
Fast Pseudo-Hadamard Transforms

Tom St Denis

tomstdenis@iahu.ca

Abstract. We prove that the fast pseudo-Hadamard transform (FPHT)
over a finite field has a bounded branch number. We shall demonstrate
that the transform has an efficient implementation for various platforms
compared to an equal dimension MDS code. We prove that when using
a CS-Cipher[3] like construction the weight of any 2R trail is bounded
for the case of an 8 × 8 transform. We show that the FPHT can also
be combined with MDS codes to produce efficient transforms with half
of the branch of a comparable sized MDS code. We present the FPHT-
HASH one-way hash function which is constructed using a 32×32 FPHT
which produces a 256-bit digest and processes the input at 24 cycles per
byte with ISO C source code on an AMD Athlon XP processor.

Keywords. Pseudo-Hadamard Transform, Branch Analysis, One-Way Hash
Function.

1 Introduction

An emerging block cipher and one-way hash function design construct is the
Maximum Distance Separable (MDS) code. The goal of the MDS code is to
promote a high branch through the linear components of the design to ensure a
correspondingly low differential and linear “prop-ratio” [5]. Algorithms such as
AES [1] and Whirlpool [2] are two prominent designs that employ this design
construction. An MDS code of dimension N×N requires O(N 2) time to complete
which means while they offer excellent branch they do not scale well in terms of
efficiency.

We present a proof that the branch of the fast pseudo-Hadamard transform
(FPHT) is bounded by taking the approach of Daemen[5]. We present methods of
implementing the FPHT that are faster than known methods of implementing
MDS codes. We shall also demonstrate that MDS and FPHT codes can be
combined to produce fast transforms with branch numbers much higher than
the comparable dimension unmodified FPHT. We shall conclude with a concrete
design based on the FPHT construction that achieves a very low cycle per byte
processed.

The paper has been divided into the following sections. Section two discusses
the relevant background theory and establishes our main theorem. Section three
discusses the FPHT-HASH one-way hash function and finally section four con-
cludes the paper.

2 Theory

2.1 Fast Pseudo-Hadamard Transform

At the foundation of these new results is the fast pseudo-Hadamard transform
(FPHT) which was an idea originally employed in the SAFER [6] and SAFER+
[8] series of block cipher. It would be later changed into a fast four-point pseudo-
Hadamard transform for the SAFER++ [7] block cipher in an attempt to raise
the efficiency and strength of the underlying design. Stern and Vaudenay adopted
their work on multi-permutations to the CS-Cipher [3] which also works on a
similar principle of the FPHT.

In this paper we generalize the FPHT and prove that it has a bounded branch
number when implemented over a finite field. We then show that the FPHT has
several efficient means of implementation which make the design construct very
flexible.

The FPHT can be characterized by a recursive linear transform defined by
the relationship

Hn =

[

2 ·Hn−1 Hn−1

Hn−1 Hn−1

]

for n ≥ 1

H0 = 1 (1)

It is provably non-singular since the two vectors 〈2, 1〉 and 〈1, 1〉 are linearly
independent. Note that within this paper decimal matrix coefficients may be
considered their equivalent polynomial over GF (2)[x] without loss of generality.

2.2 Branch Numbers

Originally defined in [5] the branch of a transform is the lowest sum of active
inputs and outputs with respect to linear and differential cryptanalysis. The
branch number only applies to linear transforms in any trivial sense. Let ||.||
represent the number of non-zero coordinates of a given vector. Then the branch
β of a linear transform y = f(x) : x ∈ F m → y ∈ F k is defined as minimum of
||x||+ ||y|| for all non-trivial x ∈ F m.

The branch of the FPHT can be placed into three distinct categories. Let βn

represent the branch of a n× n FPHT matrix where n is a power of two.

β1 = 2 (by convention)
β2 = 3
βn = 2 · βn/4, n ≥ 4

(2)

More specifically the exact branch of FPHTs for n > 4 can be expressed as

βn = 2k+1 if n = 22k

βn = 2k+1 + 2k if n = 22k+1 (3)

The proof of the previous equation shall come in three parts. First we shall
prove β2 is correct followed by β4 and finally general βn.

Theorem 1. β2 is equal to three when H1 is defined over a field such that it is
non-singular.

Proof. If ||x|| = 2 then the proof is concluded as ||y|| must be at least one. If
||x|| = 1 then the input is either of the form 〈0, p〉 or 〈p, 0〉 in which case the
output is of the form 〈p, p〉 or 〈2p, p〉 respectively. Since p 6= 0 and therefore
2p 6= 0 the output weight must be two. ut

Theorem 2. βn for n = 2k and k ≥ 2 is equal to 2 · βn/4 when Hk is defined
over a finite field such that Hk is non-singular and the “2” coefficient generates
a multiplicative group of order greater than k.

Proof. We shall prove this theorem by first proving it for the case of k = 2. Then
we shall generalize the proof for k + t, t ≥ 1 by assuming the proof is true for
k + t − 2. Since eventually k + t − 2 ∈ {0, 1, 2} the proof is true by induction.
To prove k = 2 we shall delineate all four possible input weights and prove that
their output weight sums to a minimum of four.

When ||x|| = 1 the output will be the single non-zero active input coordinate
multiplied by the corresponding column of the transform. Therefore, ||y|| = 4
and gives a branch of five.

When ||x|| = 2 there are
(

4

2

)

= 6 ways to select active inputs. Since the
transform has symmetry about the columns and rows there is really only one
unique case to consider. To prove this case we shall consider the H2 matrix and
the 〈p, q, 0, 0〉 input vector.

H2 =









4 2 2 1
2 2 1 1
2 1 2 1
1 1 1 1









(4)

The vector when multiplied against H2 produces 〈4p + 2q, 2p + 2q, 2p + q, p + q〉
and by inspection at most two of those coordinates can be zero when p, q 6= 0.
Therefore, the minimum branch for this case is four.

When ||x|| ≥ 3 the output must allow for ||y|| ≥ 1 since the transform is
non-singular. This gives a branch of four in both cases and concludes the proof
for k = 2.

Now we shall prove the theorem for the general case of k ≥ 2 by induction.
For this proof we again consider the four possible input patterns by re-writing
the FPHT in a more conventional form.

H =









A B B C
B B C C
B C B C
C C C C









(5)

Where A = 4C and B = 2C for some non-singular FPHT C in the given
field. Without loss of generality we shall assume that A 6= B, B 6= C and A 6= C
since the “2” coefficient generates a sufficiently large multiplicative sub-group.
As a consequence for any Ht with t less than the order of the group generated
by p(x) the resulting matrix can be divided into four columns and rows such
that it has the unique pattern shown above (eqn. 5).

Note that for this part of the proof we shall not assume that C is of any given
size except that it is of the form Ht for t ≥ 1. To make the rest of the proof
easier we shall let “word” represent a subset of the input coordinates aligned
with one of the four matrix terms.

When only one input word is active it is obvious that the branch is at least
4·βn/4 since the output is simply the product of one of the columns of the matrix
and the non-zero input coordinate.

For the case of two active words we shall use the input vector 〈p, 0, q, 0〉 and
split the proof into two sections. First we consider the case of p = q and finally
p 6= q. If p = q then pA 6= qB since A 6= B and this simply implies pA 6= pB.
Therefore, A contributes a branch of βn/4 to the output. Similarly pB 6= qC
since B 6= C which implies pB 6= pC which contributes another βn/4 of branch.
When p 6= q the logic is similar. pB + qB will contribute at most a branch of
βn/4 and for any co-ordinate where they collide (recall this is in a finite field so
the characteristic is finite) they cannot collide in pA + qB since A 6= B. The
same logic applies to the sum pC + qC. It is trivial to see that this similar logic
applies to the vector 〈0, p, 0, q〉, 〈p, q, 0, 0〉 and 〈0, 0, p, q〉.

The next case is of the input vector 〈p, q, r, 0〉. The first output pA+qB+rB
can contribute at most a branch of βn/4. Collisions can be expressed as qB ≈
pA + rB and simplified as qB/2 = qC ≈ pB + rC which cannot collide in the
same coordinates with pB + qC + rB (the third row). The same logic applies to
the second and fourth row which contribute the other βn/4 branch. The logic for
the triple case applies to all four different permutations of the triple.

For the last case of the input vector 〈p, q, r, s〉 the first row produces a branch
of at most βn/4 where collisions can be written as sC ≈ pA + qB + rB. Like the
proof for the previous case this cannot collide in the same coordinates with the
second row. The same logic applies to the last two rows as a pair.

For all four cases to be true we assume the branch for the k − 2 case has
been bounded. Since the bounds for k ∈ {0, 1, 2} have been proven, the theorem
is clearly true for all k ≥ 2. ut

Remark. Asymptotically an FPHT of dimension n × n has a branch of O(
√

n)
whereas by comparison an MDS code would have a branch of exactly n + 1.

Corollary 3. In an Hk transform for k ≥ 2 the Hk−2 sub-matrix can be replaced
with any complete non-singular transform and the resulting Hk shall be non-
singular as well as have twice the branch of the 2k−2 × 2k−2 transform.

Lemma4. The output weight of the FPHT can be placed into four distinct clas-
sifications.

If the input weight is zero, the output weight is zero. If the input weight is
one than the output weight is always 2k for Hk. If the input weight x is less
than βk the output weight is at least βk − x and otherwise the output weight is
at least one.

Lemma 5. The FPHT over the ring of integers modulo 2k (such as in [6, 8, 7])
cannot be counted in the same manner as theorem two provides.

Since two divides the modulus the transform allows input differences p to
cancel out since it is possible that 2p ≡ 0 for p 6≡ 0. As a result for example, the
H3 as used in [6] has a branch of three.

〈0, 0, 0, 0, 0, 0, 128, 0〉= H3(〈128, 128, 0, 0, 0, 0, 0, 0〉) (mod 256) (6)

In the generic equation for the FPHT (eqn. 1) we cannot replace the “2”
value with an odd number since the determinant will no longer be a unit in the
ring. Therefore, there is no construction of the FPHT over the ring of integers
modulo 2k where the branch is at least equal to the branch of the FPHT over a
field.

2.3 Implementation

In O(n log n) time. Any FPHT requires at most O(n log n) time to complete
which scales nicely compared to an equal dimension MDS code which requires
O(n2) time. More specifically with O(n) space an FPHT requires only O(logn)
time to complete.

In hardware designs the actual transform is very efficient. Since only the H1

transform must be implemented directly (see Fig. 1) a trivial multiplication by
p(x) = x is all that is required. For example, the H5 transform from our proposed
HASH function FPHT-HASH only requires 1600 XOR gates and would have a
delay of approximately fifteen XOR gates.

In embedded software the transform can be implemented with the standard
H1 transform using only log2(n)· n

2
table lookups and log2(n)·n XOR operations.

On the Intel 8051 8-bit processor using eight bit polynomials over GF (2)[x] such
a transform would require exactly 4n · log2(n) cycles to complete. Using such a
construction on a hypothetical eight round substitution permutation network
with a sixteen byte block size would imply that at least 2048 cycles, approxi-
mately 2.04 milliseconds1 per block would be used by the linear transformation.
Assuming a simple XOR key schedule along with a table driven non-linear sub-
stitution along with an overhead of 32 cycles per round yields a theoretical cipher
requiring approximately 2700 cycles per block yielding a throughput of 47, 410
bits per second.

As a quick remark such a hypothetical design would only require a non-linear
transform with a differential and linear profile maximums of 8

256
and 32

256
to make

both differential and linear cryptanalysis provably impractical (requiring 2121

and 2146 texts respectively) over only six of the eight rounds.

1 On the standard 12MHz 8051 CPU.

Fig. 1. H3 as a three layer network.

Table Driven Another popular method of implementing linear transforms is
with a table driven algorithm. Let ζi represent the i’th column of the transform.

The transform y = Hk(x) where x, y ∈ F 2
k

can be computed with the following
equation.

y =

2
k
−1

∑

i=0

xi · ζi (7)

This is accomplished by pre-computing 2k tables with #F elements each.

T [i][j] = j · ζi, 0 ≤ i < 2k, 0 ≤ j < #F (8)

Now equation 7 can be re-written as

y =

2
k
−1

∑

i=0

T [i][xi] (9)

This technique is traditionally used with MDS codes with an optimization
applied for circulant codes. In the case of FPHT transforms there are more
optimizations available. For example, Hk for k ≥ 2 can be implemented with
only eight multiplications by Hk−2 transforms. A comparable MDS code (of
dimension 2k×2k) even if circulant would require at least twelve multiplications
by MDS codes of dimension 2k−2 × 2k−2.

The optimizations can go further even if the table dimensions are fixed. For
example, H5 with H2 tables requires 20 unique multiplications compared to the
36 that would be required for an MDS, and so on.

Remark. The series of fast pseudo-Hadamard transforms over GF (2)[x]/v(x)
have a distinct advantage over implementations that use the ring of integers (as
in the case of [6, 8, 7]). In table driven implementations the former group allows
a vector addition to be applied with a single XOR operation. The latter case
cannot be implemented with a single addition as carries may propagate across
coordinates of the summand.

Recently several processors have been given Single Instruction Multiple Data
(SIMD) style instructions such as those of x86 series with MMX. “paddb” of the
MMX instruction set, for instance, can add eight octets in parallel. It could
be used to compute the SAFER linear transform with eight lookups and seven
“paddb” instructions.

However, most processors do not have SIMD instructions and as a result
the quickest way to implement a SAFER style FPHT is with the O(N logN)
approach. The benefit of the FPHT over GF (2)[x]/v(x) is clearly both the flex-
ibility of implementation as well as the bounded branch number.

2.4 Modified Transforms

Lemma 6. Any non-singular complete Hk−2 will do.

For a given Hk for k ≥ 3 any non-singular or specifically complete bijective
2k−2 × 2k−2 transform will do in the place of Hk−2. By “complete” it is meant
that each output coordinate is a non-null function of every input coordinate.
This observation includes the set of non-linear (2k−2, r)-multipermutations [10]
which would produce a transform with a branch of 2r.

For example, consider the case of [3] where a (2, 3)-multipermutation is used
in the place of the H1. According to theorem 2 all that is required is that the
the unique 4×4 (eqn. 5) pattern exist. As a result the branch of the transform is
the same as a normal H3 FPHT. However, as noted by Vaudenay this approach
has much less linear structure. On the other hand using non-linear transforms
in the place of Hk−2 transforms incurs an efficiency penalty on most modern
processors as table driven algorithms cannot be used.

Theorem 7. The FPHT H3 with a non-linear H1 transform has a 2R trail
weight of at least twelve.

Proof. For this proof we shall make use of the graph Fig. 1 and lemma 4. In this
construction we shall replace the H1 transform with a (2, 3)-multipermutation
where the two coordinates are first sent through a non-linear bijection and then
through a non-singular 2× 2 linear transform (such as H1).

For the purposes of this theorem we shall assume that a “round-key” is
added to the coordinates before every layer of the transform (similar to the
round function of [3]) to create a Markov chain.

Let x represent the number of active input coordinates and similarly y the
number of active output coordinates of the first round. For the second round
we shall let z represent the number of active output coordinates when y input
coordinates are active. In both cases of y and z we shall assume the minimum
possible values.

If there are x active inputs this means that in the first layer there must be
at least dx/2e active H1 transforms. The H1 has a branch of three which means
over the first two layers there must be at least 3dx/2e active non-linear functions.
The same logic applies to the last and first layer of the two adjacent rounds as
well as to the last two layers of the second round with y and z respectively. Over
the two rounds the minimal trail weight can be expressed as

ρ = 3 · (dx/2e+ dy/2e+ dz/2e) (10)

The lowest value of ρ occurs for 〈x, y, z〉 = 〈2, 4, 2〉 in this case. ut

Remark. The CS-Cipher employs a slight modification in that they permute the
order of the output coordinates. As a result the same trail pattern that causes
a weight of twelve through the modified FPHT does not work in CS-Cipher.

Remark. The logic of the previous proof was applied to the H4 with a similarly
modified H1. The minimal two round weight was observed over all possible input
weights as being 24. This could applied to the CS-Cipher to extend the block
size to 128 bits.

Using the same non-linear function and comparable key schedule the modified
version of the CS-Cipher would only require four rounds before any differential
or linear trail would provably fail. Therefore, it seems that the CS-Cipher is a
scalable design in embedded software and hardware.

Lemma8. Combining a smaller MDS transform with a larger FPHT results in
a modified FPHT with higher branch.

An MDS code is a (n, n + 1)-multipermutation and would be optimal for
the construction in terms of the branch. The transform Hk for k ≥ 3 with a
2k−2×2k−2 MDS code in the place of the Hk−2 would yield an overall branch of
2k−1+2 by a simple extension of theorem 2. This modification yields a significant
improvement over the branch of an unmodified FPHT.

Dimension Branch of MDS Branch of Modified FPHT Branch of FPHT

16 17 10 8

32 33 18 12

64 65 34 16

Fig. 2. Comparison of modified and unmodified FPHT.

Consider H4 where the H2 sub-matrices were replaced with 4×4 MDS trans-
forms. The MDS codes have a branch of five which means that the modified H4

would have a branch of ten instead of eight. If the coordinates of the input and
output vectors were octets then on a 32-bit platform a total of three quadruples
of tables are required for the unique square 4× 4 sub-matrices of the H4. This
approach would require 12KB of memory, 32 table lookups and 37 XORs. Com-
pared to an equal dimension MDS code which would require 32KB of memory,
64 table lookups and 60 XORs, the FPHT is nearly twice as fast and requires
less than half of the memory.

3 FPHT-HASH

We have used the FPHT H5 to produce a fast one-way hash function. The
FPHT-HASH function compresses blocks of 512-bits and produces a digest 256-
bits long. The input message is terminated with a one bit followed by enough
zero bits to make the message length congruent to 448 modulo 512. The 64-bit
representation of the length of the original message in bits is then appended.
Every block of 512 bits is then sent through the compression function. All values
are loaded and stored in little endian fashion.

3.1 Compression Function

The following pseudo-code describes the compression function. It accepts a mes-
sage block T0..15 and internal state S0..7 and updates the state before completion.
The internal state is initially set to Si = 286331153 · i. Both S and T are arrays
of 32-bit words.

1. for x = 0 to 7 do Lx ← Sx

2. for x = 0 to 15 do Wx ← Tx

3. for x = 16 to 64 do Wx ← (Wx−16 ⊕Wx−14 ⊕Wx−8 ⊕Wx−3 ⊕ x)<<11

4. for x = 0 to 5 do
(a) for y = 0 to 7 do Ly ← Ly ⊕W16+8x+y

(b) L← θ(γ(L))
5. for x = 0 to 7 do Sx ← Sx + Lx

In this design γ(x) which is the AES substitution box is applied to all 32
coordinates of the input simultaneously. θ(x) is H5 over the field GF (2)[x]/(x8 +
x4 + x3 + x2 + 1). The <<11 notation indicates a left cyclic rotation by eleven
bits.

3.2 Implementation

FPHT-HASH has been implemented on the AMD Athlon XP processor with ISO
C source code2. The H5 has been implemented using tables for the four unique

2 URL to be given

4× 4 transforms3 requiring a total of 16KB of memory. The Fig. 3 summarizes
the speed of various hash functions (all written in portable C).

From the table it is evident that FPHT-HASH compares fairly well. The only
design faster than itself is MD5 which produces a message digest half the size.
In hardware the FPHT-HASH function scales nicely since the O(nlogn) based
approach can be used reducing the time complexity to O(logn) and the space
complexity to O(n).

Hash Function Cycles per byte Message Digest Size (bits) Relative Rate

MD5 9 128 0.38x

SHA-1 16 160 0.66x

RIPEMD-160 26 160 1.08x

TIGER/192 27 192 1.13x

FPHT-HASH 24 256 1x

SHA-256 34 256 1.41x

SHA-512 74 512 3.08x

Fig. 3. Comparison of Various One-Way Hash Functions.

3.3 Analysis

Non-Linear Transform γ The AES substitution box was chosen because it
has a very low differential and linear profile. It was also readily available to
prototype this design. The function has several fast hardware implementations
which should render this design equally as efficient in software as hardware.

Linear Transform θ The θ transform is the H5 transform. It has several fast
software implementations as well as a trivial implementation in hardware. The
transform is complete in that every output coordinate is a function of all input
coordinates. This promotes a very high level of diffusion. The transform also has
a branch of 12 which allows the minimal trail weight to be bounded over two
compositions of the transform.

The polynomial x8 + x4 + x3 + x2 + 1 was chosen because it is irreducible
over GF (2)[x] and the polynomial p(x) = x is a primitive generator in the
multiplicative sub-group.

3 The unique tables are for H2, 2 · H2, 4 · H2 and 8 · H2.

Key Schedule The key schedule (step three) was designed to use all of the
input in the first round and also make it hard to control the input in a mean-
ingful manner. It is a simple LFSR generator with a rotation to further ensure
higher diffusion of the key material. The purpose of the key schedule is to make
differential trails less likely to succeed. Since the initial input state is fixed the
attacker could create a differential trail of probability one through rounds where
the input key were used verbatim. However, since the remaining round keys are
a function of the input it is harder to ensure the probability one differential (it
either exists or it does not).

In the case of this hash function we chose not to use the input key as verbatim
at all. Instead we use the the linear mixing of the input through a LFSR with
the key word number added in to prevent trivial slide attacks. For example, the
first round keys W16..23 are a linear function of the input W0..15 as well as the
first five generated keys W16..20. This construction is thought to make the design
resistant to related key attacks.

Differential and Linear Cryptanalysis Essentially FPHT-HASH is a 256-bit
Substitution-Permutation Network applied in the Davies-Meyers mode (scheme
19 of [9]) to create a one-way hash function. The H5 transform has a branch of
12 which means over the four rounds of the compression function there must be
at least 24 active sboxes. As a result the best theoretical differential and linear
trails would have a probability and bias of 2−6·24 = 2−144 and 2−4·24 ·223 = 2−73

respectively.
It does not seem possible for a differential attack to cause a collision within

the compression function faster than by the birthday paradox. We conjecture
that FPHT-HASH offers 2128 time resistance to collision finding.

4 Conclusion

The FPHT has been analyzed with respect to its speed and security. The trans-
form has a provably bounded branch value for any given dimension as well as
a fast implementation which requires at most O(N logN) time to complete. We
have also shown it is possible to join the FPHT and MDS to create a fast trans-
form that has higher branch than the FPHT alone.

We have also shown a relatively simple one-way hash function which achieves
a competitive (if not superior) processing throughput when compared to other
well known published designs. We would like to thank Matthew Johnson of the
University of Western Australia, Greg Rose of QUALCOMM Australia, Robert
Gilmour, David Malan of Harvard University and Michael Gschwandtner of the
University of Salzburg for valuable peer review.

References

[1] Joan Daemen, Vincent Rijmen, AES Proposal: Rijndael

[2] Paulo S.L.M. Barreto and Vincent Rijmen, The WHIRLPOOL Hashing Func-

tion

[3] J. Stern and S. Vaudenay. CS-Cipher. In Fifth International Workshop on Fast
Software Encryption, Berlin, Germany, March 1998. Springer-Verlag.

[4] S.Vaudenay, “On the Security of the CS-Cipher”, Fast Software Encryption,
March 1999, Springer-Verlag, pp. 260-274

[5] J. Daemen. Cipher and hash function design: strategies based on linear and
diferential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, March
1995

[6] J.L. Massey, “SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm”,
Fast Software Encryption, Cambridge Security Workshop Proceedings,
Springer-Verlag, 1994, pp. 1–17.

[7] J.L. Massey, G.H. Khachatrian and Kuregian M.K. Nomination of SAFER++
as Candidate Algorithm for NESSIE. Available at www.cryptonessie.org.

[8] J. Massey, G. Khachatrian, and M. Kuregian, “Nomination of SAFER+ as
Candidate Algorithm for the Advanced Encryption Standard (AES)”, NIST
AES Proposal, 1998.

[9] B. Preneel, R. Govaerts and J. Vandewalle, “Hash Functions based on block
ciphers: a synthetic approach.”, Crypto ’93, Springer-Verlag, 1993, pp. 368–378

[10] S. Vaudenay, “On the Need for Multipermutations: Cryptanalysis of MD4 and
SAFER”, LIENS - 94 - 23, November 1994

Appendix A - Test Vectors

The following are test vectors for FPHT-HASH.

""

d5 e9 5a a7 4d a3 9c 10 a9 ea 11 bd 22 49 a0 b3

be 67 e3 78 58 0d 72 f0 64 be 80 c5 3f c8 13 24

"abc"

b4 bd 4f ce cf 2f c3 c5 5d 1a 77 dd 2b 6e 6f 77

be bc 26 1b 1a b0 8e 32 1a 36 6a 66 3e f0 ad 3c

"The New Fast Pseudo-Hadamard Transform Hash Function."

b7 b9 be 3b 64 f7 2b ab 97 1f a7 71 3d ca d0 de

b1 1d ea 3e 67 39 5f cd 2b d9 d5 91 c9 5a 90 77

"aaaabbbb" x 12 times

43 27 10 2d e6 7b 49 f6 85 a4 12 e9 a9 7f 45 49

7a 9f 3d b3 d4 22 42 bb 93 cd c7 a0 97 55 b8 0f

This article was processed using the LATEX macro package with LLNCS style

