that requires that all the hosts that host the agents are
trustworthy or honest-but-curious, but only k of them. This
actually implies that the correctness of RDS is not violated, even
if n-k of the agents are relocated on H itself. In the next section,
we show that this assumption can be eased.

Definition 5: An environment is good if for any given set of n
hosts, that participate in some computation, at least
k hosts are either trustworthy or honest-but-
curious.

A mobile computation in RDS requires that a set of n agents be
launched instead of one agent. Each of the agents relocates itself
to some host∈{H1…Hn} where Hi is a neighbor of H. H presents
the same execution described in Section 3 and Section 4, with one
major difference: instead of receiving one message at each round
of the computation, it collects at least k authentic shares of the
same transaction and resolves it before continuing with its
execution. This computation continues exactly as described above
until it ended. At the end of the computation, all the agents send
their status to their originator or to some predefined location. We
make the following claims:

Claim 2: The computation RDS equivalents1 the computation of
the traditional client/server scheme.

Proof: All the agents that participate in some computation execute
the exact same algorithm A, and start with the same initial
settings. Based on Assumption 2, at least k of these hosts
are trustworthy or honest-but-curious. Thus, the executions
of at least k agents are authentic, and at least k agents
autonomously compute A properly, providing H with at
least k shares of the same exact transaction.

 Having a set of at least k authentic shares of the same exact
transaction enables H to easily determine the relevant ones
and to easily construct the transaction correctly, based on
the (k, n) secret sharing technique. Since the transactions
are signed by using the originator private key, no host can
forge them, including H.

 Now, we need to show that for a given P and algorithm A,
the RDS and the client/server produce the same stream of
transactions. Since the proof is simple but a tedious one we
omit it.

 Now, since in both schemes, all the agents execute the
same A, and start with the same initial setting, and since at
least k of them produce the same stream of transactions,
based on the same results from H, then the computation of
RDS equivalents the computation of the client/server
scheme.

Theorem 3: RDS provides the same protection that is provided by
the client/server scheme.

Proof: Results immediately from Claim 2.

The remaining interesting issue for RDS is, whether or not, at
least one host is able to impede the computation. This issue is
important since neither the algorithm nor the agents’ statuses are
concealed from the hosts that host them.

Based on Definition 5, and by selecting k to be (n+1)/2, it is
clear even if n-k of the hosts are malicious, and/or even cooperate
with one another, the computation cannot be forged. This is also
true if n-k of the agents reside in H itself.

Furthermore, at the end of the computation, O receives at least k
authentic results that include all the signed responses of H, and

the corresponding shares. These results enable one to integrate a
posteriori analyzing system that can trace the computation
evaluation, and identify the malicious host, if there was one, and
the exact point where the computation was tampered with.

5.3.2 The Correctness of RDS in any Environment
We showed in Section 5.3.1 that RDS protects any mobile
computation in a “good” environment. Unfortunately, this
requirement seems to be somewhat problematic due to the fact
that malicious entities do not usually declare themselves as such.

So, we ask ourselves under what conditions RDS can protect any
mobile computation in any environment, thus, easing the need of
Definition 5, or in other words ask the following question: “If
there is no knowledge about the trustworthiness of the hosts that
host the agents, can the computation of RDS can be protected for
any required certainty factor?” We answer this question
affirmatively by proving the following claim:

Claim 4: For any certainty factor γ, exists RDS for which the
probability of a “faulty computation” is smaller then γ.

Proof: Let us assume that the RDS does not protect the
computation of agents that implement some algorithm
B. Clearly, a false computation occurs when H can
present at least one authentic transaction, tf that was not
constructed by any k set of the agents. We now examine
the different strategies that might be used to produce
this faulty transaction.

1. Based on Assumption 2, neither H nor any of the
other hosts can autonomously produce tf, since it
signed by the private key of the originator O.

2. Thus, at least k hosts, sends H the proper shares,
enabling it to successfully construct tf. Based on
Assumption 4, the hosts do not communicate with
each other, and by thus cannot cooperatively
decide on some common strategy to forge the
computation.

3. This mean that at least k hosts autonomously and
mutually either chose some random value and send
it to H enabling it to construct tf, where the
probability of such a case clearly zero (0) based on
Assumption 1, and Assumption 2; or

4. At least k hosts autonomously and uniformly select
the share of the same exact transaction tf, from TS,
instead of sending it the shares of the correct
transaction ts. Assuming the existence of m
different transactions, and n <2k hosts, then the
probability of having such a situation equals to:

2

1 1

1 1 (2)! 1 2 (2 1)...(1)
[]

! ! !

1 1
()

! !

n k

fs k k k

k k

k
i i

n k k k k
Pt

km m k k m k

k i
k i

mk k m

≤

= =

− +
= = =

+
= + =

 <

∏ ∏

Choosing ck ≤ m defines the probability of such a
situation to be:

1

1 1

1 1 2
1

! !

1 1[]
! !

kk

k
i

kck mk

f s
i i

i
c k k k c

k i k iP t t
k m k ck

=

<

= =

+

+ + ≠ = ∏ ≤ =

 = ≤

∏

∏

Thus, setting the relation between m and k to be a large
constant c, defines the probability of such a situation to be as
small as required, and by thus defines the required certainty
factor γ to be as large as required. This means that RDS
protects the computation of any mobile computation in any
environment.

5.4 An Extended example of RDS based
Scenario

Before we demonstrate the example, we start with some notations.
A message is formed as follows: {X, Y, Id, Payload} where: X
defines the message source, Y defines the message target, Id that
uniquely identifies a set of agents, and payload defines a
transaction. A transaction is formed as follows: {(Type, Content),
Value}, where: Type defines the type of the Content, and Value is
the legal signature of the party that initiates the message. The
Content can be a simple numerical value or some package deal.
The type can be one of the following:

• suggestOffer: used by the agents to submit an offer to H.

• sendWinningTo: used by the agents to inform H to where to
it should send the winning notification.

• YouWin: used by the host H to inform the winner about its
winning.

• CurrentBestOffer: used by the host H to inform all the
auction participants about the current best offer.

Thus, the Transaction Set (TS), of the originator O includes m
transactions that look like:

{t1=[(suggestOffer, Offer1), Sig1]
…
 tk = [(sendWinningTo, Address), sigk]
…
 tm = [(suggestOffer, Offerm), Sigm]}

By then the (k, n) secret sharing is used to produce the following
set of shares: {{t11… t1n}, …{tm1… tmn}}. From these shares we
produce the following set of shares:

{((1, t11), sig11))…((1, t1n), sig1n))
 …
((m, tm1), sigm1)) … ((m, tmn), sigmn))}

Assume that a service of the originator O launches a set of n
agents in order to participate in an automatic public auction. Each
of the agents behaves as described in Section 5.3, and holds a set
of m shares. The Jth agent is provided with all the shares appear in
the jth column. After the agents are relocated, each opens a
connection to the auction server H, informing it that they
participate in the auction. The auction server H is responding with
a message: ((CurrentBestOffer,Offer), Hsignature).

By receiving this response from H, all the agents perform their
algorithm and update their new setting. Since all the agents

execute the same algorithm and have the same setting and
received the same result, all of the agents make the same decision.
They either terminate the computation since the presented offer
exceeds their best one, or they can select the shares of some
transaction and submit it to H, or they can send a transaction that
informs H to where to send the winning notification.

H uses the id, to determine the shares of the same group of agents,
and uses the index provided with each share to determine which
shares relate to the same transaction. It resolves the transaction,
and evaluates all the offers it receives, it chooses its preferred one
and informs all the participants about this offer.

When the auction is ended, H sends the message (youWin,
(Verification, details), Hsignature) to the winner, where:
Verification is actually the authentic signed offer of the agents
(suggestOffer, Offer), OfferSig), that is provided as evidence, and
details that is used for any purpose such as payment terms, etc.
The Hsignature is the legal signature of H on the contract.

6. Schemes Comparison and Discussion
Due to lack of space, we briefly raise and discuss different
considerations in relation to the performance, the communication
overhead and availability of the above presented schemes; namely
the traditional client /server scheme (CSS), the trust entity scheme
(TES) scheme, and the Remote Distributed Scheme (RDS). It
should be noted however, that TES is a private case of RDS,
where the launched set of agents includes exactly only one agent,
and each of its shares is the transaction itself. Furthermore, CSS is
an instance of TES, where the trusted host is actually the
originating one. (cf. Figure 5).

Originating
Host (O)

 H1

SA1

 H2

SA2

 Hn

SAn

Target Host

P.
.
.

Logical Trusted Host (X)

.

.

.

SP

Notations
O - Originating host
X - Logical trusted host
SP - Service Process of the originator
SA - Mobile Service Agent
P - A process of the target host

CSS, TES and RDS relationships
In case SA1≡...≡SAnthen H1≡...≡Hn producing TES
 otherwise RDS
In case O ≡ X then CSS

Figure 5:Possible Configurations

Communication Overhead. Clearly, the intrinsic communication
overhead of RDS is higher than a one that base on either CSS or
TES. While the communication overhead of CSS is affected from
the exact number of transactions sent by the originating host and

the volume of the corresponding results, the communication
overhead of both TES and RDS composed of four factors:

a) Launching a set of agents, possibly one agent, at the
beginning of the computation to perform the mobile
computation remotely.

b) Receiving and evaluating at least k ≤ n replicated results, at
the end of the computation.

c) Sending one transaction to the target host and receiving its
response by all agents. In RDS case, each of the n agents
holds all shares of all the transactions. Based on [8], the size
of each share equals to the original size of the secret. This
results a cost of 2n messages for sending n shares of the same
transaction and receiving the result of the target host by all
agents.

d) The number of transactions sent to the target hosts from all
agents during the computation. Note, that this number might
differ greatly from the number of transactions included in the
transactions set, |TS|.

In addition, there are several issues that apply only on TES and
not on RDS. Trusted hosts are machines that need to be trusted by
all other hosts in the network. This results that these Such a
requirement implies the possibilities of inadequacies due to strict
maintenance and support, causing two possible effects: a)
producing a bottleneck in the network, and b) might be inadequate
for large networks, large volume of agents and large variety of
services that are required to meet the mobile computation needs.

 As a result it is clear that trusted entities are very specific and
there are few such hosts in the network. Based on this
observation, it can be assumed that a trusted host is neither a
neighbor of either the originating host or the target host.
Furthermore, it is reasonable to assume that there are cases where
the distance between the trusted host and the target host is greater
than the distance between the originating and the target ones.

Performance. On the three schemes there are a communication
delay. While the communication latency of CSS and TES might
be affected from available bandwidth, congested lines, on the
route between the originating host and the target host, the latency
of RDS is minimal. This is due to the fact, that all the agents
relocate themselves on the neighbors of the target host.

Nevertheless, the performance of RDS also affected from the fact
that the target host cannot resolve a transaction until it collects at
least k shares of it. This results that the median slowest agent;
rather then the most slow one, determines the communication
latency of each round of the computation. Furthermore, this
means that each time a transaction is sent by at least k agents, the
median slowest agent of these agents determines the latency.
Thus, the replication of the agents may actually improve the
performance of the computation by assuring that slow/faulty hosts
do not impede the progress of the computation.

Resiliency. RDS is clearly a resilient and tolerant scheme in
contrast to CSS and TES. While a computation of the last two
schemes might terminate due to any crash of some host or
connection along the route between the originating or the trusted
hosts, and the target host, RDS is tolerant to n-k such events.

7. Conclusion and Future Work
In this paper we studied the issue of an a priori protection of any
mobile computation in possibly hostile environments, and focused
on goals and schemes that are easy to implement and deployed. In
this study, we did not require an absolute secure solution, but
looked for a one that supports the same level of protection that is
provided by the traditional client/server scheme.

We introduce a novel Remote Distributed Scheme, called RDS,
that is a general instant of the traditional client/server scheme.
RDS is based on two main ideas: a) replication of agents, and b)
sharing the transactions among these agents by using the (k, n)
secret-sharing threshold scheme.

We showed that RDS supports this requirement in any
environment, while not restricting any of the other requirements
introduced by the mobile computation paradigm. RDS assures that
the information gained by the hosts that host the agents is no more
than the information gained by the traditional client/server one.
The scheme also protects the computation from faulty and
erroneous behavior of malicious hosts, and enables the detection
of malicious host that participates in the computation.
Furthermore, it is easy to implement and to maintain since it is
executed in a clear-text mode. None of the current solely based
software solutions supports all these abilities.

RDS provides all these abilities if at least k hosts are known to be
either trustworthy or honest-but-curious. In case this information
is unavailable, we provide a well-specified estimation for
protecting the computation by defining the relation between the
number of the transactions and the number of the participant
hosts. By using this estimation we prove that the computation is
protected in any environment, and for any required certainty
factor.

RDS also benefits from the ability to tune the level of the required
security, by either increasing /decreasing the number of agents
based on the trustworthiness or hostility of the network. On one
hand, in case the network appeared to be trustworthy, the number
of the agents can be reduced. On the other hand, in case the hosts
in network appeared to be distrusted and/or malicious then the
number of the agents can be increased to provide the required
certainty factor.

Current investigation is focused both on theoretic and
implementation directions. We are currently implementing RDS
for analyzing its feasibility for different problems. On the
theoretic side we study issues that relate to the
communication/security tradeoff in mobile computation paradigm.

8. REFERENCES
[1] Algesheimer J., Cachin C., Camenisch J., and Karjoth G.

Cryptographic Security for Mobile Code. IEEE Symposium
on Security and Privacy, 2001.

[2] Bennet, Y.S. A Sanctuary for Mobile Agents. Secure Internet
Programming, LNCS, Vol. 1603, 1999, 261-273.

[3] Barak, B., Goldreich, O., Impagaliazzo, R., Rudich, S., Sahai,
A., Vadhan, S., and Yang K. On the (im)possibility of
obfuscating programs. LNCS, Vol. 2139, 2001, 1-18.

 [4] Cachin, C., Camenisch, J., Kilian, J., and Muller, J. One-
Round Secure Computation and Secure Autonomous Mobile

Agents. Automata, Languages and Programming, 2000, 512-
523.

[5] Hohl, F. A Model of Attacks of Malicious Hosts Against
Mobile Agents. 4th Workshop on Mobile Object Systems:
Secure Internet Mobile, 1998, 105-120.

[6] Hohl, F. Time Limited Blackbox Security: Protecting Mobile
Agents From Malicious Hosts. Mobile Agents and Security,
LNCS, Vol. 1402, 1998, 92-113.

[7] Giovanni, V. Cryptographic Traces for Mobile Agents. Mobile
Agents and Security, LNCS, Vol. 1419, 1998, 137-153.

 [8] Shamir, A., How to Share a Secret. CACM, Vol.22, 1979,
612-613.

[9] Sipser, M. Introduction to the Theory of Computation. PWS
publishing company, Boston MA, 1997.

[10] Sander, T., and Tschudin, F. Protecting Mobile Agents
Against Malicious Hosts. Mobile Agent Security, LNCS,
Vol. 1419, 1998, 44-60.

[11] Sander, T., Young, A., and Yung, M. Non-Interactive
CryptoComputing For NC1, Proceedings 40th IEEE
Symposium on Foundations of Computer Science (FOCS),
1999, 554-567.

[12] Xun, Y., Xiao, W., Lam, F., and Kwok, Y. A Secure
Intelligent Trade Agent System. LNCS, Vol.1402, 1998,
218-228.

[13] Minsky, Y., van Renesse, R., Schneider, F.B., and Stoller,
S.D. Cryptographic support for fault-tolerant distributed
computing, Proceedings of the Seventh ACM SIGOPS
European Workshop, Connemara, Ireland, September 1996,
109-114.

[14] Kotzanikolaou, P., Burmester, M., and Chrissikopoulos, V.
Secure Transactions with Mobile Agents in Hostile
Environments. LNCS, Vol. 1841, 2000, 289-297.

	Introduction
	Related Work
	A Simple Client/Server based Scenario
	Trusted-Entity based scheme
	Remote Distributed Scheme (RDS)
	Assumptions
	Construction of Shares and Transactions
	Secret Sharing Threshold Scheme - Overview

	The Correctness of RDS
	Protecting Mobile Computation in “Good” Environment
	The Correctness of RDS in any Environment

	An Extended example of RDS based Scenario

	Schemes Comparison and Discussion
	Conclusion and Future Work
	REFERENCES

