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Abstract

One of the approaches to deliver real-time video encryption is to apply permutations to the
bytes within a frame of a fully encoded MPEG stream as presented in [2]. We demonstrate that
this particular algorithm is vulnerable to a known-plaintext attack, and hence its use should
be carefully considered. We also discuss modifications that can make the algorithm resistant to
our attack.

1 Introduction

In recent times the demand for multicasting video across distributed systems has grown rapidly.
Uses of such technology include video-on-demand, video conferencing, and multicast pay-per-view
video. All of these applications have varying degrees of security concerns. For example, military
uses may require small but very secure multicast groups for video broadcast or conferencing. Dig-
ital cable providers on the other hand may require lighter security; only enough to gain leaker
information of pirated video. While computational power has grown steadily, so has the data rate
of the video being broadcast over new and faster networks. In turn, this means that the problem
of finding robust real-time, software-based encryption solutions for multicast video has not been
solved.

There are two main classes of encryption solutions: those which act on fully encoded MPEG
streams and those which work on partially decoded MPEG streams. The algorithm [2] we analyze
works on the fully encoded stream. To be effective when working on the entire stream, the algorithm
must be extremely fast (For example, to achieve the frame rate of NTSC video, each frame must
be decoded and decrypted in 33 ms. On modern machines it is not even possible to do just the
decoding of HDTV frames that quickly in software). The algorithm discussed is in fact very fast
and appears to be a good solution for real-time video encryption. However, we will demonstrate
that the algorithm is vulnerable to a known-plaintext attack, and as such one should be cautious
and aware of the vulnerabilities of this algorithm before using it. Specifically, it must be avoided
when the contents of any of the frames are known, since we show that in most cases only one frame
of known-plaintext is needed to recover the key. However, we do discuss some improvements with
minimal performance impact that make the algorithm resistant to the attack we present here.

This paper is organized as follows: Section 2 discusses many current solutions to video encryp-
tion, focused mainly around MPEG video. Section 3 explains, in detail, the algorithm used in [2]
for video encryption. Section 4 explains and demonstrates our plaintext attack upon the algorithm
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in [2]. Section 5 discusses some modifications to improve the system implemented in [2]. Section 6
concludes this paper.

2 Related Work

There are two main classes of video encryption solutions: those which act on fully encrypted
MPEG streams and those which work on partially decoded MPEG streams. The most straight-
forward solution is to simply encrypt the entire data stream with a general purpose symmetric key
algorithm. This is often referred to as the naive solution. The advantage of this method is not
only simplicity of implementation, but it allows modularity of code in a video multicasting system.
A good example of this is a framework developed by Prabhu in [6]. This framework allows one to
easily change encryption algorithms, key distribution systems and even video encoders/decoders.
It is essential that decryption and decoding not be intermingled for this to work. However, a clear
disadvantage is computational overhead to do cryptographic operations. In a system that uses
hardware for decoding, a software decryption solution could be a bottleneck.

The Video Encryption Algorithm (VEA) developed by Qiao and Nahrstedt in [7] also falls
into the same category as it applies encryption to the fully encoded video stream. However, VEA
depends upon statistical properties of MPEG and uses a standard symmetric algorithm to reduce
the amount of data that is actually encrypted. This can yield an almost 50% gain in performance
over the naive solution.

An even faster encryption algorithm was developed by Chu, Qiao and Nahrstedt in [2]. This
is the algorithm we describe in detail in section 3 and describe a known-plaintext attack against
it in section 4. This algorithm works on a frame by frame basis, permuting elements on a byte
level of granularity. This permutation is of course much simpler than the complex operations of a
full-fledged block cipher.

Another approach is to selectively encrypt the I-frames of the MPEG stream. This falls into the
second category since the MPEG stream is only partially encoded when encryption is implemented.
This selective algorithm is discussed in ([3],[4]). However, in [1] Agi and Gong show this method is
insufficient if we desire the video to be completely unviewable. This attack is possible by exploiting
the inter-frame correlation and using the unencrypted I-blocks found in P and B frames.

SECMPEG, developed by Meyer and Gadegast in [5], is a complete rework of the MPEG
format with security in mind. It uses selective encryption and has additional headers thus making
it incompatible with standard MPEG encoders and decoders.

The ZigZag-Permutation algorithm in [9] is also a selective encryption algorithm. The idea here
is to use a permutation of the zig-zag ordering of DC and AC coefficients in the DCT transfor-
mation of 8x8 blocks in the MPEG or JPEG format. However, in [8] Qiao shows that the ZigZag
Permutation algorithm is vulnerable to a known-plaintext attack as well as significantly increases
the size of MPEG files.

3 Permutation Real-time MPEG Encryption Algorithm

Here we describe the permutation based encryption algorithm of [2]. It is extremely fast and useful
in situations where encryption speed is the bottleneck. Such an example would be when hardware
decodes the video, but decryption must be done in software. It is also intended mostly for short
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time use where the data loses value quickly. An example could be encrypting news stories that
need only be protected for a matter of hours or a few days.

The main idea is that one uses the key to determine how to distribute the bytes of the video
frame into several blocks of data whose sum capacity is that of the original frame. So the first step
is to determine the size of each of the blocks from the key and the size of the frame. Then the bytes
of the original video frame are interleaved into these different blocks. One can think of each of these
blocks as bins, and the algorithm simply runs through the original frame, byte by byte, dropping
one byte into each bin. It continues to cycle through all of the bins until they are full. Some bins
will fill up faster than others since the sizes are different. Figures 1 and 2 show an example of a 100
byte video frame being encrypted (Note: this example is of reduced size to illustrate the algorithm.
Actual data may be 2 orders of magnitude larger.) The process may actually involve an extra step
because the sum capacity of all the blocks may be slightly less than the total size of the original
frame. In this case there will be a few bytes leftover after all the bins have been filled. We place
these in what we call the “leftover” bin.

Figure 1: 100 byte sample video frame. Read left to right, top to bottom.

We use the example from [2] to illustrate how the key determines bin sizes. Let the frame size
be 5000 bytes and the encryption key be 5603417982. The first step is to sum the digits of this
decimal number. In this case the sum is 45 = 5 + 6 + 0 + 3 + 4 + 1 + 7 + 9 + 8 + 2. The number of
bins is the same as the number of digits, in this case 10. The size of the ith bin is a proportion of
the total number of bytes. Explicitly, this proportion is defined as the value of the ith digit of the
key divided by the sum found in the first step. This proportion of the total number of bytes will
of course not come out evenly. So the numbers we calculate are truncated. Below we have the bin
sizes calculated for the key 5603417982.
Block 1: b 5

45 · 5000c = 555 B
Block 2: b 6

45 · 5000c = 666 B
Block 3: b 0

45 · 5000c = 0 B
Block 4: b 3

45 · 5000c = 333 B
Block 5: b 4

45 · 5000c = 444 B
Block 6: b 1

45 · 5000c = 111 B
Block 7: b 7

45 · 5000c = 777 B
Block 8: b 9

45 · 5000c = 1000 B
Block 9: b 8

45 · 5000c = 888 B
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Figure 2: Sample frame deposited into bins in a round-robin manner. Key is 56473.

Block 10: b 2
45 · 5000c = 222 B

There are a couple of things to notice. First, if there is a 0 in the key, it really does nothing.
We could add or remove 0’s to the key without any effect. The second thing to notice is there is a
maximum on the number of leftover bytes. Each truncation can cause no more than one byte to
be leftover in the end. So the number of digits is an upper limit on the number of leftover bytes.
In this case it is 10. The actual number of leftover bytes can be calculated to be 5 in this case. So
Block 11 has size 5 bytes.

4 Plaintext Attack

Our attack is a known-plaintext attack which means that some of the unencrypted data must be
available. In our case, one unencrypted frame must be known. This could realistically happen if
we know the beginning is completely black for a few frames or if we know that all videos from
this creator begin the same. An example might be the roaring lion at the beginning of MGM
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Figure 3: Ciphertext frame. Read bytes from bottom to top of bin, from left bin to right bin. Key is 56473

Figure 4: Cipher text viewed in a manner to show how original bytes have been permuted. Key is 56473

films. Using the unencrypted and encrypted version of a frame, we are able to retrieve the key used
to encrypt that frame. This allows us to decrypt the rest of video encrypted with that key. The
effectiveness of our attack of course depends upon the method and frequency of rekeying operations.

4.1 A Periodic Pattern

The key to attacking this algorithm is to exploit the periodic structure resulting from how the data
is interleaved between these blocks. We use the examples from figures 1 and 2 to demonstrate the
pattern and attack. These examples use a 100 byte frame with the key 56473. We will use the
notation Pi to denote the ith byte of plaintext and Ci to denote the ith byte of ciphertext. Figures
3 and 4 show the encrypted frame, but in different ways. Figure 3 shows the actual byte values,
and figure 4 shows the corresponding place the bytes have in the plaintext stream, thus illustrating
exactly how the bytes have been permuted.

Examine the beginning (bottom) of the first bin. The first byte is the first byte of the original
frame, i.e P1. The next byte is Pn+1, where n is the number of non-empty bins, i.e. the number
of nonzero digits in the key. In our example, n = 5, and we find that the first two bytes of the
ciphertext are P1 and P6. The next byte of ciphertext is P2n+1 = P11. What we see is that there is
a period of n bytes in the beginning of this bin. In fact, it should become clear that this happens
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at the beginning of every bin, figure 2 supporting this claim.
Going further with this, we see the following: starting at the first bin there is a period of n,

then n − 1, then n − 2 and so on. When we reach bin two, the period will jump back to n. (Note,
in fact, it does not necessarily drop by only one. If k bins have the same size, they all fill at the
same time causing the period to drop by k). In our example, the period drops to 4 after C13 and
drops again to 3 after C17. The period jumps back to 5 after C21. This can be verified in figure 4.

This monotone decreasing behavior of the period followed by the jump back to n will happen
at the boundary of every bin except in one special case. It could be that two or more bins of the
minimum size are adjacent. This corresponds to two more of the minimum digits in the key being
adjacent. If this is the case, the period will be the same across this series of bins, but there will be
discontinuities between them. To illustrate this, let the first byte of the first of the two adjacent
be Pi and the last byte of this bin be Pj . Then at the boundary point there will be a discontinuity
in the pattern because Pj will not be followed by the Pj+n in the ciphertext. Instead, Pj will be
followed by Pi+1.

4.2 Exploiting the pattern

The pattern above gives us a way to find the boundaries between the bins. Since we know the
original frame, it will not be difficult to find the period of the first bin. We know the first byte.
We look at the next byte in the encoded stream, C2, and check if C2 = Pk, where k is our guess
at the key length. It is not actually necessary to know k, but it just speeds things up a bit if we
have a good estimate. Key length usually isn’t secret, but if it is secret it will take at most O(k)
operations where k is the actual key length. Since the key length is much smaller than the size of
the video frame, this small overhead is of little concern.

As noted in [2], the frequency of any byte value in a fully compressed MPEG frame is about
1 in every 256. In other words, all byte values are equally likely. So chances are that if C2 = x,
and n is the smallest integer such that x = Pn+1, then the period is n. In our example x = 24,
and we do find that the smallest integer such that Pn+1 = 24 is 5. This is consistent with the true
period of the first bin. In general, we can test our hypothesis by using the assumption to predict
the next byte in the encrypted frame. In our example the hypothesis would be that the period is
5, and we would predict that C3 = P2n+1 = P11. And we would find our prediction to be correct
in the example. If we successfully predict 5 or 6 bytes in the encrypted stream, the odds are very
strong that we have the correct period. This fact follows since the probability of a byte having a
particular value is about 1

256 . If we found that using period n did not predict correct results very
long, we go to the next byte of value x in the original frame. If it is Pm+1, we would guess the
period to be m. We test this new hypothesis in the same manner. It will not take long to find
period in this manner, especially since the key size is small compared to the size of the frame.

Eventually, we will find that after correctly predicting many values of the ciphertext, we will
have a misprediction. In our example this first happens at C14. This is because, as we discussed
earlier, the period will decrease. In our example it decreased to 4. So we try smaller and smaller
values of the period until we start getting good predictions again. This will keep happening until
we hit the next bin. In our example this happens at C21. Then, decreasing the period will not work.
At this point we check if the next byte is equal to byte two of the original frame. (In our example,
this is exactly what happens as we notice C21 = P2). If we have actually found the beginning of
bin 2, we know the value should equal P2. We know that we have in fact found the beginning of
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the next bin because our prediction has suddenly gone bad after going well for so long.
It is possible, but improbable, that we will make good predictions past the actual bin boundary

and hence not see the discontinuity. For example, our prediction for the byte of ciphertext at the
beginning of the second bin may coincidentally be equal to the value of P2. But if this happens, we
will have difficulties locking onto a period of n at what we believe to be the beginning of the next
bin, i.e. where we first notice a discontinuity. So in such a case we back up one byte and test if that
is the beginning of the second bin, i.e. has a value equal to P2. It is highly improbable that we will
make several correct predictions past the actual bin boundary, and hence not see a discontinuity
immediately. Thus we will not have to back up very far, if at all.

We can continue in this manner to find the rest of the bin boundaries. Only note that if we
have two adjacent bins of minimum size, we will never see the period drop below the max period
between the two bins. Instead, we will suddenly have bad predictions to indicate that we have
reached a bin boundary. In the last few bytes we may have some more bad predictions. This will
be the leftover bin. We can verify this by comparing these last few bytes of the encrypted stream
with the last few bytes of the original frame.

4.3 Putting It All Together

Once we discover the bin sizes, we can compute the proportion of the bin size to the frame size.
Now we know this fraction for the ith bin to be almost equal to di

s where di is the ith digit and s
is the sum of all the digits. Our goal is to find a common denominator for all these fractions, such
that all the numerators are between 1 and 9. Actually, these numerators will not necessarily be
integers because of the truncation, but they will be an integer or just slightly less than an integer.
There are few denominators that will keep all the numerators in the range. The most likely case
in which we could get multiple denominators that keep the numerators within the range is if the
key consists entirely of 1’s. However, we have the additional condition that these numerators are
integers or just slightly less than an integer. All in all, there will be few, and probably only one,
candidate for the key. If we have a couple possible key values, we can try them on subsequent
frames to verify which one is correct. Once we have all the numerators, we simply round up to find
the integer value of each digit of the key.

In our example we see that bin one has 20 bytes, bin two 24, bin three 16, bin four 28, and
bin five 12. This yields the corresponding fractions: 20

100 = 1
5 , 24

100 = 6
25 , 16

100 = 4
25 , 28

100 = 7
25 , and

12
100 = 3

25 . Solving for a common denominator we get: 5
25 , 6

25 , 4
25 , 7

25 , and 3
25 . Notice that this is

the only common denominator that produces numerators that are all single digits. Thus we can
conclude the key is 56473.

Notice that this method will never yield a key with zeros. It gives the unique key without zeros.
As mentioned above, we can add zeros anywhere in the key without effect. The information of
the zeros is lost when doing the encryption, but it was unimportant in the first place. It is also
interesting to notice that we only need one frame of plaintext to perform this attack. Of course,
it being a probabilistic algorithm, there is always a small possibility of failure. In such cases this
algorithm could be run on another frame. Furthermore, this algorithm runs in linear time with
the constant factor being largely dependent upon the number of steps we are willing to back up if
there is a misprediction and the number of matches we require before concluding we lock onto the
period. But these constants can be very small since the probability of guessing n bytes correctly is

1
256n = 2−8n.
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5 When is the Permutation Algorithm Acceptable?

It is not improbable that the first frame of a video is known. MGM has the clip of the roaring lion,
Warner Brothers has their unique clip with the WB studios and their emblem, and Dreamworks
has the clip with the water and their logo. So certainly, an attacker may have known-plaintext at
the beginning of a video. If the same key is used to encrypt the entire video and this beginning
portion, then the attacker can decrypt the entire video.

An easy solution is to make it less likely for the attacker to have plaintext. We can simply leave
the introduction unencrypted. Most people will find it acceptable for an attacker to know what
company made the video. In fact, the attacker may know the exact video she is trying to obtain
and is not trying to decrypt a video of unknown content. However, this solution only reduces the
odds of finding known-plaintext. It is still that possible the attacker will have part of a video’s
plaintext, but not the entire video. Perhaps she got it from a sample or trailer.

We would like a solution that does not assume the attacker is unable to obtain plaintext. The
most obvious solution is to frequently re-key. Now we must be careful how the key is exchanged.
If the new key is appended to the end of a frame, then decrypting the current frame will give us
the key to the next frame. This is certainly not an improvement. In fact, most of the key may be
inside the leftover bin. So just looking at the end of an encrypted frame gives the end of the key
in plaintext!

One might think that a good alternative is to put the key in the beginning of the frame. She
may think this makes the attack more difficult, but it will simply make the first byte of each bin
incorrect. The above algorithm only needs to be modified slightly. If we additionally pad the key
with worthless zeros, the first few bytes of some bins will be part of the key and not the video. In
this case the algorithm would need to be modified a bit more. It would need to take care of the
possibility that the first bin will not have the first byte of the video in the first byte of the bin.
Instead, one of the early bytes of the unencrypted frame will be a few bytes into the first bin. This
adds a little more trial and error into the algorithm, but eventually it should lock onto the period
and work fine.

The simplest way to handle this may be to use an outside method of distribution for re-keying.
This could be through a separate means of communication, or one could use a previously agreed
upon secret key and algorithm to encrypt the new permutation algorithm key. Then this separately
encrypted key could sent every so often with the video stream to enable re-keying. However, there
are significant costs to setting up a key distribution system and performing many re-keys, and thus
we wish to examine other solutions as well.

Another solution one may come up with to thwart this attack is to use a very large key. Using
a key 20% of the size of the frame, means the average bin size is 5 bytes. With bins this small, we
cannot reliably lock onto the period. The obvious drawbacks are the extra data sent if re-keying is
frequent and the extra memory usage for maintaining state in the decryption algorithm.

Lastly, one can modify the algorithm with the specific goal of thwarting this particular type of
attack. A key factor to the periodic behavior noticed in the pattern is that the algorithm simply
puts bytes into bins in a round-robin fashion. By skipping over bins by a number of bins that
does not divide the total number of bins, we can break the observed pattern (Though this does
not guarantee that we do not still have patterns exploitable by more sophisticated attacks). For
instance, we could put a byte into every pth bin, where p is a prime larger than the total number
of bins. This will disturb the recognized pattern significantly. Perhaps even better, we could use
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a recursively defined sequence taken modulo the number of bins to determine into which bin to
place the current byte. For example, we could use the Fibonacci numbers. And if we really would
like to break up any possible patterns, we could use information from a Pseudo-Random Number
Generator (PRNG) to determine when to skip over bins. The PRNG could be seeded by another
shared secret or some derivation of the encryption key which must already be shared. This would
make the algorithm bear more of a resemblance to a stream cipher.

Of course, any of these modifications, except for skipping bins by a fixed number, will slow down
the encryption and decryption processes. In the case of using a recurrence relation, it depends
upon the complexity of the recurrence. Using the Fibonacci sequence would only require one more
addition at each step. One addition is already required to increment the bin even if only by one. So
this would not affect the Big-Theta running time of the algorithm. Just as there different recurrences
that could take varying amounts of computation, there are many PRNGs. Time complexity would
need to be evaluated on an individual basis, but it is safe to conclude that any PRNG is going to be
significantly more complicated than computing a simple recurrence. Also more extensive analysis
would be required by the cryptography community to determine how effective these measures are
since they are only guaranteed to disrupt the pattern we observed. Simple solutions could easily
create different and more complex patterns that are still exploitable.

6 Conclusion

In this paper we discussed the vulnerabilities of the permutation video encryption algorithm in [2].
This is a very fast encryption algorithm that works on a fully encoded MPEG stream. The key is
used to split the frame into blocks in which bytes are deposited in a round-robin fashion. In section
4 we demonstrated a powerful known-plaintext attack against this algorithm.

Finally, we discussed some modifications that could make this algorithm a viable solution. We
also discussed some modifications which appear at first to help, but in fact do little to add security.
We conclude that frequent re-keying and an outside method of distributing the new keys provides
reasonable security while still taking advantage of the fast encryption/decryption rates, but this
comes at the cost of a more complicated key distribution system. Mostly, such a solution limits the
amount of damage a frame of leaked plaintext can cause.
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