
Efficient Implementation of Genus Three
Hyperelliptic Curve Cryptography over F2n

Izuru Kitamura and Masanobu Katagi

Sony Corporation, 6-7-35 Kitashinagawa Shinagawa-ku, Tokyo, 141-0001 Japan
{Izuru.Kitamura, Masanobu.Katagi}@jp.sony.com

Abstract. The optimization of the Harley algorithm is an active area
of hyperelliptic curve cryptography. We propose an efficient method for
software implementation of genus three Harley algorithm over F2n . Our
method is based on fast finite field multiplication using one SIMD opera-
tion, SSE2 on Pentium 4, and parallelized Harley algorithm. We demon-
strated that software implementation using proposed method is about
11% faster than conventional implementation.

Keywords. hyperelliptic curve arithmetic, scalar multiplication, Harley
algorithm, SIMD operation, SSE2

1 Introduction

Hyperelliptic curve cryptography (HECC) was proposed by Koblitz [1]. A prac-
tical addition algorithm was proposed by Cantor [2] and Koblitz [1]. HECC
has the advantage of a shorter operand length than elliptic curve cryptography
(ECC), with the same level of security. The addition algorithm for divisor class
groups of hyperelliptic curves, however, is more complicated and therefore its
calculation is slower. This algorithm can be applied to arbitrary genus curves.
On the other hand, the efficient attacks against curves of genus higher than or
equal to four exist [3, 4]. It is advisable therefore to focus on genus two and
genus three curves.

Recently, a new addition algorithm for genus two curves over odd prime
characteristic was proposed by Harley [5, 6]. This algorithm drastically reduced
the cost of calculating divisor addition and doubling by specifying the genus
of curves. His study result triggered other researches, which eventually brought
improvements and extensions to the algorithm [7–16].

The Harley algorithm has long and involved calculation procedures. In spite
of this disadvantage, their parallelization was not enough studied. Most recently,
this approach was proposed by Mishra et al [17]. They parallelized the affine and
the inversion-free formulae of genus 2 curves. Their work targets at hardware
implementation on the assumption of a multiprocessor environment, e.g. 4, 8 and
12 multipliers. However, speeding up the calculations based on a multiprocessor
environment requires larger chip area, which is an area/speed tradeoff. We are
interested in 2 or 3 parallel-field operations in SIMD (Single Instruction, Multiple
Data) styles, which means that multiple data sets are processed at the same
time because we also target software implementation. In particular, genus three
HECC is suitable for SIMD because of size of its definition field. We propose a
fast software implementation technique for genus 3 curve over F2n using SIMD-
style operations. Many processors have SIMD architecture such as MMX and
SSE for Pentium, AltiVec for PowerPC, and VIS for SPARC.

Several studies of the parallel arithmetic with SIMD of ECC have been re-
ported [18–21]. In these works, independent finite field operations of ECC al-
gorithm are executed in same time. These approaches are easily extended to
the HECC addition algorithm. In the ECC case, however, the size of the finite
field in ECC is larger than the present computer word size. Therefore finite field
operations have to be divided several times. On the other hand, finite field oper-
ations for genus three HECC can be executed at one time because the definition
field of genus three is smaller than 64 bits. In addition, SSE2 instructions pro-
vide 2 × 64bits shift and logical operations. We propose a parallel finite field
multiplication, which means that two finite field multiplication AB and AC
are executed at one time, over binary fields using SSE2. To apply this parallel
finite field multiplication to the Harley algorithm, we manually optimized paral-
lelized sequences of HECADD and HECDBL. In this paper, we report an efficient
method for software implementation of genus three Harley algorithm over F2n .
Section 3 proposes the finite field multiplication using SSE2 and Section 4 shows
parallel sequences of the procedure of genus three addition algorithm over bi-
nary fields. Section 5 presents the software implementation resulted from the
proposed method.

2 Background

A genus g hyperelliptic curve C over F2n is defined as C : y2 + h(x)y = f(x),
where h(x), f(x) ∈ F2n [x], deg h ≤ g, deg f = 2g + 1, f is a monic polynomial
and C is a non-singular curve. Jc(F2n) is the Jacobian variety of C over F2n .
Any divisor class of Jc(F2n) can be represented by a semi-reduced divisor. A
semi-reduced divisor can be expressed by two polynomials a, b ∈ F2n [x] which
satisfy

1. a is a monic polynomial,
2. deg b < deg a,
3. f + hb+ b2 ≡ 0 mod a.

This representation was reported by Mumford[22]. A semi-reduced divisor
with deg a ≤ g is called a reduced divisor and any divisor class of Jc(F2n) is
uniquely represented by a reduced divisor. Hereafter we denote D ∈ Jc(F2n) by
a reduced divisor D = (a, b). Jc(F2n) has an additive group structure. In [5]
and [6], Harley defined a group operation to genus two curves over Fp, where p
is an odd prime number greater than three. In [16], Sugizaki et al. showed an
extension of the Harley algorithm to curves over F2n for computingD1+D2 = D3

(HECADD) and 2D1 = D3 (HECDBL). The extended Harley algorithm over F2n

is follows.

Algorithm 1 HECADD
Input: D1 = (u1, v1), D2 = (u2, v2),deg u1 = deg u2 = 2, gcd(u1, u2) = 1
Output: D3 = (u3, v3)
1. U ← u1u2

2. S ← (v2 + v1)/u1 mod u2

3. V ← Su1 + v1 mod U
4. U ← (f + hV + V 2)/U
5. Make U monic
6. V ← V mod U
7. u3 ← U, v3 ← U + V + h
8. return (u3, v3)

Algorithm 2 HECDBL
Input: D1 = (u1, v1),deg u1 = 2, gcd(u1, h) = 1
Output: D3 = (u3, v3)
1. U ← u2

1

2. S ← h−1(f + hv1 + v2
1)/u1 mod u1

3. V ← Su1 + v1 mod U
4. U ← (f + hV + V 2)/U
5. Make U monic
6. V ← V mod U
7. u3 ← U, v3 ← U + V + h
8. return (u3, v3)

These algorithms are similar to the elliptic curve chord-tangent law. We explain
Algorithm 1. From step 1 to step 3 is called a composition part and from step
4 to step 7 is called a reduction part. In a composition part, we compute the
semi-reduced divisor D = (U, V) such that D ∼ −D3 where the symbol ∼
indicates to be linearly equivalent. In step 1, we compute U = u1u2. In step 2
and step 3, we compute V such that f + hV + V 2 ≡ 0 mod U . V is obtained by
V ≡ v1 mod u1 and V ≡ v2 mod u2 via the Chinese remainder theorem. In a
reduction part, we compute a reduced divisor D′3 = (u′3, v

′
3) such that D′3 ∼ D.

We compute u′3 = (f + hV + V 2)/u1u2 and make u′3 a monic polynomial. Then
we compute v′3 ≡ V mod u′3. Finally, we output a divisor D3 = −D′3 as: D3 =
(u3, v3) = (u′3, u

′
3 + v′3 + h). HECDBL is similar to HECADD, but the Chinese

remainder theorem is replaced by the Newton iteration. In these algorithms,
the Karatsuba algorithm is used to reduce the number of multiplications. In
algorithms, HECADD takes 25 multiplications and 1 inversion, and HECDBL
takes 27 multiplications and 1 inversion.

We deal with the most common situation, i.e., in HECADD, deg u1 = deg u2 =
2, gcd(u1, u2) = 1 and in HECDBL, deg u1 = 2, gcd(u1, h) = 1. We will consider
only this situation because the probability it will not occur is O(1

2n) [23].

3 Fast Finite Field Multiplication for Genus Three Using
SSE2

On the 64-bit architecture, F259 elements are represented by single-precision.
Streaming SIMD Extension 2 (SSE2)[24, 25], which the Intel processor Pentium
4 includes, can deal with two F259 elements in parallel. In this section we discuss
a parallel finite field multiplication algorithm over F2n , represented by 64-bit
single-precision, using SSE2. The following multiplication accelerates addition
algorithm for genus three HECC over F259 .

3.1 Genus Three Hyperelliptic Curve over F259

In this work we choose an example of the genus three hyperelliptic curve over
F2n in some papers which is suitable for cryptography, i.e. its Jacobian has a
large prime order subgroup. We use an isomorphic curve C1 of the hyperelliptic
curve described in Section 4.2 of [26]:

y2 + h(x)y = f(x) over F259 ,

F259 is defined by t59 + t6 + t5 + t4 + t3 + t+ 1 = 0,

h(x) = x3 + x2 + 6723B8D13BC30C7x+ 72D7EE15A5C9CF5,
f(x) = x7 + x6 + 6723B8D13BC30C7x5 + 72D7EE15A5C9CF4x4

+24198E10C3B7566x3 + 1EB9AF07BD3B303.

The order of the Jacobian of C1 is:

2× 95780971304118053647396689122057683977359360476125197.

The curve has the same level security of 176bit-ECC.

3.2 SMUL: Conventional Finite Field Multiplication over F2n

Some algorithms of finite field multiplication over F2n was proposed [27]. We
explain a conventional algorithm of finite field multiplication over F2n . The mul-
tiplication of two finite field elements in F2n is accomplished as follows. Let A,
B ∈ F2n , F (x) be an irreducible binary polynomial of degree n. A and B can be
represented by binary polynomial of degree at most n − 1. Conventional finite
field multiplication AB mod F (x) is calculated the following 2 steps.

Step1. A fast algorithm for multiplication of two polynomials is presented
Algorithm 5 in [28]. We make a table TB [i] for 0 ≤ i < 16 as:

TB [j]← (j3x3 + j2x
2 + j1x+ j0)B,

where j = (j3j2j1j0)2. Then to calculate AB, this table is referred to by scanning
A every 4 bits.

Step2. Reduction AB mod F (x) is accomplished as explained Algorithm 6
in [27]. In this work, we use F (x) = x59 + x6 + x5 + x4 + x3 + x + 1 as an
irreducible polynomial and the following congruence:

x64 ≡ x11 + x10 + x9 + x8 + x6 + x5 mod F (x).

Using this congruence, AB can be expressed as:

AB = ABh × x64 +ABl

≡ ABh × (x11 + x10 + x9 + x8 + x6 + x5) +ABl mod F (x)
≡ AB′l mod F (x)

.
A reduction of ABh can be performed by adding ABh × xi six times to AB,

and AB′l of degree 63 can be obtained. Then the remaining terms of AB from
degree 63 to degree 59 can be reduced by adding AB′l/x

i six times to AB. In this
paper, we call this finite field multiplication algorithm composed of Algorithm
5 in [28] and Algorithm 6 in [27] as SMUL.

3.3 PMUL: Parallel Finite Field Multiplication using SSE2

We extend SMUL to finite field multiplication in parallel using SSE2. Before we
explain details of the algorithm, we mention SSE2 instructions.

SSE2 Instructions: The Intel processors have SIMD instructions called
MMX[24, 25]. The processor introduces four new data types: an 8×8-bit, 4×16-
bit, 2×32-bit, and 64-bit data block. Additionally, the Intel Pentium 4 processor
includes SSE2 technology that allows MMX instructions to work on a 128-bit
data block. Therefore, SSE2 instructions deal with two Fq, |q| ≤ 64 elements at
once. SSE2 instructions can multiply a 4×16-bit and a 4×16-bit or a 2×32-bit

and a 2×32-bit, however cannot multiply a 64-bit and a 64-bit. On the other
hand, it can shift a 2×64-bit and perform 128 bitwise logical operations. F2n

multiplication only needs shift and logical operations. These SSE2 characteristics
show that only F2n elements are represented by single-precision.

We propose a parallel finite field multiplication using SSE2 (PMUL). The
algorithm is the following:

Algorithm 3 PMUL: Parallel Finite Field Multiplication using SSE2
Input: A, B, C
Output: D = AB mod F, E = AC mod F, F = x59 + x6 + x5 + x4 + x3 + x+ 1
1. H ← 0, L← 0
2. For j = 0 to 15

TBC [j]← (j3x3 + j2x
2 + j1x+ j0)B (j3x3 + j2x

2 + j2x+ j0)C
3. For j = 0 to 14

i← A/x4j mod (x3 + x2 + x+ 1)
H ← H ⊕ (TBC [i]� (64− 4j))
L← L⊕ (TBC [i]� 4j)

4. L← L⊕(H � 11)⊕(H � 10)⊕(H � 9)⊕(H � 8)⊕(H � 6)⊕(H � 5)
5. L← L⊕(L� 53)⊕(L� 54)⊕(L� 55)⊕(L� 56)⊕(L� 58)⊕(L� 59)
6. L← L∧ x58 + x57 + ...+ x+ 1 x58 + x57 + ...+ x+ 1
7. D ← Lh, E ← Ll /* L = AB mod F AC mod F */
8. return D, E

Algorithm 3 can compute parallel AB and AC with the table TBC by scan-
ning A. We note that the algorithm cannot compute parallel AB and CD be-
cause it is not available to scan A for the table TBC . In Algorithm 3, the symbol
� i (� i) indicates that a 2×64-bit is shifted parallel to the right (left) by
the i-bit, and ⊕ (∧) indicates a 128 bitwise logical exclusive OR (logical AND).
In step 2, we make the table TBC as previously, where ∗ ∗ ∗ ∗ ∗ ∗ indicates a
2×64-bit. In step 3, we scan A every 4 bits to select the appropriate polynomial
on the table TBC , then H retains the upper 64 bits of AB and AC, and L retains
the lower 64 bits, as follows. H ← ABh ACh , L ← ABl ACl . In step 4,
reductions of AB and AC from degree 116 to degree 64 can be accomplished as:

L ← ABh × (x11 + · · ·+ x5) +ABl ACh × (x11 + · · ·+ x5) +ACl .

In step 5, the remaining terms of AB and AC from degree 63 to degree 59
can be reduced, finally to zero in step 6.

3.4 Another Choice of Irreducible Polynomial

In Algorithm 3, we use F259 defined by the heptanomial x59 + x6 + x5 + x4 +
x3 +x+1. The performance of finite field operation generally depends on weight
(number of nonzero coefficients) of irreducible polynomial. The lowest weight of
irreducible polynomial over F259 is pentanomial F (x) = x59+x7+x4+x2+1 [29].
Algorithm 3 can be extended to pentanomial case. We note that reduction step
in Algorithm 3 depends on th 2nd highest degree t of the irreducible polynomial.
If t satisfies the condition t ≥ 7, 2×64-bit register overflows. Therefore, we need
to modify the Algorithm 3.

In the case of F (x) = x59 +x7 +x4 +x2 +1, we use the following congruence:

x64 ≡ x12 + x9 + x7 + x5 mod F (x).

Using this congruence, AB can be expressed as:

AB ≡ ABh × (x12 + x9 + x7 + x5) +ABl mod F (x)

ABh is 52 degree and ABh × x12 is 64 degree at most. Since MSB of ABh × x12

is overflowed, we should modify Step 4 and 5 in Algorithm 3 as:

H ← H ⊕ ((H ∧ x52)� 52)
L← L⊕ (H � 12)⊕ (H � 9)⊕ (H � 7)⊕ (H � 5)
L← L⊕ (L� 52)⊕ (L� 55)⊕ (L� 57)⊕ (L� 59).

In spite of extra step for the overflow bit, PMUL using pentanomial is faster
than heptanomial case because low weight of irreducible polynomial reduces the
cost of XOR and Shift operations in Step 4 and 5 in Algorithm 3.

4 Parallel Genus Three Hyperelliptic Curve Arithmetic
with SIMD Operations

We reschedule manually long procedures of the Harley algorithm for genus three
[30] into parallel sequences to apply the proposed finite field multiplication
PMUL. Table 4 and 5 in the Appendices show the two-processor version of affine
coordinate HECADD and HECDBL for genus three curves [30]. We assume that
these parallel sequences have SIMD-style operations in order to be applicable not
only the hardware implementation but also software implementation. In Table
4 and 5, each column corresponds to an instruction. For these pairs which are
expressed in the Table with the symbol ∗, we can use the proposed finite field
multiplication PMUL, but for other cases, we compute sequentially via SMUL
not in parallel via SSE2. We compare the non-parallel formulae [30] with our
parallel formulae regarding calculation cost in Table 1. M , and I are the time
required for multiplication, inversion of the binary field, respectively. P is the
timing of the proposed finite field multiplication PMUL. Note that we estimate
multiplication using the coefficient of curve parameter f(x), h(x) as 1M .

Table 1. Number of PMUL, SMUL, and inversion of HECADD and HECDBL

HECADD HECDBL

Sequential Arithmetic 77M + 1I 78M + 1I
Parallel Arithmetic 30P + 17M + 1I 30P + 18M + 1I

5 Implementation Results

We present implementation results. All implementation was run under Windows
XP on a 1.6GHz Pentium 4 processor, using Microsoft VC++ 6.0 with inline
assembler MMX and SSE2. We applied PMUL using SSE2 to the parallelized
addition algorithm for genus three HECC over F259 .

First, Table 2 presents timing results for operation in the fields F259 . Irre-
ducible polynomials are pentanomial and heptanomial shown in Sec. 3.4 and
Sec. 3.1, respectively. Squaring and inversion are implemented via Algorithm 7

in [27] and Algorithm 10 in [27], respectively. We compare two types of finite
field multiplication algorithm, SMUL and PMUL. If irreducible polynomial is
pentanomial, PMUL is approximately 14% faster than twice SMUL operations.
Note that PMUL using pentanomial irreducible polynomial is faster than that
using heptanomial as we mentioned in the previous section. In addition, timing
of a successive two instruction SMUL and squaring is 330ns. On the other hand,
timing of PMUL is 256ns. Squaring is generally faster than multiplication, but
in our experiment, we had better deal with squaring as multiplication because
PMUL instructions including squaring, which mean finite field multiplication A2

and AB at the same time, is fast.
Second, Table 3 presents timing results of addition algorithm and scalar mul-

tiplication using binary method for genus three hyperelliptic curve C1 shown in
Sec. 3.1. The proposed method using PMUL is 11% faster than the conventional
method.

Table 2. Timings of finite field operations over F259

Irreducible Polynomial SMUL ×2 PMUL Squaring Inversion

pentanomial 290ns 256ns 158ns 1.29µs

heptanomial 288ns 249ns 158ns 1.18µs

Table 3. Timings of addition algorithm and scalar multiplication

Addition Doubling Scalar Multiplication (176 bit, binary method)

conventional 15.9µs 14.7µs 4.37ms
proposed 13.5µs 13.2µs 3.91ms

6 Conclusion

We propose a software optimization method of the genus three addition algo-
rithm of HECC by combining parallelized Harley Algorithm and the parallel
finite field multiplication using SSE2. We achieved 11% faster scalar multiplica-
tion than the usual implementation. Our idea is based on one of good feature
of HECC. Its smaller definition field than ECC has comparable size with recent
CPU register size.

However, another major CPU, e.g. ARM processor, does not have the 2× 64
SIMD instruction. It is a further work to optimize the Harley algorithm using
SIMD instructions.

Acknowledgements

The authors would like to thank Toru Akishita for valuable comments and sug-
gestions.

References

1. Koblitz, N.: Hyperelliptic Cryptosystems. J. Cryptology 1 (1989) 139–150
2. Cantor, D.: Computing in the Jacobian of a Hyperelliptic Curve. Mathematics of

Computation 48 (1987) 95–101
3. Adelman, L.M., DeMarrais, J., Huang, M.D.: A Subexponential Alogrithm for

Discrete Logarithms over the Rational Subgroup of the Jacobian of Large Genus
Hyperelliptic Curves over Finite Fields. In: ANTS-I, LNCS 877, Springer-Verlag
(1994) 28–40

4. Gaudry, P.: An Algorithm for Solving the Discrete Log Problem on Hyperelliptic
Curves. In: EUROCRYPT2000, LNCS 1807, Springer-Verlag (2000) 19–34

5. Harley, R.: Adding.text. http://cristal.inria.fr/˜harley/hyper/ (2000)
6. Harley, R.: Doubling.c. http://cristal.inria.fr/˜harley/hyper/ (2000)
7. Matsuo, K., Chao, J., Tsuji, S.: Fast Genus Two Hyperelliptic Curve Cryptosys-

tems. Technical Report ISEC2001-31, IEICE Japan (2001) 89–96
8. Pelzl, J., Wollinger, T., Guajardo, J., Paar, C.: Hyperelliptic Curve Cryptosys-

tems: Closing the Performance Gap to Elliptic Curves. Cryptology ePrint Archive,
2003/06, IACR (2003)

9. Lange, T.: Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields
via Explicit Formulae. Cryptology ePrint Archive, 2002/121, IACR (2002)

10. Lange, T.: Inversion-free Arithmetic on Genus 2 Hyperelliptic Curves. Cryptology
ePrint Archive, 2002/147, IACR (2002)

11. Lange, T.: Weighed Coordinate on Genus 2 Hyperellipitc Curve. Cryptology ePrint
Archive, 2002/153, IACR (2002)

12. Takahashi, N., Morimoto, H., Miyaji, A.: Efficient Exponentiation on Genus Two
Hyperelliptic Curves (ii). Technical Report ISEC2002-145, IEICE Japan (2003) in
Japanese.

13. Takahashi, M.: Improving Harley Algorithms for Jacobians of Genus 2 Hyperel-
liptic Curves. In: Proc. of SCIS2002. (2002) in Japanese.

14. Miyamoto, Y., Doi, H., Matsuo, K., Chao, J., Tsujii, S.: A Fast Addition Algorithm
of Genus Two Hyperelliptic Curves. In: Proc. of SCIS2002. (2002) in Japanese.

15. Kuroki, J., Gonda, M., Matsuo, K., Chao, J., Tsujii, S.: Fast Genus Three Hyper-
elliptic Curve Cryptosystems. In: Proc. of SCIS2002. (2002)

16. Sugizaki, T., Matsuo, K., Chao, J., Tsujii, S.: An Extension of Harley Addition
Algorithm for Hyperelliptic Curves over Finite Fields of Characteristic Two. Tech-
nical Report ISEC2002-9, IEICE Japan (2002) 49–56

17. Mishra, P.K., Sarkar, P.: Parallelizing Explicit Formula for Arithmetic in the
Jacobian of Hyperelliptic Curves. Cryptology ePrint Archive, Report 2003/180
(2003) http://eprint.iacr.org/.

18. Aoki, K., Hoshino, F., Kobayashi, T.: The Fastest ECC Implementations. Proc.
of SCIS2000 (2000) in Japanese.

19. Smart, N.: The Hessian Form of an Elliptic Curve. In: CHES2001, LNCS 2162,
Springer-Verlag (2001) 118–125

20. Aoki, K., Hoshino, F., Kobayashi, T., Oguro, H.: Elliptic Curve Arithmetic Using
simd. In: ISC2001, LNCS 2200, Springer-Verlag (2001) 235–247

21. Izu, T., Takagi, T.: Fast Elliptic Curve Multiplications with SIMD Operations.
In: ICICS 2002, LNCS 2513, Springer-Verlag (2002) 217–230

22. Mumford, D.: Tata lectures on theta ii. In: Progress in Mathematics. Number 43,
Birkhäuser (1984)

23. Nagao, N.: Improving Group Law Algorithms for Jacobians of Hyperelliptic
Curves. In: ANTS-IV, LNCS 1838, Springer-Verlag (2000) 439–448

24. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual, volume
1: Basic Architecture. (2003)

25. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual, volume
2: Instruction Set Reference. (2003)

26. Hess, F., Seroussi, G., Smart, N.: Two Topics in Hyperelliptic Cryptography. In:
http://www.hpl.hp.com/techreports/2000/HPL-2000-118.html. (2000) 181–189

27. Hankerson, D., Hernandez, J.L., Menezes, A.: Software Implementation of Elliptic
Curve Cryptography over Binary Fields. In: CHES2000, LNCS 1965, Springer-
Verlag (2000) 1–24

28. Lopéz, J., Dahab, R.: High-speed Software Multiplication in F2m . In: In-
docrypt2000, LNCS 1977, Springer-Verlag (2000) 203–212

29. Seroussi, G.: Table of low-weight binary irreducible polynomials.
http://www.hpl.hp.com/techreports/98/HPL-98-135.html (1998)

30. Pelzl, J.: Hyperelliptic Cryptosystems on Embedded Microprocessors. Communi-
cation Security Group, Rühr-Universität Bochum (2002) diploma thesis.

Appendices

Table 4. Parallel arithmetic of HECADD for genus three

HECADD
44M + 58A + I with 16 var.
Input:
D1 = (u1, v1) and D2 = (u2, v2) with
u1 = x3 + u12x

2 + u11x+ u10;
u2 = x3 + u22x

2 + u21x+ u20;
v1 = v12x

2 + v11x+ v10;
v2 = v22x

2 + v21x+ v20;

h(x) = x3 + h2x
2 + h1x+ h0;

f(x) = x7 + f6x
6 + f5x

5 + f4x
4

+f3x
3 + f2x

2 + f1x+ f0;
Output:
D3 = (u3, v3) = D1 +D2 with
u3 = x3 + u32x

2 + u31x+ u30;
v3 = v32x

2 + v31x+ v30;
R00 ← u12
R01 ← u11
R02 ← u10
R03 ← u22
R04 ← u21
R05 ← u20
R06 ← R04 × R00 R07 ← R04 × R02 ∗
R08 ← R03 × R01 R09 ← R03 × R02 ∗
R10 ← R05 × R01 R11 ← R05 × R00 ∗
R05 ← R05 + R02 R04 ← R04 + R01
R02 ← R05 × R05 R12 ← R05 × R04 ∗
R04 ← R04 × R04
R03 ← R03 + R00 R10 ← R10 + R07
R13 ← R10 × R04 R10 ← R10 × R03 ∗
R05 ← R05 + R06 R11 ← R11 + R09
R05 ← R05 + R08 R02 ← R02 + R10
R08 ← R03 × R11
R11 ← R08 × R11
R03 ← R05 × R03 R05 ← R05 × R02 ∗
R05 ← R05 + R11 R04 ← R04 + R03
R05 ← R05 + R13 R08 ← R08 + R12
R00 ← u22
R01 ← u21
R03 ← R04 × R01 R01 ← R04 × R00 ∗
R01 ← R01 + R08 R03 ← R03 + R02
R08 ← R08 × R00
R03 ← R03 + R08
R00 ← v12
R02 ← v11
R06 ← v10
R07 ← v22
R08 ← v21
R09 ← v20
R00 ← R00 + R07 R02 ← R02 + R08
R06 ← R06 + R09 R07 ← R01 + R04
R08 ← R03 + R04 R09 ← R03 + R01
R01 ← R01 × R02 R03 ← R03 × R06
R02 ← R02 + R00 R06 ← R06 + R00
R07 ← R07 × R02 R08 ← R08 × R06

R02 ← R02 + R06 R07 ← R07 + R01
R02 ← R02 × R09 R00 ← R00 × R04
R02 ← R02 + R01 R09 ← R01 + R08
R02 ← R02 + R03 R09 ← R09 + R03
R07 ← R07 + R00 R09 ← R09 + R00
R04 ← u22
R10 ← u21
R11 ← u20
R12 ← R00 × R04 R13 ← R00 × R10 ∗
R12 ← R12 + R07 R09 ← R09 + R13
R10 ← R10 + R11 R02 ← R02 + R13
R13 ← R12 × R11 R04 ← R12 × R04 ∗
R03 ← R03 + R13 R00 ← R00 + R12
R02 ← R02 + R13 R09 ← R09 + R04
R10 ← R10 × R00
R02 ← R02 + R10
R01 ← R09 × R05 R06 ← R09 × R09 ∗
R01 ← 1/R01
R04 ← R01 × R05 R06 ← R01 × R06 ∗
R05 ← R05 × R04
R12 ← R05 × R05
R00 ← R04 × R03 R01 ← R04 × R02 ∗
R08 ← R02 × R00 R09 ← R02 × R01 ∗
R02 ← R02 + R01 R09 ← R09 + R04
R07 ← R04 × R00 R04 ← R04 × R01 ∗
R08 ← R08 + R04 R09 ← R09 + R00
R11 ← R10 × R00 R13 ← R10 × R01 ∗
R07 ← R07 + R13 R08 ← R08 + R10
R04 ← u22
R14 ← u21
R10 ← R02 + R01 R03 ← R14 + R09
R10 ← R10 + R04 R03 ← R03 + R00
R13 ← R10 × R04 R15 ← R10 × R14 ∗
R13 ← R13 + R03 R15 ← R15 + R12
R04 ← R01 × R02 R14 ← R01 × R09 ∗
R13 ← R13 + R04 R15 ← R15 + R14
R03 ← R01 × h2 R04 ← R01 × R08 ∗
R13 ← R13 + R05 R03 ← R03 + h1
R01 ← R01 + h2 R03 ← R03 + R00
R01 ← R05 × R01 R03 ← R05 × R03 ∗
R15 ← R15 + R01 R04 ← R04 + R03
R01 ← R00 × R02 R03 ← R00 × R09 ∗
R15 ← R15 + R01 R04 ← R04 + R03
R05 ← u22
R14 ← u21
R01 ← R13 × R05 R03 ← R13 × R14 ∗
R15 ← R15 + R01 R04 ← R04 + R03
R15 ← R15 + R08 R04 ← R04 + R07
R00 ← u20
R03 ← R00 × R10
R15 ← R15 + R00 R04 ← R04 + R03
R03 ← R05 × R15
R04 ← R04 + R03
R00 ← u12
R03 ← R00 + f6

Table 4. Parallel arithmetic of HECADD for genus three – continued

R03 ← R03 × R12
R04 ← R04 + R03
R00 ← v12
R01 ← v11
R03 ← v10
R02 ← R02 + R10
R05 ← R02 × R04 R12 ← R02 × R15 ∗
R05 ← R05 + R11 R12 ← R12 + R07
R12 ← R12 + R04
R05 ← R06 × R05 R12 ← R06 × R12 ∗
R05 ← R05 + h0 R12 ← R12 + h1
R05 ← R05 + R03 R12 ← R12 + R01
R01 ← R02 × R13 R03 ← R02 × R10 ∗
R01 ← R01 + R15 R03 ← R03 + R13
R01 ← R01 + R08 R03 ← R03 + R09
R01 ← R06 × R01 R03 ← R06 × R03 ∗
R01 ← R01 + h2 R03 ← R03 + 1
R01 ← R01 + R00
R00 ← R03 × R03 R02 ← R03 × h1 ∗
R06 ← R00 + f6 R07 ← R15 + R02
R00 ← h2 × R03 R02 ← h2 × R01 ∗
R08 ← R13 + R00 R07 ← R07 + R02
R06 ← R06 + R10 R08 ← R08 + f5
R06 ← R06 + R03 R08 ← R08 + R01
R00 ← R06 × R10 R02 ← R06 × R13 ∗
R08 ← R08 + R00 R07 ← R07 + R02
R00 ← R01 × R01
R00 ← R00 + f4 R07 ← R07 + R12
R07 ← R07 + R00 R03 ← R03 + 1
R00 ← R08 × R10 R02 ← R08 × R03 ∗
R07 ← R07 + R00 R12 ← R12 + R02
R00 ← R03 × R06 R02 ← R03 × R07 ∗
R01 ← R01 + R00 R05 ← R05 + R02
R01 ← R01 + h2 R12 ← R12 + h1
R05 ← R05 + h0
u32 ← R06
u31 ← R08
u30 ← R07
v32 ← R01
v31 ← R12
v30 ← R05

Table 5. Parallel arithmetic of HECDBL for genus three

HECDBL
43M + 55A + I with 16 var.
Input:
D1 = (u1, v1) with
u1 = x3 + u12x

2 + u11x+ u10;
v1 = v12x

2 + v11x+ v10;

h(x) = x3 + h2x
2 + h1x+ h0;

f(x) = x7 + f6x
6 + f5x

5 + f4x
4

+f3x
3 + f2x

2 + f1x+ f0;
Output:
D3 = (u3, v3) = 2D1 with
u3 = x3 + u32x

2 + u31x+ u30;
v3 = v32x

2 + v31x+ v30;
R00 ← u12
R01 ← u11
R02 ← u10
R06 ← h1 × R00 R07 ← h1 × R02 ∗
R08 ← h2 × R01 R09 ← h2 × R02 ∗
R10 ← h0 × R01 R11 ← h0 × R00 ∗
R05 ← R02 + h0 R04 ← R01 + h1
R02 ← R05 × R05 R12 ← R05 × R04 ∗
R04 ← R04 × R04
R03 ← R00 + h2 R10 ← R10 + R07
R13 ← R10 × R04 R10 ← R10 × R03 ∗
R05 ← R05 + R06 R11 ← R11 + R09
R05 ← R05 + R08 R02 ← R02 + R10
R08 ← R03 × R11
R11 ← R08 × R11
R03 ← R05 × R03 R05 ← R05 × R02 ∗
R05 ← R05 + R11 R04 ← R04 + R03
R05 ← R05 + R13 R08 ← R08 + R12
R03 ← R04 × R01 R01 ← R04 × R00 ∗
R01 ← R01 + R08 R03 ← R03 + R02
R08 ← R08 × R00
R03 ← R03 + R08
R00 ← u12
R02 ← u11
R06 ← u10
R07 ← v12
R08 ← v11
R09 ← v10
R10 ← R07 × R07 R11 ← R07 × h1 ∗
R12 ← R00 + f6 R13 ← R07 + f5
R14 ← R12 × R02 R15 ← R12 × R00 ∗
R13 ← R13 + R15 R15 ← R10 + f4
R13 ← R13 + R02 R15 ← R15 + R08
R08 ← h2 × R08 R10 ← h2 × R07 ∗
R14 ← R14 + R06 R08 ← R08 + R09
R15 ← R15 + R14 R07 ← R07 + f5

R09 ← R13 × R00 R13 ← R13 × R02 ∗
R15 ← R15 + R10
R15 ← R15 + R09 R08 ← R08 + R13
R14 ← R14 + R15 R08 ← R08 + f3
R12 ← R12 × R06 R15 ← R15 × R00
R02 ← R00 × R02 R00 ← R00 × R00 ∗
R08 ← R08 + R12 R11 ← R11 + R15
R07 ← R07 + R00 R14 ← R14 + R02
R08 ← R08 + R11
R00 ← u12
R02 ← u11
R06 ← u10
R09 ← R01 + R04 R10 ← R14 + R07
R09 ← R09 × R10 R14 ← R14 × R01
R11 ← R03 + R04 R12 ← R08 + R07
R11 ← R11 × R12 R08 ← R08 × R03
R13 ← R03 + R01 R10 ← R10 + R12
R13 ← R13 × R10 R07 ← R07 × R04
R13 ← R13 + R14 R09 ← R09 + R14
R11 ← R11 + R14 R12 ← R08 + R07
R13 ← R13 + R08 R09 ← R09 + R07
R01 ← R07 × R00 R03 ← R07 × R02 ∗
R01 ← R01 + R09 R13 ← R13 + R03
R07 ← R07 + R01 R02 ← R02 + R06
R06 ← R01 × R06 R00 ← R01 × R00 ∗
R08 ← R08 + R06 R00 ← R00 + R03
R02 ← R02 × R07
R11 ← R11 + R12 R13 ← R13 + R02
R13 ← R13 + R06 R11 ← R11 + R00
R01 ← R11 × R05 R06 ← R11 × R11 ∗
R01 ← 1/R01
R03 ← R01 × R05 R06 ← R01 × R06 ∗
R05 ← R05 × R03
R00 ← R03 × R08 R01 ← R03 × R13 ∗
R02 ← u12
R04 ← u11
R10 ← u10
R08 ← R02 × R00 R09 ← R02 × R01 ∗
R02 ← R02 + R01 R09 ← R09 + R04
R07 ← R04 × R00 R04 ← R04 × R01 ∗
R08 ← R08 + R04 R09 ← R09 + R00
R11 ← R10 × R00 R12 ← R10 × R01 ∗
R07 ← R07 + R12 R08 ← R08 + R10
R04 ← u12
R14 ← u11
R10 ← R04 + h2 R12 ← R00 + h1
R10 ← R10 + R01 R12 ← R12 + R14
R04 ← R10 × R04 R10 ← R10 × R05 ∗
R13 ← R01 × h2 R01 ← R01 × R01 ∗
R12 ← R12 + R04 R01 ← R01 + R05
R12 ← R12 + R13
R12 ← R05 × R12 R05 ← R05 × R05 ∗
R03 ← R05 × f6 R00 ← R00 × R00
R10 ← R10 + R05 R03 ← R03 + R00

Table 5. Parallel arithmetic of HECDBL for genus three – continued

R12 ← R12 + R03
R03 ← v12
R04 ← v11
R05 ← v10
R09 ← R09 + R01 R08 ← R08 + R10
R00 ← R02 × R01 R13 ← R02 × R10 ∗
R14 ← R02 × R12
R12 ← R12 + R07 R14 ← R14 + R11
R00 ← R00 + R08 R13 ← R13 + R12
R00 ← R06 × R00 R13 ← R06 × R13 ∗
R14 ← R06 × R14 R15 ← R06 × R09 ∗
R15 ← R15 + 1 R00 ← R00 + h2
R13 ← R13 + h1 R14 ← R14 + h0
R00 ← R00 + R03 R13 ← R13 + R04
R14 ← R14 + R05 R04 ← R15 + f6
R02 ← R15 × R15 R03 ← R15 × h1 ∗
R03 ← R03 + R10 R02 ← R02 + R04
R04 ← R00 × R00 R05 ← R00 × h2 ∗
R03 ← R03 + R04 R06 ← R01 + f5
R03 ← R03 + f4 R05 ← R05 + R13
R07 ← R15 × h2
R06 ← R06 + R07 R03 ← R03 + R05
R15 ← R15 + 1 R06 ← R06 + R00
R01 ← R02 × R01 R04 ← R02 × R15 ∗
R03 ← R03 + R01 R04 ← R04 + R00
R05 ← R15 × R06 R07 ← R15 × R03 ∗
R05 ← R05 + R13 R07 ← R07 + R14
R04 ← R04 + h2 R05 ← R05 + h1
R07 ← R07 + h0
u32 ← R02
u31 ← R06
u30 ← R03
v32 ← R04
v31 ← R05
v30 ← R07

