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Abstract

We build several highly-practical and optimized signcryption constructions directly from trapdoor per-
mutations, in the random oracle model. All our constructions share features such as simplicity, efficiency,
generality, near-optimal exact security, flexible and ad-hoc key management, key reuse for sending/receiving
data, optimally-low message expansion, “backward” use forplain signature/encryption, long message and
associated data support, the strongest-known qualitativesecurity (so-calledIND-CCA andsUF-CMA) and,
finally, complete compatibility with the PKCS#1 infrastructure. While some of these features are present
in previous works to various extents, we believe that our schemes improve on earlier proposals in at least
several dimensions, making the overall difference quite noticeable in practice.

Concretely, we present three methods generally based on what we call Parallel, Sequential, and eXtended
sequential Padding schemes (P-Pad,S-Pad,X-Pad).P-Pad offers parallel “signing” and “encrypting”, opti-
mal exact security, and minimum ciphertext length twice as long as the length of aTDP, while still maintain-
ing optimal bandwidth.S-Pad loses parallelism and some exact security, but has minimal ciphertext length
equal to that of aTDP. Any S-Pad can also be used as a “universal padding” scheme.X-Pad is similar to
S-Pad, but regains optimal exact security at the expense of a marginally-longer minimum ciphertext length.
Moreover, to unify various padding options, we construct a single versatilepadding schemePSEP which,
by simply adjusting the lengths of the parameters, can work optimally as either aP-Pad,S-Pad orX-Pad.
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1 Introduction

Signcryption. Until recently, the two main building-blocks of modern public-key cryptography — encryption
and signature schemes — have been considered asdistinct entities that may becomposedin various ways to
ensure message privacy and authentication. From a design and analysis standpoint, this evolution makes sense,
as encryption and signatures serve fundamentally different purposes. In practice, however, many centrally-
important applications use both primitives, for example, secure electronic mail. Thus, it seems justified to
invest special effort into designing a tailored and efficient solution to implement a “joint signature and encryp-
tion” primitive. Additionally, such a primitive may simplify and improve the design of complex protocols which
require both privacy and authenticity. For instance, the following is a very simple signcryption-based authenti-
cated key-exchange (AKE) protocol: sender Alice sends a fresh nonceN to the receiver Bob, who chooses a
session keyK and signcryptsK to Alice usingN as a label (see Section 3).1 This protocol both simplifies and
generalizes a similar protocol from [21,§8.1], which used a specific “encrypt-then-sign” implementation of
(labeled) signcryption [1], and also had to explicitly worry about low-level details such as user identities (which
get abstracted away by the powerful signcryption primitive).

Motivated by these reasons, Zheng [23] introduced a new primitive calledsigncryption. While several papers
[23, 24, 19, 12] offered security arguments about various signcryption schemes, the first formal investigations
appeared only recently [2, 1]. Both works define signcryption as a multi-user primitive which simultaneously
satisfies chosen ciphertext security for privacy and existential unforgeability for authenticity. In terms of con-
structions, Baeket al. [2] showed that the original “discrete log-based” proposalof Zheng [23] indeed can be
proven secure in the random oracle (RO) model under the so-called Gap Diffie-Hellman assumption. Zheng’s
signcryption scheme is quite elegant and achieves very goodefficiency in the discrete-log setting, but has the
disadvantage that all parties must agree on the same public parameters, such as the common discrete log group.
Thus, for example, any changes to the security parameter or signcryption scheme requires consensus. Addition-
ally, the security of [2] is based on a specific and somewhat non-standard assumption. On the other hand, An
et al. [1] examined generic composition methods of building signcryption from any secure signature and en-
cryption scheme. These composition paradigms are general and give rise to a variety of signcryption schemes.
Additionally, users can easily change their public keys or their favorite signature/encryption scheme, and still be
able to seamlessly communicate with other users. While these generic schemes validate that signcryption can
be built from ordinary signature and encryption, they are inefficient unless the latter are efficiently implemented.

Our Motivation. In practice, truly-efficient signature and encryption schemes, such asOAEP [4], OAEP+ [22],
PSS-R [5], are typically built from trapdoor permutations (TDPs), such as RSA, and are analyzed in the RO
model. We call such schemesTDP-based. Even with these efficient implementations, however, the generic
schemes have several drawbacks. For example, users have to maintain independent keys for signature and for
encryption, the message bandwidth is suboptimal (due to twoindependent “paddings” and additional overhead
for identity fraud protection), and the scheme’s “exact security” is not tight. Thus, given that practical schemes
are already built from trapdoor permutations, it is naturalto ask whether we can build optimizeddirect sign-
cryption constructions from trapdoor permutations (in theRO model)2 that resolve the inefficiencies of the
“black-box” composition.

We resolve this question in the affirmative: This paper presents several optimized signcryption constructions,
all of which share features such as simplicity, efficiency, generality, near-optimal exact security, flexible and
ad-hoc key management, key reuse for sending/receiving data, optimally-low message expansion, “backward”

1Unlike Diffie-Hellman AKE, this protocol does not enjoy forward secrecy, but allows to build efficient AKE protocols under
different assumptions than Diffie-Hellman, such as RSA.

2As we stated,all truly efficient plain signature and encryption schemes are analyzed in the RO model, so there seems to be little
hope to avoid it for a more powerful signcryption primitive.
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use for plain signature/encryption, long message and associated data support, the strongest-known qualitative
security (so calledIND-CCA andsUF-CMA) and, finally, complete compatibility with the PKCS#1 infras-
tructure [20]. While some of these attractive features are already present in several previous works to various
extents, we believe that our schemes improve on earlier proposals in at least several dimensions, making the
overall difference quite noticeable in practice. Note thatwe do not claim any improvement in thecomputa-
tional efficiency of signcryption based onTDPs, since in practice the computational overhead is completely
dominated by the time required to compute and invertTDPs. In particular, our signcryption schemes will re-
quire exactly one computation of the “receiver’sTDP” (for “encryption”) and one inverse computation of the
“sender’sTDP” (for “authentication”), which is clearly optimal forTDP based signcryption (and can already
be achieved with generic compositions in the RO model). Nevertheless, we will see in Table 1 that our schemes
have many other advantages.

Overview of Our Results. Unlike genericTDP-based schemes, in our model each userU independently
picks asingletrapdoor permutationfU (together with its trapdoor, denotedf−1

U ) and publishesfU as its public
signcryption key. Similar toTDP-based signature and encryption schemes, our schemes use some padding
schemePad on messagem before passing the result through correspondingTDPs. However, our schemes use
only asingle, specialized padding scheme, rather than two independent padding schemes. This design results
in noticeable practical savings in both quantitative and qualitative security, as well as improves the message
bandwidth and randomness utilization.

Specifically, to send a short message3 m from S to R, we offer three options toS, depending on what
padding scheme is more convenient in a given application:

• P-Pad (Parallel Padding) will producePad(m) = w‖s, andS will output fR(w)‖f−1
S (s).

• S-Pad (Sequential Padding) will producePad(m) = w‖s, andS will output fR(f−1
S (w‖s)).

• X-Pad (eXtended sequential Padding) will producePad(m) = w‖s, andS will output fR(f−1
S (w))‖s.

As we can see,P-Pad provides parallel application of “signing”f−1
S and “encrypting”fR, which can result in

efficiency improvements on parallel machines. However, theciphertext length is twice as large as compared
to S-Pad, although the message bandwidth remains as good asS-Pad by using messages twice as long. On
the other hand, the exact security offered byS-Pad is not as tight as that ofP-Pad. Finally,X-Pad regains the
optimal exact security ofP-Pad, while maintaining ciphertext length nearly equal to the length of theTDP (by
achieving quite shorts).

Furthermore, we construct a singleversatilepadding scheme (calledPSEP2) which, by simply adjusting
some length parameters, can work optimally as eitherP-Pad,S-Pad orX-Pad! In addition, since each paradigm
can naturally yield a regular signature/encryption by setting fS/fR equal to the identity permutation (i.e. it is a
“universal padding” [6]), this versatile padding scheme istruly applicable for anyTDP-based public-key usage.

Our Padding Constructions. We observe that all popular padding schemes with message recovery currently
used for ordinary signature or encryption, such asOAEP [3], OAEP+ [22], OAEP++ [15], PSS-R [5], and
“scramble all, encrypt small” [13] (in the future denotedSAP), actually consist of two natural componentsw
ands. Moreover, thesew ands are always obtained through an application of the Feistel Transform [17] —
using a random oracle as the round function — to some more “basic” pair 〈d, c〉. Thus, rather than defining
such specific paddings for our new application, we follow a more general approach. We define some simple,
easily verified properties of〈d, c〉, such that applying one or two rounds of the Feistel Transform to anysuch
〈d, c〉, we obtain the desired padding scheme. We show that the needed conditions on〈d, c〉 are that they form
anextractable commitment scheme, which is indeed a trivial condition to check and satisfy in the RO model.

3Later, we easily extend our signcryption scheme to support long messages, per [7].
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For example, settingc = H(m‖r), d = (m‖r), we get a commitment scheme which definesPSS-R, while
settingc = (H(r)⊕m)‖H ′(r), d = r, we get a commitment scheme which leads toOAEP.

As special cases of ourone general theorem, we not only obtain that analogs ofOAEP, PSS-R, SAP,
etc. are good for our new signcryption application, but: (1)get many of the previous results about signature
and encryption as one special case of our general framework;(2) isolate and abstract the usefulness of the
Feistel Transform in constructingTDP-based schemes; (3) designnew padding schemes (without needing
new proofs!) which may be specially tailored for particularsituations. As an example of the last benefit,
we introduce two new padding schemes that we callProbabilistic Signature-Encryption Paddings(PSEP).
PSEP1 is a P-Pad scheme that is a “hybrid” of the standardPSS-R and OAEP paddings that also offers
optimal message bandwidth in our setting.PSEP2 is a versatile padding scheme based onPSEP1 capable of
achieving optimal bandwidth inall of our constructions.

Finally, ourS-Pad schemes imply a general construction ofuniversal padding schemes[6] from any trapdoor
permutation. In particular, they generalize two of the three specific constructions in [16], which used a special
case ofPSS-R-based padding. OurPSEP2 scheme is also a universal padding with optimal bandwidth.

Organization. The rest of this paper is structured as follows. Section 2 reviews the literature on padding
schemes, Section 3 introduces our notation and security definitions, Section 4 introduces our padding con-
structions, Section 5 uses these construction to build the new PSEP padding schemes, and Section 6 uses our
padding schemes to build a full-fledged signcryption schemethat supports associated data and long messages.

2 Related Work

While padding schemes are very popular in the design of ordinary encryption and signature schemes (e.g., [3,
5, 22, 9]), the most relevant previous works are those of [1, 18, 6, 16].

Comparing with [1]. We already mentioned that our main improvement over the generic methods from [1]
come in much improved message bandwidth, key reuse, better exact security, and better qualitative security
([1] cannot achieve bothsUF-CMA- andIND-CCA-security, but achieves slightly weaker notions; see [1]).To
best illustrate it, we consider theTDP-based implementation of the “commit-then-encrypt-and-sign” (CtE&S)
from [1] and compare it to our parallelP-Pad approach. InCtE&S, one first applies any commitment scheme
to transform a modified messagem′, consisting ofm and hashes of two public keys, into a pair〈d, c〉, and then
encryptsd and signsc. For the encryption and signature one applies two new, independent padding schemes to
d andc to obtainw ands, and only then applies a correspondingTDP tow ands. Thus, the message is padded
four times (hash of keys, commitment, signature and encryption). In fact, for currently best-knownTDP-based
encryption methods, one either has to lose exact security [22] or has to pad the message to be longer than the
length of theTDP [15]. In contrast, we commit tom once, directly getting〈d, c〉, and then apply a deterministic,
length-preserving Feistel Transform (where the public keys are only hashed into the round function, and do not
affect bandwidth) to obtain the requiredw ands. Moreover, we are guaranteed to always obtain tight exact
security.

Comparing with [18]. This work usesPSS-R padding for sequential signcryption with RSA. Namely, to
transmitRSAR(RSA−1

S (w‖s)), wherew‖s is the result ofPSS-R applied to the messagem, andRSAU

is the RSA key of userU . Thus, it is similar to ourS-Pad paradigm, albeit restricted to RSA andPSS-R.
Unfortunately,PSS-R does not happen to be a goodS-Pad for generalTDPs, and even with RSA the authors
obtain very poor exact-security guarantees. For example, their results do not imply practical security guarantees
even when using a2048-bit RSA modulus. In addition, the work of [18] considers a much weaker notion of
security for signcryption than we use. Interestingly, our work implies that applying one more Feistel round to
PSS-R yields an optimal, secureS-Pad that works for anyTDP.
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Comparing with [6, 16]. OurS-Pads are similar in spirit to the “universal padding” schemes defined by Coron
et al. [6]. However, in their application, one applies such a padding toeither a plainTDP-based signatureor
a plain TDP-based encryption, but not tosimultaneoussignature and encryption (i.e., signcryption). While
[6] constructed one concrete universal padding scheme (PSS-R), with poor exact security and only specific to
RSA, [16] gave three concrete padding schemes with nearly-optimal exact security for anyTDP.

Our work shows that universal paddings schemes are special cases of ourS-Pad/X-Pad schemes. In fact, as
we mentioned before, two special cases of ourS-Pad/X-Pad constructions yield two constructions from [16].
However, some extra care needs to be taken to buildS-Pads/X-Pads (for signcryption) from mere universal
padding schemes (e.g., to prevent “identity fraud” attacks [1]).

We note that both [6, 16] explicitly considered the questionof key reuse for their plain “signature-encryption”
application (as did the earlier work of [11]). However, their results do not imply similar results in our more
complicatedsigncryptionsetting (and, anyway, we consider generalized padding schemes instead of proving
key reuse on a case-by-case basis). For similar reason, theycannot bedirectly appliedto conclude key reuse in
theTDP-based generic composition methods of [1].

Summary of comparisons. Table 1 summarizes the features of our constructions as compared to some of the
previous work. Overall, we believe that our methods noticeably improve all previously-proposed signcryption
schemes, both from practical and theoretical perspectives. We plan to propose our schemes as a basis for a new
standard for public-key signcryption.

ZSCR [2] TBOS [18] CtE&S / StE / EtS [1] P-Pad / S-Pad / X-Pad

Standard Assumption? no yes yes yes
Exact Security? poor very poor good excellent/ good / excellent
Insider Security? no no yes yes
Multi-User Setting? yes no yes yes
CCA security? yes yes no /yes/ no yes
Strong Unforgeability? no∗ no∗ no / no /yes yes

General Construction? no no yes yes
Key Flexibility? no no yes yes
Key Reuse (Short Key)? yes no∗ no∗ yes
Avoid Special Set-up? no yes yes yes
Extract Plain Sig / Enc? no only Sig yes/ Sig / Enc yes
Associated Data? no no no yes
Compatible to PKCS#1? no maybe maybe yes
Parallel Operations? n / a no yes/ no / no yes/ no / no

Message Bandwidth moderate very poor moderate optimal
Minimal Ciphertext 2k + |m| k 2k / k / k 2k / k / k + a

Table 1: Comparison to prior schemes. A star∗ signifies that the question was not explicitly considered. For
min ciphertext,k, |m|, a are the lengths of the public-key domain, the message, and the security parameter.

3 Preliminaries

In this section, we formally define multi-party signcryption, some cryptographic primitives, and the extractable
commitments that form the basis for our padding constructions.
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3.1 Signcryption

Our modeling of signcryption is based on [1], except we generalize the latter definitions to include support for
associated data (intuitively, a public label which is boundto the ciphertext), in order to provide more useful
functionality and more general results.

Syntax. A signcryption scheme with associated dataℓ consists of the algorithms(Gen,SigEnc,VerDec). In
the multi-party setting, theGen(1λ) algorithm for userU generates the key-pair(SDKU ,VEKU ), whereλ is
the security parameter,SDKU is the signing/decryption key that is kept private, andVEKU is the verifica-
tion/encryption key made public. Without loss of generality, we assume thatVEKU is determined fromSDKU .

The randomized signcryption algorithmSigEnc for userU implicitly takes as input the user’s secret key
SDKU and explicitly takes as input the messagem ∈ M, the labelℓ and the identity of the recipient, in order
to compute and output the signcryptionΠ. For simplicity, we consider this identityID to be a public keyVEK.
Thus, we write this algorithm asSigEncℓ

SDKU
(m,VEKR), or simplySigEncℓ

U (m,VEKR).
Similarly, userU ’s deterministic de-signcryption algorithmVerDec implicitly takes the user’s privateSDKU

and explicitly takes as input the signcryptionΠ̃, the labelℓ and the senders’ identity. We writeVerDecℓ
SDKU

(Π,

VEKS), or simply VerDecℓ
U (Π,VEKS). The algorithm outputs some messagem̃, or ⊥ if the signcryption

does not verify or decrypt successfully. Correctness ensures that for any usersS andR, VerDecℓ
R(SigEncℓ

S(m,
VEKR),VEKS) = m, for anym andℓ.

Security. In this paper, we only use the strongest possible notion ofInsidersecurity for multi-user signcryp-
tion [1]. The security notions for our labelled algorithms are similar to those of standard signcryption [1], with
the added requirement thatℓ is considered part of the ciphertext (for the purposes ofCCA decryption oracle
queries), and must be authenticated. However, there is no hiding requirement forℓ.

As expected, the security for signcryption consists onIND-CCA andsUF-CMA components when attack-
ing some userU . Both games with the adversary, however, share the following common component. After
(SDKU ,VEKU ) ← Gen(1λ) is run andA getsVEKU , A can make up toqS adaptive signcryption queries
SigEncℓ

U (m,VEKR) for arbitrary VEKR, as well as up toqD de-signcryption queriesVerDecℓ
U (Π,VEKS),

again for arbitraryVEKS. (Of course,m,Π, ℓ can be arbitrary too).
The IND-CCA security of signcryption requires that noPPT adversaryA can find some pairm0,m1 and a

labelℓ for which he can distinguishSigEncℓ
S(m0,VEKU ) from SigEncℓ

S(m1,VEKU ). Notice, to create “valid”
signcryptions thatA must differentiate between,A must output thesecret keySDKS of the partyS sending
messages toU . While seemingly restrictive, this is amuch strongerguarantee than ifA did not knowthe key
of the sender. A good way to interpret this requirement is to say that even whencompromisingS,A still cannot
“understand” messages thatS sent toU . In fact, we allowA to evencook upthe secret keySDKS without
necessarily generating it viaGen! Formally, for anyPPTA running in timet,

Pr

[

b = b̃

∣

∣

∣

∣

∣

(m0,m1, ℓ,SDKS , α)← ASigEnc
(·)
U

(·,·),VerDec
(·)
U

(·,·)(VEKU , find), b
R

← {0, 1},

Π← SigEncℓ
S(mb,VEKU ), b̃← ASigEnc

(·)
U

(·,·),VerDec
(·)
U

(·,·)(Π, ℓ; α, guess)

]

≤
1

2
+ εCCA

whereεCCA is negligible in the security parameterλ, and(SDKU ,VEKU )← Gen(1λ) is implicitly called at the
beginning. In theguess stage,A only has the natural restriction of not queryingVerDecU with (Π,VEKS , ℓ),
but can still use, for example,(Π,VEKS′ , ℓ) for VEKS′ 6= VEKS or (Π,VEKS , ℓ

′) for ℓ 6= ℓ′.
ForsUF-CMA security, noPPTA can forge a “valid” pair(Π, ℓ) (of some messagem) from U to anyuser

R, provided thatΠ was not previously returned from a query toSigEncℓ
U . Again, in order to define “valid”, we

strengthen the definition by allowingA to come up with the presumed secret keySDKR as part of his forgery.
Formally, for anyPPTA running in timet,

Pr
[

VerDecℓ
R(Π,VEKU ) 6= ⊥

∣

∣

∣
(Π, ℓ,SDKR)← ASigEnc

(·)
U

(·,·),VerDec
(·)
U

(·,·)(VEKU )
]

≤ εCMA
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whereεCMA is negligible in the security parameterλ, Gen(1λ) is implicit, andA did not obtain(Π, ℓ) in
response to anySigEncℓ

U (m,VEKR, ℓ) query. We call any scheme satisfying these properties a(t, εCCA, εCMA,
qD, qS)-secure signcryption scheme.

3.2 TDPs and claw-free permutations

Trapdoor permutations. A family of trapdoor permutations (TDPs) is a family of permutations such that it
is easy to randomly select a permutationf and some “trapdoor” associated withf . Furthermore,f is easy to
compute and, given the trapdoor information, so is its inversef−1. However, without the trapdoor,f is “hard”
to invert on random inputs: NoPPT adversaryA, giveny = f(x) for randomx, can findx with probability
greater thanεTDP, which is negligible in the security parameterλ of the generation algorithm.

Claw-free permutations. To improve the exact security of authentication in our constructions, we introduce
a general class ofTDPs — those induced by a family ofclaw-free permutationpairs [10]. In this context, the
generation algorithm outputs(f, f−1, g), whereg is another efficient permutation over the same domain asf .
The task of thePPT adversaryB now is to find a “claw”(x, z) such thatf(x) = g(z), which it succeeds at with
probability at mostεclaw, which negligible inλ. It is trivial to see that omittingg from the generation algorithm
induces aTDP family with εTDP ≤ εclaw (the reduction invokesA on a randomg(z)). All known TDP families,
such as RSA, Rabin, and Paillier, are easily seen to be induced by some claw-free permutation families with
εclaw = εTDP. Thus, a tight reduction to “claw-freeness” of such families implies a tight reduction to inverting
them. On the other hand, it was shown by [8] that our restriction to claw-free permutations is necessary for
tight signature reductions which we will achieve in this paper. We also remark that claw-free permutations are
more general than “homomorphicTDPs” used by [16] for a similar reason.

3.3 Extractable Commitments

Our constructions for padding schemes all make use ofextractable commitment schemes. Such commitments
have usual properties of standard commitments, but with theadditional twist that there exists an extraction
algorithm which can extracts a unique decommitment from anyvalid commitment with high probability, by
using some “trapdoor information”. In the random oracle model,which is the model we consider here, such
information consists of all the random oracle queries made to produce this valid commitment string.

Syntax. An extractable commitment schemeC consists of a triple of algorithms(Commit,Open,Extract).
Given a messagem ∈ M and some random coinsr, Commit(m; r) outputs a pair(c, d), bothk bits long,
wherec representing the commitment tom andd is a corresponding decommitment. As a shorthand, we write
(c, d) ← Commit(m). Open(c, d) outputsm if (c, d) is a valid commitment/decommitment pair form, or⊥
otherwise. Correctness requiresOpen(Commit(m)) = m for all m ∈M.

We require this commitment scheme to satisfy two security properties:

Hiding. NoPPT adversary can distinguish the commitment of any messages ofits choice from ak-bit random
stringR. More formally, noPPT adversaryA running in timet can distinguish between the following two
games with probability greater thanεhide, which is negligible in the secuirty parameterλ. In both gamesA
chooses some messagem, but gets either a properly generated commitmentc(m), or a random stringR.

Extractability. There exists a deterministic poly-time algorithmExtract which can extract the “correct” de-
commitment from any valid commitment, given access to a transcriptT of all RO queries previously issued by
the adversary. Formally, for anyPPTA running in time at mostt,

Pr[Extract(c,T ) 6= d ∧Open(c, d) 6= ⊥ | (c, d)← A(1λ)] ≤ εextract
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whereT is a complete transcript of the RO queries made byA andεextract is negligible inλ. For syntactic
convenience, we defineExtract to output a random value in the event that the extraction algorithm “fails”.

This completes the definition. A commitment schemeC is a(t, εhide, εextract)-secure extractable commitment
if it satisfies the above properties. We note that the “standard” notion of a commitment requires a binding
property, instead of extractability. However, it is easy tosee that a very strong form of binding is implied by
extractability, as stated below (see Appendix A for the proof).

Lemma 1 (Binding property of extractable commitments) It is computationally hard to produce(c, d, d′)
such that(c, d) and (c, d′) are valid commitment pairs andd 6= d′. Specifically, callingεbind the maximum
probability of the adversary to come up with such(c, d, d′) in timet, we haveεbind ≤ 2εextract.

When appropriate, we directly useεbind for conceptual clarity and becauseεbind may in fact be tighter than
2εextract. Notice, in the above Lemma the adversary cannot even come upwith alternative decommitments to
the same messagem.

We will also use the following property of(t, εhide, εextract)-secure extractable commitments: It is hard to
find a commitmentc for which a random decommitmentd will be valid with non-negligible probability:

Lemma 2 ∀ A running in timet, Pr[Open(c, d) 6= ⊥ | c← A(1k); d
R

← {0, 1}k ]
def

≤ εrand ≤ εextract + 2−k.

We make use ofεrand for conceptual clarity and as, in fact,εrand may be tighter. See Appendix A for the proof.

4 Our Constructions

In this section, we construct tailored padding schemes withwhich one can apply bothTDPsfR andf−1
S directly

to asinglepadded message to signcrypt it,i.e., to simultaneously “encrypt” and “sign” the message by operating
on a single padding. As explained in the Introduction, our direct methods considerably reduce the overhead
introduced by the padding as compared to previous generic approaches in [1].

Our Padding Schemes. We consider three general paradigms for signcryption paddings. The first padding
scheme, which we callP-Pads (short for Parallel Paddings), produces a pair(w, s), such that a signcryption
is computed asfR(w)‖f−1

S (s). Note that the expensiveTDP operationsfR(w) andf−1
S (s) may be computed

in parallel. The second type of padding scheme, which we callS-Pads (Sequential Paddings), outputs a single
stringw‖s, such that a signcryption is computed asfR(f−1

S (w‖s)). Although theseS-Pads lose parallelism, the
minimum length of a signcryptext is much shorter, and the structure conforms more closely to classical padding
schemes for signature and encryption. Finally, the third type of padding scheme, which we callX-Pads (eX-
tended sequential Paddings), is a variant of theS-Pad and outputs a pair of strings(w, s) such that signcryption
is computed as(fR(f−1

S (w)), s). It also loses parallelism, and its minimum length of a signcryptext is slightly
longer than that ofS-Pad, but it will allow us to achieve somewhat better exact security than that ofS-Pad.

Framework Based on Feistel Transforms. We base the structure of our padding schemes on the well-known
Feistel Transform. A Feistel Transform is an operation on a pair of left and right inputs(L,R) which makes
use of a “round function”F . Applying a single round of the Feistel Transform on a pair(L,R) gives a new
pair (L′, R′) such thatL′ = R andR′ = F (R)⊕L. The transform is very efficient in practice, and is invertible
even ifF is not (in particular, we can invert by computingL = F (L′) ⊕ R′ andR = L′). Feistel Transforms
are often used in multiple rounds with differentkeyedround functions, and have been especially useful in the
design of block ciphers. In our application, the round function will be public, and will be modeled by the
random oracle.

All our padding schemes will produce the pair(w, s) by applying one (P-Pad) or two (S-Pad/X-Pad) rounds
of Feistel transform to some “more basic” pair(d, c). In fact, in all our constructions we will use any extractable
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commitment pair (per Section 3) as the input to the first round: the decommitmentd as the left hand input and
the commitmentc as the right hand input. This will allow us to achieve a very high level of generality, and will
also abstract away and emphasize the usefulness of the Feistel Transform in our constructions. Additionally,
it will show that applying two rounds of the Feistel Transform results in what we callversatile padding: by
simply varying the lengths ofc andd, the same padding can serve asP-Pad,S-Pad,X-Pad, and even as the
padding for plain signature or encryption!

For technical reasons — notably, the possibility of “identity fraud” attacks — we specially format all inputs to
the random oracleG that serves as the first Feistel round function. We do this by prepending a meta-data string
L to the oracle input, whereL contains the public keys of the intended sender and recipient (VEKS ,VEKR,
respectively), as well as any desired associated dataℓ. For simplicity, we usêG(·) to denoteG(L, ·), where one
can viewĜ as an RO that is uniquely determined byL. UsingĜ as our round function rather thanG ‘binds”
the padded message to the meta-data, ensuring that no identity fraud has occurred and that the associated data
ℓ has not been altered. Note that this technique represents a further optimization over the generic composition
paradigm [1], which requires that a collision-resistant hash of the meta-data be included along with the message
as input to the padding schemes.

We now describe our constructions and the corresponding security claims. In all definitions, we assume that
the signcryptionGen algorithm generates a(t, εTDP)-secureTDP pair

〈

fU , f
−1
U

〉

given to the honest userU .
For security intuition, it is also instructive to think of the senderS and the recipientR as acting maliciously
(since we are in the Insider-security model [1]).

4.1 P-Pad Schemes

We now describe a generic construction for a class of provably secureP-Pad schemes in the RO model, based
on a single round of the Feistel Transform applied to any extractable commitment.

Definition 1 (Feistel P-Pad) LetC = (Commit,Open,Extract) be any secure Extractable Commitment scheme.
Furthermore, letG : {0, 1}∗ → {0, 1}|d| be a RO. TheFeistelP-Pad PadL(m)→ (w, s) (the padding of mes-
sagem using meta-dataL) induced byC is given by:

(c, d) ← Commit(m)
w ← c

s ← Ĝ(c) ⊕ d

whereĜ(·)
def
= G(L, ·). The corresponding decoding operationDePadL(w, s) can be computed by first ob-

taining d = Ĝ(w) ⊕ s andc = w, and then returningOpen(c, d).

Note that(w, s) represents a Feistel Transform on input〈d, c〉 usingĜ as the round function. The following
theorem states our main security claim about FeistelP-Pads, namely thatfR(w)‖f−1

S (s) is a secure signcryption
with support for associated data, provided that properly-formed meta-dataL is used in the padding.

Theorem 1 (Signcryption from Feistel P-Pads)Let C be any(t, εhide, εextract)-secure extractable commit-
ment scheme, andPad (and the correspondingDePad) be the FeistelP-Pad induced byC. Define theSigEnc

andVerDec algorithms as follows:

SigEncℓ(m,VEKR = fR) → (ψ = fR(w)‖σ = f−1
U (s)) where (w, s)← PadL(m)

VerDecℓ(ψ‖σ,VEKS = fS) → DePadL(w‖s) where w‖s = f−1
U (ψ)‖fS(σ)

We require that, at a minimum, the meta-dataL must contain the associated dataℓ, as well as the published
TDPs of the sender and intended recipient of the message (fS andfR respectively).
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Against any adversary allowed at mostqG queries to theG oracle, this signcryption scheme is a(t′, εCCA, εCMA, qD, qS)-
secure signcryption, where

t′ = t−O((qG + qS) · Tf )

εCCA ≤ εTDP + (qS + 2) · ((qS + qG) · 2−|c| + εhide) + qD · εrand + εbind

εCMA ≤ qG · εTDP + qS · ((qS + qG) · 2−|c| + εhide) + (qD + 2) · εrand + 3εextract

If fU is taken from a family of(t, εclaw)-secure claw-free permutations, we can improve the bound onεCMA:

εCMA ≤ εclaw + qS · ((qS + qG) · 2−|c| + εhide) + (qD + 2) · εrand + (qG + 2) · εextract

The proof of Theorem 1 is given in Appendix B.
We note that, by a simple argument, the above theorem also implies that a modified syntaxfR(w)‖s can

be used as a secure encryption, provided the meta-data somehow indicates that plain encryption is the desired
mode of operation. In a similar manner,w‖f−1

S (s) can be used as a secure signature. IfS andR haveTDPs
with different input lengths, it is generally a simple matter to adjust the sizes of the(c, d) pairs and the output
length of theG oracle, to accommodate the mismatch without any significantloss of exact security.

4.2 S-Pad and X-Pad Schemes

Unfortunately, our previous construction for FeistelP-Pads does not suffice to produce anS-Pad (which is
strictly harder to achieve than aP-Pad). For example, we will see in Section 5 that theOAEP padding is a
special case of ourP-Pad construction, and yet it was shown to be potentially insecure when used as a single
padding, by the result of [22]. On the positive side, we now show that it is easy (and efficient) to convert any
FeistelP-Pad into anS-Pad by merely adding a second round of the Feistel Transformapplied to the〈d, c〉 pair.

Definition 2 (Feistel S-Pad)LetC = (Commit,Open,Extract) be any secure Extractable Commitment scheme.
Furthermore, letG : {0, 1}∗ → {0, 1}|d| andH : {0, 1}∗ → {0, 1}|c| be ROs. TheFeistelS-Pad PadL(m)→
w‖s (the padding of messagem using meta-dataL) induced byC is given by:

(c, d) ← Commit(m)

w ← Ĝ(c) ⊕ d
s ← H(w)⊕ c

whereĜ(·)
def
= G(L, ·). The corresponding decoding operationDePadL(w‖s) can be computed by first ob-

taining c = H(w)⊕ s andd = Ĝ(c)⊕ w, and then returningOpen(c, d).

Note that(w, s) represents a two round Feistel Transform on input〈d, c〉 usingĜ as the first round function and
H as the second round function. The following theorem states our main security claim about FeistelS-Pads,
namely thatfR(f−1

S (w‖s)) is a secure signcryption with support for associated data, provided that properly-
formed meta-dataL is used in the padding.

Theorem 2 (Signcryption from Feistel S-Pads)Let C be any(t, εhide, εextract)-secure extractable commit-
ment scheme, andPad (and the correspondingDePad) be the FeistelS-Pad induced byC. Define theSigEnc

andVerDec algorithms as follows:

SigEncℓ(m,VEKR = fR) → Π = fR(f−1
U ((w‖s)) where w‖s← PadL(m)

VerDecℓ(Π,VEKS = fS) → DePadL(w‖s) where w‖s = f−1
U (fS(Π))
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We require that, at a minimum, the meta-dataL must contain the associated dataℓ, as well as the published
TDPs of the sender and intended recipient of the message (fS andfR respectively).

Against any adversary allowed at mostqG andqH queries toG andH oracles (respectively), this signcryp-
tion scheme is a(t′, εCCA, εCMA, qD, qS)-secure signcryption, where

t′ = t−O((qG + qS + qH · qG) · (Tf + Textract))

εCCA ≤ εTDP + (qH + qG + qS)2 · 2−|d| + (qS + qD) · ((2qG + qS) · 2−|c| + εhide + εextract) + 3qG · εhide

εCMA ≤ qG · εTDP + (qH + qG + qS)2 · 2−|d| + (qS + qD) · ((qG + qS) · 2−|c| + εhide + 4εextract)

If fU is taken from a family of(t, εclaw)-secure claw-free permutations, we can improve the bound onεCMA:

εCMA ≤ εclaw + (qH + qG + qS)2 · 2−|d| + (qS + qD) · ((qG + qS) · 2−|c| + εhide + 3εextract) + qG · εextract

The proof of Theorem 2 is given in Appendix C. Interestingly,the proof uses a novel “trick” involving the meta-
data input to theG oracle (beyond its usage for identity fraud protection) which does not work for the seemingly
symmetric casef−1

S (fR(w‖s)), and thus the order in which theTDPs are applied is significant.4 We note that,
by the same argument used forP-Pads, the above theorem also implies thatfR(w‖s) (resp.f−1

S (w‖s)) can be
used as a secure encryption (resp. signature). That is, a FeistelS-Pad can also be used as a standard universal
padding scheme as described in [6, 16]. Furthermore, it is easy to show that any FeistelS-Pad can be used
also as a FeistelP-Pad—i.e., by computingfR(w)‖f−1

S (s) — and thus can achieve the same exact security
asP-Pads. As the cost of an additional Feistel round is minimal,we recommend theS-Pad construction for
implementations, since they can be used in either paradigm,as the situation demands.

X-Pads: Improving the exact security of Feistel S-Pads. Unfortunately, in the sequential paradigm,S-Pads
lose a potentially-significant amount of exact security (for the IND-CCA security guarantee only) when com-
pared toP-Pads. This is due to the substantial increase in theIND-CCA reduction’s running time, which
requires time proportional toqH · qG (underlined in the statement of Theorem 2). We notice that the same
loss of exact security (or worse) occurs in all known paddingschemes for regular encryption, which place the
entire padding inside the input of aTDP (as in [22]). However, if we are willing to place a small portion of the
padding outside theTDP (as was done by [15] forOAEP++ encryption) — which slightly increases the min-
imum ciphertext length — we can avoid this loss of security. Conveniently, we can merely reuse our existing
FeistelS-Pad construction as anX-Pad, for which we have a signcryption of the formfR(f−1

S (w))‖s, wheres
is short. In particular, define a FeistelX-Pad to be a FeistelS-Pad with length parameters chosen appropriately
for X-Pads.

Theorem 3 (Signcryption from Feistel X-Pads)Let C = (Commit,Open,Extract) be a (t, εhide, εextract)-
secure extractable commitment scheme, andPad (and the correspondingDePad) be the FeistelX-Pad induced
byC. Define theSigEnc andVerDec algorithms as follows:

SigEncℓ(m,VEKR = fR) → Π = fR(f−1
U ((w))‖s where (w, s)← PadL(m)

VerDecℓ(Π = ψ‖s,VEKS = fS) → DePadL(w, s) where w = f−1
U (fS(ψ))

We require that, at a minimum, the meta-dataL must contain the associated dataℓ, as well as the published
TDPs of the sender and intended recipient of the message (fS andfR respectively). This signcryption scheme

4For technical reasons, it seems unlikely that this “symmetric” case can be proven secure, but there seems to be no advantage to
using it in any case. This should be contrasted with the generic EtS/StE compositions, where both orders where equally effective [1].
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Figure 1: Schema forPSEP1 andPSEP2 on inputm = m1‖m2

has the same exact security bounds as those of the FeistelS-Pads of Theorem 2 for bothTDPs and claw-free
permutations, but with an improvement in the running time ofthe reduction such that

t′ = t−O((qG + qS + qH) · (Tf + Textract))

The proof of Theorem 3 is given in Appendix C. The practical costs of this small increase in the minimum ci-
phertext length forX-Pads are generally not significant, but the resulting increase in exact security is substantial
enough to warrant the application of FeistelX-Pad instead of FeistelS-Pad in most situations.

5 Probabilistic Signature and Encryption Padding (PSEP)

In this section, we instantiate our constructions with two new padding schemes we callProbabilistic Signature
and Encryption Paddings(PSEP) which are designed to provide optimal bandwidth and flexibility. These
two paddings,PSEP1 andPSEP2, are constructed by applying theP-Pad andS-Pad constructions (respec-
tively) to the following extractable commitment scheme, using random oraclesK : {0, 1}∗ → {0, 1}|m1 | and
K ′ : {0, 1}∗ → {0, 1}|c|−|m1|,

c ←
(

m1 ⊕K(r)
)

‖ K ′(m2‖r)

d ← (m2‖r)

The scheme is parameterized by the selection of the lengths of c,d,m1,m2 (denoted|c|,|d|,|m1|,|m2|,resp.).
The following Lemma gives exact security for the commitmentscheme used inPSEP, in terms of the

relevant selectable parameters. See Appendix D for the proof.

Lemma 3 The commitment scheme〈d = m2‖r, c = (m1 ⊕K(r))‖K ′(m2‖r)〉 definingPSEP satisfies:

εhide ≤ (qK+qK ′)·2−(|d|−|m2|) ; εextract ≤ (q2K ′+1)·2−(|c|−|m1|) ; εbind ≤ 2·εextract ; εrand ≤ 2−(|c|−|m1|)

whereqK andqK ′ are the number of oracle queries toK andK ′ made by the adversary.
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Using this commitment pair〈d, c〉, we can apply a single round of the Feistel Transform to yieldPSEP1:
〈

w← c ; s← Ĝ(w) ⊕ d
〉

, as shown in Figure 1.PSEP1 is sufficient for use as a FeistelP-Pad for signcryp-

tion. Interestingly, it can be seen that bothOAEP [3] andPSS-R [5] are special cases ofPSEP1 for appropri-
ate selections of the commitment scheme parameters. The parameters corresponding toOAEP (|m1| = 0) and
PSS-R (|m2| = 0), however, are not bandwidth-optimal forP-Pads (where one wants to “balance”|c| and|d|).
For example, if|c| = |d| = k, bothOAEP andPSS-R would require to set|m| ≤ k, while the total length2k
of PSEP1 potentially allows one to fit|m| ≈ 2k, which we can indeed do by splittingm almost evenly.

Rather than instantiatingPSEP1, we recommend applying a second round of Feistel (a very inexpensive
operation). This yields the schemePSEP2, also shown in Figure 1.PSEP2 can be used in any of the three
modes discussed in Section 4,i.e., it can be used as aP-Pad,S-Pad, orX-Pad. Appropriate selection of the
commitment scheme parameters can be used to achieve optimalbandwidth in any of these modes — for any
desired level of exact security for the extractable commitment.

Note that although thePSEP2 scheme would be rather difficult to analyze directly, in our general framework
the proof of simple Lemma 3 is all one needs to obtain many useful results. Namely, by leveraging the Theorems
in Section 4 we get tight exact security bounds forPSEP2 showing that it can be used as aP-Pad,S-Pad, or
X-Pad for signcryption. Moreover, it is also a secure universal padding scheme (for either plain signature or
encryption), and it is safe to reuse public keys with any combination of these primitives for both sending and
receiving.

6 Signcrypting Long Messages

Using the “concealment” approach described in [7], we can extend any short-message signcryption scheme with
support for associated data to include support for long messages. Although arbitrary concealment schemes will
suffice, for efficiency purposes we consider concealments utilizing any one-time(t, εOTE)-secure symmetric
encryption scheme(E,D)5 as advocated in [7]. There are manyvery efficientsuch symmetric encryptions,i.e.,
M ⊕ F (τ) works whenF is a RO (but there are many RO-free encryptions to choose fromas well; see [7]).

Specifically, letSC = (Gen,SigEnc,VerDec) be any signcryption scheme onn̂-bit messages or longer, with
support for associated data, and(E,D) be any one-time encryption scheme with keysizen̂ (thus, n̂ ≈ 128
suffices). We define a signcryption schemeSC′ = (Gen,SigEnc′,VerDec′) on long messages with support for
associated data as follows. LetSigEnc′ℓ(M) = π‖SigEncL(τ), whereπ = Eτ (M), L = ℓ‖π, andτ is a
randomn̂-bit string. Similarly,VerDec′ℓ(π‖Π) = Dτ (π), whereτ = VerDecL(Π) andL = ℓ‖π.

Theorem 4 If SC is (t, εCCA, εCMA, qD, qS)-secure and(E,D) is (t, εOTE)-secure (with encryption/decryption
timeTOTE), thenSC′ is (t−O((qD + qS) · TOTE), εCCA + εOTE, εCMA, qD, qS)-secure.

The proof of this theorem (adapted from [7] for signcryption, with exact security) is given in Appendix E.
This result implies that our signcryption constructions — and indeed the separate signature and encryption
constructions that they induce — can easily support long messages: Simply apply any symmetric key encryption
to the message, and signcrypt the symmetric key while including the encrypted message inside the meta-data
L. Additionally, it is possible to move a portion of the message into the padding alongside the encryption key
to save otherwise wasted space. The final result is that the overhead for long messages is the same as that for
short messages plus the length of the symmetric key, which will typically be approximately128-bits.

5I.e., no distinguisher in timet can tellEτ (M0) from Eτ (M1) for any two messages(M0, M1) with probability greater thanεOTE.
Notice, the distinguisher is not given either the encryption or the decryption oracles.
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A Properties of Extractable Commitments

We now offer proofs for the binding and randomness properties of extractable commitments.

Proof of binding property (Lemma 1).

Proof: Consider a reductionB against the extractability property of the commitment scheme as follows.B runs
A and obtains(c, d, d′) if A succeeds.B then randomly outputs(c, d) or (c, d′) with equal probability. Since
Extract(c,T ) is a deterministic value, it matches the output ofB with probability at most1/2. In the event that
it does not match,B has broken the extractability property. Since this must happens with probability at most
εextract, we find thatA succeeds with probability at most2εextract.

Proof of random decommitment property (Lemma 2).

Proof: Consider a reductionB against the extractability property of the commitment scheme as follows.B
runsA and obtainsc ← A(1k), chooses ad uniformly at random, and returns(c, d). The probability thatB
succeeds is at least the probability thatA succeeds minus the probability thatd = Extract(c,T ). Sinced is
chosen randomly, the probability thatd = Extract(c,T ) is 2−k. The lemma follows.

B Feistel P-Pad Proof

The proof of security requires us to establish bounds for both εCCA andεCMA (the maximum success proba-
bilities for PPT adversaries in theIND-CCA andsUF-CMA games, respectively). We first prove the bound
on εCCA. Recall thatfU will represent the key of the honest party (i.e., it is the only key not controlled by the
adversary). In particular,fU is the key of recipient in theIND-CCA game, and the key of the sender in the
sUF-CMA game.
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B.1 BoundingεCCA

Consider an adversaryACCA against theIND-CCA security of the scheme. We show the bound onACCA’s
success probability by proceeding through a sequence of gamesG0, . . . ,G4, whereG0 is the unmodifiedIND-
CCA attack game. We define the eventSi to be the probability thatACCA is successful inGi. Each new
gameGi will have a corresponding analysis bounding the differencebetweenPr[Si] andPr[Si−1]. The final
bound onACCA’s advantage inG0 will follow from the success probabilityPr[S4], and the bound onPr[S4]−
Pr[S0] which can be established from the relative bounds on the intermediate games. Throughout the following
analysis we will useΠ∗ = ψ∗‖σ∗ = fU(w∗)‖f−1

S (s∗) to denote the challenge ciphertext corresponding tomb

(whereb is the challenge bit) that is issued toACCA in the IND-CCA attack game in response the challenge
oracle query (L∗ will be used to denote the corresponding meta-data, which depends on the adversary’s choice
of senderfS and associated dataℓ∗ used for the challenge query).

GameG1:
Let G1 be the same asG0 (the unmodifiedIND-CCA attack game), except we replace the random oracles

and theSigEnc andVerDec oracles with the following simulations:

Random oracle simulation for IND-CCA proof. For each queryACCA makes toG, of the formG(L, c), the
simulation first checks to see ifG(L, c) was previously defined. If so, the simulation replies with the previously
defined value. Otherwise, it examinesL to determine whetherfU is specified as the recipient (if not, the oracle
simulation proceeds in the standard fashion).

If fU is the recipient, the simulation chooses a randomx ∈ {0, 1}|d| and definesG(L, c) to bex. The
simulation then records the pair(fU(c), c) in a lookup table for future reference (used in theVerDec oracle
simulation), and returnsx.

Note that the distribution of values returned by this randomoracle simulation is still uniformly random,
so this simulation is perfectly “honest”. However, it now takes time approximatelyTf to compute before
responding to each query.

VerDec oracle simulation for IND-CCA proof. When a queryVerDecℓ(Π, fS) is issued, the simulation
parsesΠ = ψ‖σ. If the query was of the formψ∗‖σ, the oracle immediately returns⊥ (i.e., when adversary
attempts to reuse the first portion of its challenge ciphertext in a query with an altered second portion). If the
query was not of this form, the simulation then searches the lookup table to find a matchingψ in a pair(ψ, c).
If no such pair exists, the simulation returns⊥, otherwise it properly formsL and returnsDePadL(c, fS(σ)).
We note that if the lookup succeeds, we indeed have thatc = w = f−1

U (ψ), so that theDePad will return the
correct output.

SigEnc oracle simulation for IND-CCA proof. When a querySigEncℓ(m, fR) is issued, the simulation prop-
erly formsL and computes the response as follows:

• Choose a randomx ∈ {0, 1}|d|, and computey = fU(x).

• Compute(c, d)← Commit(m).

• DefineG(L, c) to bey ⊕ d. Fail if G(L, c) was already defined.

• ReturnfR(c)‖x.

Observe, if the procedure does not fail, it returns a valid response to theSigEnc query, asx = f−1
U (G(L, c)⊕d).

This completes the definitions of the oracle simulations which G1 uses to replace the functionality of the
corresponding oracles fromG0. Provided that these oracle simulations do not fail,G0 is identical toG1, so
Pr[S1]− Pr[S0] is bounded by the probability that a failure occurs.
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TheVerDec oracle simulation can only fail by incorrectly returning⊥ when queried on a valid ciphertext.
There are two possible scenarios where this occurs: eitherACCA queried a valid ciphertext containing aw for
which it did not issue a correspondingG(L, c) oracle query (and thusACCA could not have any information
about the correspondings), orACCA queried a valid ciphertext that reused theψ∗ = fU(w∗) portion from the
IND-CCA game challenge ciphertext with someσ 6= σ∗.

In the first case, sinceG(L, c) was never queried, it is random and independent of the queried ciphertext,
which means that the correspondingd = G(L, c)⊕ s will be random. By definition, the probability that such a
randomd represents a valid decommitment forc is bounded byεrand. Thus the total probability that a failure of
this type occurs afterqD queries to theVerDec oracle simulation is at mostqD ·εrand. The second kind of failure
can only occur ifACCA can finds 6= s∗ such thatDePad(w∗, s) 6= ⊥. However, sinces 6= s∗, this implies
thatACCA found somed 6= d∗ that is a valid decommitment forc∗ = w∗. Since both(c∗, d∗) and(c∗, d) are
valid commitment/decommitment pairs,ACCA would have to break the binding property of the commitment
scheme to cause this kind of failure. Thus the total probability that theVerDec simulation fails is bounded by
qD · εrand + εbind.

TheSigEnc oracle simulation fails only if there is a “collision” between a freshly generated commitmentc
and one of the inputsc′ for whichG(L, c′) has already been defined. We note there are at mostqS + qG of such
previously defined inputs. Ifc were generated randomly, the probability that it would collide with a previously
defined value during one of the queries to theSigEnc simulation would be at mostqS · (qS + qG) · 2−|c|. Sincec
is indistinguishable from random with all but probabilityεhide (by definition), we find the total probability that
theSigEnc oracle simulation fails after at mostqS queries to beqS · ((qS + qG) · 2−|c| + εhide). Thus, we have
now established the bound:

Pr[S1]− Pr[S0] ≤ qD · εrand + εbind + qS · ((qS + qG) · 2−|c| + εhide) (1)

GameG2:
GameG2 is G1 modified to halt in the event thatACCA queriesG(L, w∗) for any meta-dataL. We denote

the event that gamei halts prematurely in this fashion byHalti. SinceG2 is identical toG1 unlessHalt2 occurs,
we have:

Pr[S2]− Pr[S1] ≤ Pr[Halt2] (2)

GameG3:
GameG3 is the same asG2, but modified so that the second component of the challenge ciphertext returned

toACCA, (i.e., σ∗) is replaced by a random string. We note that the game halts ifACCA queriesG(L, w∗) for
anyL, so that while the game is being playedACCA learns nothing about the value ofG(L∗, w∗). In particular,
this means that if we replaces∗ by a randoms, we can imagine thatG(L∗, w∗) was defined “correctly” to be
s⊕ d∗ and thusG3 has the same exact distribution asG2.

Pr[S3] = Pr[S2] ≤ Pr[Halt2] (3)

GameG4:
GameG4 is G3 modified so that the entire challenge ciphertextΠ∗ is replaced by a random string. That is,

we replaceψ∗ by a random string, implying thatc∗ = w∗ = f−1
R (ψ∗) is now a random string as well. We

note that the challenge ciphertext inG3 does not provideACCA with any information aboutd∗, sinceσ∗ was
replaced by a random string. Thus, by the hiding property of commitments, the probability of distinguishing
G4 from G3 is bounded byεhide. In particular, this means that:

Pr[S4]− Pr[S3] ≤ εhide (4)
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and

Pr[Halt4]− Pr[Halt2] ≤ εhide (5)

However, it is clear that since the challenge ciphertext wasreplaced by a random string, it no longer depends
the challenge bitb. Thus,ACCA must guess the bit correctly with probability1/2 in gameG4 when it plays to
completion (i.e., when it does not halt):

Pr[S4] ≤ 1/2 + Pr[Halt4] (6)

Finally, we bound the probability thatG4 halts by observing that the entire game can be run by a simulator
with no knowledge of the secret trapdoorf−1

U . Such a simulator can act as a reduction to the security of the
underlyingTDP. The reduction accepts aTDP inversion challengey∗ as an input, and then runsG4 with
ACCA. However, rather than replacingψ∗ by an arbitrary random string, the reduction will supplyy∗ as the
first component of the challenge ciphertext. The game will halt if ACCA issues a query of the formG(L, x∗)
such thatfU (x∗) = y∗. Thus, if the game halts, the reduction can then simply output the this pre-imagex∗, a
successful inversion of theTDP. This upper boundsPr[Halt4] by εTDP (the maximum probability of inverting
theTDP). Combining this bound onPr[Halt4] with (1) - (6) gives the desired result:

εCCA = Pr[S0]− 1/2 ≤ εTDP + 2εhide + qD · εrand + εbind + qS · ((qS + qG) · 2−|c| + εhide) (7)

B.2 BoundingεCMA

To establish a bound onεCMA, we will construct a reductionB that uses anyACMA breakingsUF-CMA security
of the signcryption scheme to break the security of the underlying TDP. The reduction will run a modified
sUF-CMA attack game againstACMA, simulating the random oracles, aSigEnc oracle, and aVerDec oracle,
in similar fashion to the simulations introduced in gameG1 used in theεCCA bound analysis. The reductionB
takes an inversion challengey∗ as input and finds a pre-imagex∗ such thaty∗ = fU (x∗).

RO simulation for sUF-CMA proof. At the start of the simulation, a random integeri ∈ {1, . . . , qG} is
selected. Thei-th query to the random oracle simulation is treated as a special case (in particular, we will
hope thatACMA outputs a forged signcryption corresponding to thei-th query). The random oracle simulation
handles queries of the formG(L, c) exactly as in the random oracle simulation for theIND-CCA proof, unless
it happens to be thei-th query to theG oracle. In this case, if the meta-dataL also indicates thatfU is the
sender, the simulation definesG(L, c) to be y∗ ⊕ Extract(c,T ) and returns the defined value. Notice that
y∗ will thus correspond tos∗ = G(L, c) ⊕ d whered is the extracted decommitment, so that the correct
correspondingσ∗ = f−1

U (s∗) = f−1
U (y∗). Furthermore, the distribution of outputs for this specialcase is still

uniformly random and independent provided that the inversion challengey∗ is random. Thus the random oracle
simulation remains “honest” in all cases.

VerDec oracle simulation for sUF-CMA proof. This oracle simulation is identical to the simulation from
the IND-CCA proof. Notice that there is no challenge ciphertext in this game, so the oracle only outputs⊥ on
ciphertexts for whichG(L, c) was not queried, orOpen(c, d) legitimately returns⊥.

SigEnc oracle simulation for sUF-CMA proof. This oracle simulation is identical to the simulation from the
IND-CCA proof.

Let SimBad denote the event that one of the oracle simulations fails to return the correct response. The
random oracle simulation is always correct, but theVerDec oracle may fail exactly as in the first failure case
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described in theIND-CCA proof. Similarly, theSigEnc oracle fails with the same probability as in theIND-
CCA proof. The total probability ofSimBad occurring is thus bounded as follows:

Pr[SimBad] ≤ qD · εrand + qS · ((qS + qG) · 2−|c| + εhide) (8)

Provided that none of the simulations fail (i.e., conditioned on¬SimBad), the game will play out honestly and
ACMA will output a valid forgery tuple(Π, ℓ, f−1

R ) with probabilityεCMA.
Let us writeForgeBad to denote the eventACMA outputs a validΠ = ψ‖σ such that either (1)ACMA reused

one of theψ values returned by aSigEnc oracle query, but with a differentσ; or (2), the case (1) did not happen
but G(L, c) was not first queried byACMA. In case (1) it is clear thatACMA has either broken the binding
property of the commitment by reusingc = f−1

R (w) with a differentd = f−1
U (σ), or ACMA has changed

one of the public keys involved, causing the meta-dataL to change, which in turn causesd to be randomly
defined. Since a randomly chosend is valid with probability at mostεrand, the total probability thatACMA can
construction a such a forgery is at mostεrand + εbind. For case (2) we note that sincew = c = f−1

R (ψ) was
never queried along with properly formed meta-dataL to theG oracle, the value ofG(L, c) will be randomly
defined which also implies thatd = fU(σ) ⊕ G(L, c) will be randomly defined, and thus the probability that
(c, d) represents a valid pair is bounded byεrand. This gives:

Pr[ForgeBad] ≤ 2εrand + εbind (9)

Conditioned on¬ForgeBad, aG(L, c) oracle query was made byACCA corresponding to the output forgery. By
definition, with probability1/qG, this also happened to be thei-th query. In this case, if theExtract algorithm
was successful, the oracle simulation responded to query with y∗⊕d, whered is the decommitmentACCA used
in constructing the forgery. Note, theExtract algorithm fails with probability at mostεextract, by definition.
Thus we have thatσ = f−1

U (s) = f−1
U (G(L, c) ⊕ d) = f−1

U (y∗). Indeed,σ is a valid pre-image fory∗, and the
reductionB succeeds by returningσ. We can now establish a lower bound onB’s success probability in terms
of ACMA’s success probability:

Pr[B succeeds] ≥ (Pr[A succeeds∧ ¬ForgeBad]− εextract)/qG

≥ (Pr[A succeeds]− Pr[ForgeBad]− εextract)/qG

≥ (Pr[A succeeds| ¬SimBad]− Pr[SimBad]− Pr[ForgeBad]− εextract)/qG

≥ (εCMA − Pr[SimBad]− Pr[ForgeBad]− εextract)/qG (10)

and by definition of(t, εTDP)-secureTDPs, we also have that

Pr[B succeeds] ≤ εTDP (11)

Combining (8)-(11), rearranging the terms and upper bounding, we obtain the final bound onεCMA:

εCMA ≤ qG · εTDP + qD · εrand + qS · ((qS + qG) · 2−|c| + εhide) + 2εrand + εbind + εextract (12)

Observe that the runtime for the simulations (and thus the reductions corresponding to each of the games in
IND-CCA proof, as well as the reduction in thesUF-CMA proof) isO((qG + qS) · Tf ) whereTf is the time to
compute a singleTDP operation, and the space required isO(k · (qH + qG + qS)) wherek is the input length
of theTDPs.

B.3 Tighter Bound on εCMA for Claw-Free Permutations

If fU is induced by a(t, εclaw)-secure claw-free permutation. where the claw-free pair isdenoted〈fU , gU 〉, we
can construction a reductionB′ which uses anyACMA breaking thesUF-CMA security of the signcryption to
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find claws for〈fU , gU 〉. The reductionB′ uses a modified random oracle simulation, but is otherwise identical
to the reductionB until ACMA has output a forgery (which will now be used to produce a claw,rather than an
inversion).

RO simulation for sUF-CMA proof using claw-free permutations . The RO simulation handles queries
G(L, c) by examining the meta-dataL to see iffU is specified as the sender. If not, the standard honest simula-
tion is performed. If so, the simulation performs the following procedure:

• Choose a randomx ∈ {0, 1}|d| and computey = gU (x).

• DefineG(L, c) to bey ⊕ Extract(c,T ).

• Record the pair(y, x) in a lookup table.

The simulation then returns the defined value ofG(L, c). The distribution of outputs is still uniformly random
sincey is random. Notice that ifExtract outputs the correct valued, a properly formed ciphertextΠ =
fR(c)‖f−1

U (G(L, c) ⊕ d) will give f−1
U (y) as the second component. In particular, the pair

〈

f−1
U (y), x

〉

is
a claw, sincefU (f−1

U (y)) = y = gU (x).
Most of the analysis proceeds as before. The eventsSimBad andForgeBad are defined identically, and their

analysis is identical. The only significant change is that whenACCA outputs a forgery corresponding to one
of theG(L, c) queries, unlessACCA has broken the extractability property, it is nowalwayspossible for the
reduction to output a valid claw, since there is no longer a single specially programmed query. In particular,
provided thatACCA did not break extractability, and thatACCA output a forgery tuple(Π = ψ‖σ, ℓ, f−1

R ) and
ForgeBad did not happen, the reduction always succeeds by computingy = fU(σ) and finding(y, x) in the
lookup table, then outputting〈σ, x〉 as the claw. The only subtlety is thatACCA may now break extractability
for any one among theqG queries toG, so that we now loseqG · εextract rather thanεextract. The final bound for
(t, εclaw)-secure〈fU , gU 〉 is now

εCMA ≤ εclaw + qD · εrand + qS · ((qS + qG) · 2−|c| + εhide) + 2εrand + εbind + qG · εextract (13)

The runtime of this reduction isO((qG + qS) · (Tf + Textract)).

C Feistel S-Pad Proof

This proof is similar to the proof of security for FeistelP-Pads, and thus we will follow the syntactical conven-
tions of that proof.

C.1 BoundingεCCA

We use the same approach as in the previous proof, however theprecise details of the games will be different
(and slightly more complicated). We begin with the new simulations required forG1.

RO simulations for IND-CCA proof. Oracle queries toH are simulated honestly in the standard fashion.
For each queryACCA makes toG, of the formG(L, c), the simulation first checks to see ifG(L, c) was

previously defined. If so, the simulation replies with the previously defined value. Otherwise, it examinesL
to determine whetherfU is specified as the recipient (if not, the oracle simulation proceeds in the standard
fashion).

If fU is the recipient, the simulation parses the specified senderkeyfS fromL and then performs the follow-
ing steps:

19



• Computed = Extract(c,T )

• Choose a randomx = x1‖x2 ∈ {0, 1}
k and computey = y1‖y2 = fS(x)

• DefineG(L, c) to bey1 ⊕ d.

• DefineH(y1) to bey2 ⊕ c. If H(y1) was already defined, fail.

• ComputefU (x) and record the pair(fU (x), x) in a lookup table

The simulation then returns the newly definedG(L, c) value. Note that if theExtract operation output the
correctd, a properly formed ciphertext based on thisG oracle query would appear asfU(f−1

S (y1‖y2)) = fU (x).
Furthermore, the output distribution of the oracle is stilluniformly random6 for all inputs.

However, it nows takes approximately2Tf to compute before responding to each query (bothfS andfU

must be computed).

VerDec oracle simulation for IND-CCA proof. When a queryVerDecℓ(Π, fS) is issued, the simulation
searches the lookup table to find a matchingΠ in a pair (Π, x). If none is found, the simulation returns⊥,
otherwise it properly forms the correspondingL and returnsDePadL(x). Note that if the lookup succeeds,
DePad will return a correct decoding. If the lookup fails, it is possible that⊥ was an incorrect response, but as
we will see, this occurs with negligible probability.

SigEnc oracle simulation for IND-CCA proof. When a querySigEncℓ(m, fR) is issued, the simulation prop-
erly formsL and computes the response as follows:

• Choose a randomx = x1‖x2 ∈ {0, 1}
k , and computey = y1‖y2 = fU(x).

• Compute(c, d)← Commit(m).

• DefineG(L, c) to bey1 ⊕ d. Fail if G(L, c) was already defined.

• DefineH(y1) to bey2 ⊕ c. Fail if H(y1) was already defined.

• ReturnfR(x1‖x2).

It is easy to verify that if the above procedure does not fail,it returns a valid response to theSigEnc query.
This completes the definitions of the oracle simulations which G1 uses to replace the functionality of the

corresponding oracles fromG0. Provided that these oracle simulations do not fail,G0 andG1 are identical, so
Pr[S1]− Pr[S0] will be bounded by the probability that a simulation failureoccurs.

TheH oracle simulation is honest, and so never fails. However, the probability that theG simulation
fails is exactly the probability that the random stringy1 collides with one of the strings previously defined
for theH oracle. Since there are at mostqH + qG + qS such strings (a singleH oracle query is issued for
everyG oracle query and everySigEnc oracle query as well), the probability that any particular query fails
is at most(qH + qG + qS) · 2−|d|. The total probability that one of theqG oracle queries fails is at most
qG · (qH + qG + qS) · 2−|d|.

TheVerDec oracle simulation can only fail in one of two ways: (1) the correspondingG(L, c) was never
queried and thus there was no entry in the table; or (2) a correspondingG(L, c) query was made (either by

6Unfortunately, this is only true provided thatfS is indeed a permutation. However, when consideringinsider security, it is possible
that sincefS is chosen by the adversary it may not be a permutation at all. In practice it may not be efficient to check this condition,
but it seems unlikely that any significant attacks can resultfrom using such a malformed signing key.
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ACMA or the challenge oracle) butACCA (or perhaps even the challenge oracle) used ad 6= Extract(c) to form
the ciphertext. In case (1), we know thatd = G(L, c) ⊕ w wherew is fixed to be the first component of the
pre-image in the ciphertext will be randomly defined, sinceG(L, c) is randomly defined. Thus the probability
that such a ciphertext is valid is at mostεrand, by definition. Case (2) exactly corresponds to breaking the
extractability property, and so it occurs with probabilityat mostεextract. The total probability of a failure
occurring amongqD queries is thus bounded byqD · (εrand + εextract).

TheSigEnc oracle simulation can only fail if either (1)G(L, c) was already defined for a freshly generated
c; or (2), the random stringy1 collides with one of the strings for whichH was previously defined. Sincec
is indistinguishable from random with all but probabilityεhide, case (1) must occur with probability at most
(qG + qS) ·2−|c| +εhide on any single query. From the previous analysis for the RO simulation failure, we know
that case (2) happens with probability at most(qH + qG + qS) · 2−|d| per query. Thus the total probability of
failure afterqS queries is bounded byqS · ((qG + qS) · 2−|c| + εhide + (qH + qG + qS) · 2−|d|).

The combined failure probability from the above analysis gives us the bound:

Pr[S1]−Pr[S0] ≤ (qG+qS)·(qH+qG+qS)·2−|d|+qS ·((qG+qS)·2−|c|+εhide)+qD ·(εhide+εextract)(14)

GameG2:
GameG2 is G1 modified to halt in the event thatACCA queriesbothH(w∗) andG(L∗, c) such thats∗ =

H(w∗)⊕c. That is, the halting condition occurs when somew is queried toH and some(L∗, c) is queried toG
such thatΠ∗ = fU(f−1

S (w‖H(w) ⊕ c)) (wherefS is the sender specified inL∗, the meta-data associated with
the challenge oracle query). We will denote the event that game i halts prematurely in this fashion byHalti.
SinceG2 is identical toG1 unlessHalt2 occurs:

Pr[S2]− Pr[S1] ≤ Pr[Halt2] (15)

GameG3:
GameG3 is the same asG2, but modified so that thew∗ component used in producing the challenge

ciphertext returnACCA is replaced by a random strinĝw. That is, we now haves∗ = H(ŵ) ⊕ c∗ and
Π∗ = fU(f−1

S (ŵ‖s∗)). We will show thatG3 cannot be distinguished fromG2 with better than negligible
probability by arguing that, with high probability, it musthalt beforeACCA learns sufficient information to
distinguish it. In particular, note that unlessG(L∗, c∗) has been queried byACCA, fromACCA’s point of view
we may imagine thatG(L∗, c∗) was correctly defined to bed∗ ⊕ ŵ. Thus, in order to distinguish,ACCA must
first queryG(L∗, c∗). However, ifACCA has queriedH(ŵ), the game will halt at this point, so we need only
consider the probability ofACCA queryingG(L∗, c∗) without first queryingH(ŵ). SinceH(ŵ) has not yet
been queried,ACCA has been given no information regardingc∗ = H(ŵ) ⊕ s∗. Furthermore,ACCA has no
information regardingd∗, sinced∗ no longer appears in the computation ofΠ∗. Thus,c∗ appears random to
ACCA with all probability εhide, so the probability thatACCA queriesG(L∗, c∗) without halting the game is
bounded byqG · (2−|c| + εhide). As we have already argued that this game is indistinguishable fromG2 unless
ACCA queriesG(L∗, c∗), we arrive at the bound:

Pr[S3]− Pr[S2] ≤ qG · (2
−|c| + εhide) (16)

Furthermore, note that the same bound applies to the differencePr[Halt3] − Pr[Halt2], since a distinguisher
could be built based on the halting event:

Pr[Halt3]− Pr[Halt2] ≤ qG · (2
−|c| + εhide) (17)
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GameG4:
GameG4 is G3 modified so that the entire challenge ciphertextΠ∗ is replaced by a random string. We may

view this as replacings∗ by a random strinĝs and computing the ciphertextΠ∗ = fU (f−1
S (ŵ‖ŝ)). In particular,

note that inG3, s∗ = H(ŵ) ⊕ c∗, and that no information aboutd∗ is available toACCA. In going fromG3

to G4 we may simply replacec∗ by a random string, giving us the identical distribution (i.e., it is the same as
sampling a random̂s directly). Thus, by the hiding property of commitments, theprobability of distinguishing
G4 from G3 is bounded byεhide. In particular, we have:

Pr[S4]− Pr[S3] ≤ εhide (18)

and, similarly for the halting event,

Pr[Halt4]− Pr[Halt3] ≤ εhide (19)

However, it is clear that since the challenge ciphertext wasreplaced by a random string, it is independent of
the challenge bitb. ThusACCA must guess the bit correctly with probability1/2 in gameG4 when it plays to
completion (i.e., when it does not halt):

Pr[S4] ≤ 1/2 + Pr[Halt4] (20)

Finally, we bound the probability thatG4 halts by observing that the entire game can be run by a simulator
with no knowledge of the secret trapdoorf−1

U . Such a simulator can act as a reduction to the security of the
underlyingTDP. The reduction accepts aTDP inversion challengey∗ as an input, and then runsG4 with
ACCA. However, rather than replacing the challenge ciphertextΠ∗ by an arbitrary random string, it replaces
the challenge ciphertext withy∗. The reduction tests for the halting condition by examiningall pairs of queries
of the formH(w) andG(L∗, c) to see when the conditionΠ∗ = fU(f−1

S (w‖H(w) ⊕ c) is satisfied. Note that
the reduction can indeed computef−1

S since the trapdoor forS must be provided byACCA when requesting a
challenge ciphertext. If the halting condition is satisfied, the reduction simply outputsf−1

S (w‖H(w) ⊕ c) as a
valid pre-image forΠ∗ = y∗, thus successfully inverting theTDP fU . Since this reduction cannot succeed with
probability greater thanεTDP, we conclude thatPr[Halt4] ≤ εTDP. Combining this result with (14) - (20) gives
the desired result:

εCCA = Pr[S0]− 1/2

≤ εTDP + (qG + qS) · (qH + qG + qS) · 2−|d| + qS · ((qG + qS) · 2−|c| + εhide)

+ qD · (εhide + εextract) + 2qG · (2
−|c| + εhide) + 2εhide (21)

Observe that the worst case runtime above occurs in the reductions forG2 and above, where we must detect
the halting condition. Detecting the halting condition requires computingTDPs on all pairs of queries toG and
H. Otherwise, the runtime is completely determined by the oracle simulation runtimes (and thus the reductions
corresponding to each of the above games). Thus the total runtime isO((qG + qS + qH · qG) · (Tf + Textract)).
The space required isO(k · (qH + qG + qS)).

C.2 BoundingεCMA

To establish a boundεCMA, we construct a reductionB as in the proof ofsUF-CMA security forP-Pads. The
reduction operates in completely analogous fashion, and webegin with a description of the oracle simulations.
For convenience, we will write the inversion challenge to the reduction asy∗ = y∗1‖y

∗
2 .
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RO simulation for sUF-CMA proof. At the start of the simulation, a random integeri ∈ {1, . . . , qG} is
selected. Thei-th query to theG simulation is treated as a special case (in particular, we will hope thatACMA

outputs a forged signcryption corresponding to thei-th query). The random oracle simulation handles queries
of the formG(L, c) andH(w) exactly as in the random oracle simulation for theIND-CCA proof, unless it
happens to bei-th query to theG oracle. In this case, if the meta-dataL also indicates thatfU is the sender, the
simulationG(L, c) to bey∗1 ⊕Extract(c,T ). Furthermore, the simulation definesH(y∗1) to bey∗2 ⊕ c. If H(y∗1)
was already defined, the simulation fails. If this failure does not occur, the simulation remains perfectly honest
since both of these definitions are uniformly random provided y∗ is actually a random challenge. Notice that
w‖s = G(L, c)⊕ d‖H(G(L, c) ⊕ d)⊕ c will equal y∗ provided thatExtract(c,T ) returns the correct valued.

VerDec oracle simulation for sUF-CMA proof. TheVerDec oracle simulation is identical to the one intro-
duced in gameG1 of the IND-CCA analysis.

SigEnc oracle simulation for sUF-CMA proof. TheSigEnc oracle simulation is identical to the one intro-
duced in gameG1 of the IND-CCA analysis.

Let SimBad denote the event that one of the oracle simulations fails. The RO simulation fails in the same
fashion as in theIND-CCA proof, but now may additionally fail when if value ofH(y∗1) was already defined.
This clearly happens with probability at most(qH + qG + qS) · 2−|d|, since there are at mostqH + qG + qS
defined inputs toH. TheVerDec andSigEnc simulations are the same as in theIND-CCA proof, and thus fail
with the same probability. Thus,

Pr[SimBad] ≤ (qG+qS+1)·(qH +qG+qS)·2−|d|+qS ·((qG+qS)·2−|c|+εhide)+qD ·(εhide+εextract)(22)

Provided that none of the simulations fail (i.e., conditioned on¬SimBad), the game plays out honestly and
ACMA will output a valid forgery tuple(Π, ℓ, f−1

R ) with probabilityεCMA.
Let us writeForgeBad to denote the event thatACMA outputs a validΠ = fR(f−1

U (w‖s)) such that either
(1) ACMA reused an(L, c) pair that was queried by theSigEnc oracle simulation, or (2), the case (1) did not
happen butACMA has not queriedG(L, c) for the appropriateL. Clearly, case (1) can only occur ifACMA

found ad′ 6= d such that(c, d′) is a valid pair (since otherwiseACMA is simply copying the output of aSigEnc

query which is not an allowable forgery). That is, case (1) corresponds to breaking the binding property of
the commitment, and therefore cannot occur with more than probability εbind. In case (2) note thatG(L, c)
is randomly since it was never queried. This implies thatd = w ⊕ G(L, c) is randomly defined, and thusΠ
represents a valid forgery with probability at mostεrand. We can now upper boundForgeBad:

Pr[ForgeBad] ≤ εrand + εbind (23)

Conditioned on¬ForgeBad, aG(L, c) oracle query was issued byACCA corresponding to the(L, c) used in
the output forgery. By definition, with probability1/qG, this also happened to be thei-th query. In this case,
if the Extract algorithm was successful (i.e. it obtained the correctd used byACCA in the forgery), the oracle
simulation will causew‖s used in the forgery to equaly∗, as explained above. Note that the probability that
Extract fails is at mostεextract, by definition. Furthermore, if it does not fail, given a forgery tuple(Π, ℓ, f−1

R ),
the reduction can computef−1

R (Π) = f−1
R (fR(f−1

U (w‖s)) = f−1
U (w‖s) = f−1

U (y∗). Thus if the reduction
outputsf−1

R (Π) it will successfully invert theTDP, an event whose probability is bounded byεTDP. The
analysis proceeds completely analogously to that forP-Pads, and carrying out that analysis, replacing (8) with
(22) and (9) with (23), we obtain:

εCMA ≤ qG · εTDP + (qG + qS + 1) · (qH + qG + qS) · 2−|d| + qS · ((qG + qS) · 2−|c| + εhide)

+ qD · (εhide + εextract) + εrand + εbind + εextract (24)

The runtime of this reduction isO((qG + qS) · (Tf + Textract)), and the space requirement the same as for
the IND-CCA proof up to constant factors.
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C.3 Tighter Bound on εCMA for Claw-Free Permutations

This proof is analogous to the proof in Section B.3, and we will use the same notation. We begin by defining
the new RO simulation.

RO simulation for sUF-CMA proof using claw-free permutations. The RO simulation is similar to the one
for the previoussUF-CMA security proof in Section C.2. However, queries of the formG(L, c) wherefU is
specified as the sender willall be handled by the following procedure (rather than singlingout thei-th query):

• Choose a randomx ∈ {0, 1}k and computey = y1‖y2 = gU (x).

• DefineG(L, c) to bey1 ⊕ Extract(c,T ).

• DefineH(y1) to bey2 ⊕ c. If H(y1) was already defined, fail.

• Record the pair(y, x) in a lookup table.

This output distribution of the oracle simulation is clearly honest, and it fails with at mostqG times the proba-
bility that oracle simulation in Section B.3 fails (since itmay now fail on every query, rather than just thei-th).
Notice that if theExtract algorithm correctly computedd, andACCA outputs a forgeryΠ = fR(f−1

U (w‖s))
corresponding to thisG oracle query, it is easily verified thaty = fU (w‖s), and thus〈w‖s, x〉 will form a claw.

The analysis proceeds as in Section B.3, but due to the increased probability that the RO simulation fails, we
now have

Pr[SimBad] ≤ (2qG+qS)·(qH +qG+qS)·2−|d|+qS ·((qG+qS)·2−|c|+εhide)+qD ·(εhide+εextract)(25)

The remainder of the analysis carried out as in Section B.3, and we obtain:

εCMA ≤ εclaw + (qG + qS + 1) · (qH + qG + qS) · 2−|d| + qS · ((qG + qS) · 2−|c| + εhide)

+ qD · (εhide + εextract) + εrand + εbind + qG · εextract (26)

The runtime of this reduction isO((qG + qS) · (Tf + Textract)), and the space requirement the same as for the
IND-CCA proof up to constant factors.

C.4 Improved Exact Security Bound for X-Pads

We note that aTDP f ′U(w‖s) may be constructed from anyTDP fU(w) by simply settingf ′U(w‖s) = fU (w)‖s.
This fact is sufficient to allow us to apply the proofs of security for S-Pads directly toX-Pads, since we may
view theTDPs as being constructed in this fashion. However, we notice that thes portion of the padding is now
outside theTDP, so that it is no longer necessary for the reduction in theIND-CCA proof to computefU for
all pairs of queries toG andH, since the query toG will completely determine thew component that is placed
inside the actualTDP fU . Thus the halting condition can now be determined in time proportional toqG · Tf ,
and the running time of the reduction is reduced toO((qG + qS + qH) · (Tf + Textract)) as claimed.

D Proof of Lemma 3

We briefly argue the scheme’s exact security bounds forεhide andεextract.To break hiding, an adversaryAmust
differentiatec from some random valueR← {0, 1}|c|, given the fixedm. It is easy to see that this can happen
only if A queriesK(r) orK ′(m2‖r). Sincer is a random string of length|d| − |m2|,

εhide ≤ (qK + qK ′) · 2−(|d|−|m2|)
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To break extractability, the adversary finds some〈d′, c〉, whered′ = m′
2‖r

′, and one of two cases occur. In
the first case,m′

2‖r
′ was not queried toK ′. In the second, the adversary finds somed′ 6= d that represents a

birthday attack onK ′, i.e., finds someK ′(m′
2‖r

′) = K ′(m2‖r) where the output length of theK ′ oracle is
|c| − |m1|. Upper-bounding the probability of both events in the obvious way, we get the following:

εextract ≤ 2−(|c|−|m1|) + qK ′(qK ′−1) · 2−(|c|−|m1|+1) < (q2K ′ + 1) · 2−(|c|−|m1|)

To show the bound onεrand, consider that (for fixedc) a randomd will be valid if and only ifK ′(m2‖r) =
K ′(m′

2‖r
′) wherem′

2 and r′2 are randomly defined byd. SinceK ′ is a random oracle with output length
|c| − |m1|, this happens with probability2−|K ′(·)| = 2−(|c|−|m1|).

E Proof of Theorem 4 (Signcryption of Long Messages)

Proof: The sUF-CMA security bound is automatic, since the notion of a forgery for signcryption with as-
sociated data encompasses the entire signcryptext, including the label. In other words, consider a reduc-
tion B against thesUF-CMA security ofSC that uses anyA that breaks thesUF-CMA security ofSC′. B
simply answersA’s signcryption queriesSigEnc′ℓ(M,VEK) by selecting at random aτ , and then returning
SigEncℓ‖Eτ (M)(τ,VEK). B uses the obvious corresponding approach forVerDec′ queries. Clearly, any sign-
cryptextA forges againstSC′ is also a valid forgery againstSC, and thus the reduction succeeds with the same
probability asA by simply returningA’s forgery.

The IND-CCA security reduction is also as described above, and the security bound follows from a simple
two-step hybrid argument.

(1) We modify the originalIND-CCA game by replacing theEτ operation during the construction of the
challenge ciphertext withEτ̃ , where τ̃ is a random key independent of the signcrypted keyτ . Any
adversary capable of telling this game apart from the original game can be used to win theIND-CCA
game against the underlying signcryption schemeSC with at least the same advantage. It does this by
simply using the labelEτ (Mb) (whereb ← {0, 1}) and providingm0 = τ andm1 = τ̃ as the messages
it claims to distinguish againstSC in theIND-CCA attack (it also uses the same oracle simulations asB).
Thus, in this step, the advantage ofB is reduced by at mostεCCA.

(2) We replaceEτ̃ (M) in the challenge ciphertext byEτ̃ (M̃), whereM̃ is a random message. Any adversary
capable of differentiating this game from the game of Step 1 can be used to break the security of the
one-time encryption with at least the same advantage. (In a fashion similar to Step 1, we can useSC to
signcrypt a random string with eitherEτ̃ (M) orEτ̃ (M̃ ) as the label and useA to distinguish the resulting
ciphertexts.) Thus, in going to this final step, the advantage ofB is further reduced by at mostεOTE.

We note that, in the final step,B cannot have any advantage over guessing, since the challenge ciphertext is
random and independent of the challenge messages. Therefore, by this hybrid argument,B has a total advantage
at mostεCCA + εOTE in the original game, and the proof is complete.
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