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Abstract. Informally, a public-key steganography protocol allows two parties, who have never met or
exchanged a secret, to send hidden messages over a public channel so that an adversary cannot even
detect that these hidden messages are being sent. Unlike previous settings in which provable security
has been applied to steganography, public-key steganography is information-theoretically impossible.
In this work we introduce computational security conditions for public-key steganography similar to
those introduced by Hopper, Langford and von Ahn [13] for the private-key setting. We also give the
first protocols for public-key steganography and steganographic key exchange that are provably secure
under standard cryptographic assumptions. Additionally, in the random oracle model, we present a
protocol that is secure against adversaries that have access to a decoding oracle (the steganographic
equivalent of CCA-2 adversaries).
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1 Introduction

Steganography refers to the problem of sending messages hidden in “innocent-looking” commu-
nications over a public channel, so that an adversary eavesdropping on the channel cannot even
detect the presence of the hidden messages. Simmons [23] gave the most popular formulation of
the problem: two prisoners, Alice and Bob, wish to plan an escape from jail. However, the prison
warden, Ward, can monitor any communication between Alice and Bob, and if he detects any hint
of “unusual” communications, he throws them both in solitary confinement. Alice and Bob must
then transmit their secret plans so that nothing in their communication seems “unusual” to Ward.

There have been many proposed solutions to this problem, ranging from rudimentary schemes
using invisible ink [14] to a protocol which is provably secure assuming that one-way functions
exist [13]. However, the majority of these protocols have focused on the case where Alice and Bob
share a secret or private key. If Alice and Bob were incarcerated before the need for steganography
arose, these protocols would not help them. In contrast, public-key steganography allows parties to
communicate steganographically with no prior exchange of secrets. As with public-key encryption,
the sender of a message still needs to know the recipient’s public key or otherwise participate in
a key exchange protocol. While it is true that if there is no global PKI, the use of public keys
might raise suspicion, in many cases it is the sender of a message who is interested in concealing
his communication and there is no need for him to publish any keys.

In this paper we consider the notion of public-key steganography against adversaries that do
not attempt to disrupt the communication between Alice and Bob (i.e., the goal of the adversary is
only to detect whether steganography is being used and not to disrupt the communication between
the participants). We show that secure public-key steganography exists if any of several standard
cryptographic assumptions hold (each of these assumptions implies semantically secure public-
key cryptography). We also show that secure steganographic key exchange is possible under the
Integer Decisional Diffie-Hellman (DDH) assumption. Furthermore, we introduce a protocol that is
secure in the random oracle model against adversaries that have access to a decoding oracle (the
steganographic equivalent of CCA-2 adversaries).

Related Work. There has been very little work work on provably secure steganography (either in
the private or the public key settings). A critical first step in this field was the introduction of an
information-theoretic model for steganography by Cachin [5], and several papers have since given



similar models [16, 19, 26]. Unfortunately, these works are limited in the same way that information-
theoretic cryptography is limited. In particular, in any of these frameworks, secure steganography
between two parties with no shared secret is impossible. Hopper, Langford, and von Ahn [13] have
given a theoretical framework for steganography based on computational security. Our model will
be substantially similar to theirs, but their work addresses only the shared-key setting, which is
already possible information-theoretically. Although one of their protocols can be extended to the
public-key setting, they do not consider formal security requirements for public-key steganography,
nor do they consider the notions of steganographic-key exchange or adversaries that have access to
both encoding and decoding oracles.

Anderson and Petitcolas [1], and Craver [9], have both previously described ideas for public-key
steganography. This work will differ from theirs in several significant ways:

1. [1] and [9] do not attempt to give rigorous definitions, and give only heuristic arguments for
the security of their constructions. In contrast, we will give rigorous definitions and proofs of
security.

2. [1] does not describe any mechanism for generating encoded messages, but simply assumes
“the ability to manipulate some bits of the cover.” Similarly, [9] assumes the existence of a
“supraliminal function” F and the ability to generate an x for which F (x) = y, for arbitrary
y. In contrast, our model is constructive and does not assume the existence of a function with
non-standard properties.

Inspired by a previous version of our work, a recent IACR pre-print [24] attempts to give a
provably secure public-key stegosystem. Unfortunately this work contains a flaw. The author of
[24] claims that his stegosystem has probability zero of decoding error; while this is true in the
restricted case that the channel distribution is known exactly by both the sender and recipient, it
is easy to construct an (uncountably) infinite set of channels for which the general construction has
correct decoding probability approaching zero. We do not know of a way to repair the construction,
which in fact fails for many natural channels. Furthermore, [24] only considers a notion similar to
our weakest security condition.

To the best of our knowledge, we are the first to provide a formal framework for public-key
steganography and to prove that public-key steganography is possible (given that standard cryp-
tographic assumptions hold). We are also the first to consider adversaries that have access to
decoding oracles (in a manner analogous to CCA-2 adversaries); we show that security against
such adversaries can be achieved in the random oracle model. We stress that our protocols are not
robust against adversaries wishing to render the steganographic communication channel useless.
Throughout the paper, the goal of the adversary is detection, not disruption.

2 Definitions

Preliminaries. A function µ : N → [0, 1] is said to be negligible if for every c > 0, for all
sufficiently large n, µ(n) < 1/nc. We denote the length (in bits) of a string or integer s by |s|. The
concatenation of string s1 and string s2 will be denoted by s1||s2. We also assume the existence of
efficient, unambiguous pairing and un-pairing operations, so (s1, s2) is not the same as s1||s2. We
let Uk denote the uniform distribution on k bit strings. If X is a finite set, we let U(X) denote
the uniform distribution on X. If C is a distribution with finite support X, we define the minimum
entropy of C, H∞(C), as

H∞(C) = min
x∈X

{
log2

1
PrC [x]

}
.

We say that a function f : X → {0, 1} is ε-biased if |Prx←C [f(x) = 0]− 1/2| < ε. We say f is
unbiased if f is ε-biased for ε a negligible function of the appropriate security parameter. We say f
is perfectly unbiased if Prx←C [f(x) = 0] = 1/2.



Integer Decisional Diffie-Hellman. Let P and Q be primes such that Q divides P−1, let Z∗P be
the multiplicative group of integers modulo P , and let g ∈ Z∗P have order Q. Let A be an adversary
that takes as input three elements of Z∗P and outputs a single bit. Define the DDH advantage of A
over (g, P,Q) as:

Advddh
g,P,Q(A) =

∣∣∣∣ Pr
a,b,r

[Ar(ga, gb, gab) = 1]− Pr
a,b,c,r

[Ar(ga, gb, gc) = 1]
∣∣∣∣ ,

where Ar denotes the adversary A running with random tape r, a, b, c are chosen uniformly at
random from ZQ and all the multiplications are over Z∗P . Define the DDH insecurity of (g, P,Q) as
InSecddh

g,P,Q(t) = maxA∈A(t)

{
Advddh

g,P,Q(A)
}
, where A(t) denotes the set of adversaries A that run

for at most t time steps.

Trapdoor One-way Permutations. A trapdoor one-way permutation family Π is a sequence of
sets {Πk}k, where each Πk is a set of bijective functions π : {0, 1}k → {0, 1}k, along with a triple of
algorithms (G,E, I). G(1k) samples an element π ∈ Πk along with a trapdoor τ ; E(π, x) evaluates
π(x) for x ∈ {0, 1}k; and I(τ, y) evaluates π−1(y). For a PPT A running in time t(k), denote the
advantage of A against Π by

Advow
Π (A, k) = Pr

(π,τ)←G(1k),x←Uk
[A(π(x)) = x] .

Define the insecurity of Π by InSecow
Π (t, k) = maxA∈A(t) {Advow

Π (A, k)}, where A(t) denotes the
set of all adversaries running in time t(k). We say that Π is a trapdoor one-way permutation family
if for every probabilistic polynomial-time (PPT) A, Advow

Π (A, k) is negligible in k.

Public-Key Encryption Indistinguishable From Random Bits. We will require public-key
encryption schemes that are secure in a slightly non-standard model, which we will denote by IND$-
CPA in contrast to the more standard IND-CPA. Let E = (G,E,D) be a probabilistic public-key
encryption scheme, where E : PK×R×P → C. Consider a game in which an adversary A is given
access to an oracle which is either:
– EPK for (PK,SK) ← G(1k); that is, an oracle which given a message m, uniformly selects

random bits r and returns EPK(r,m); or
– $(·) = U|EPK(·)|; that is, an oracle which on any query ignores its input and returns a uniformly

selected output of the appropriate length.

A is also given access to the public key PK used by its oracle to answer queries. Let A(t, q, l) be
the set of adversaries A which make q(k) queries to the oracle totalling at most l(k) bits and run
for t(k) time steps. Define the IND$-CPA advantage of A against E as

Advcpa
E (A, k) =

∣∣∣∣ Pr
(PK,SK)←G(1k),r←{0,1}∗

[AEPK
r (PK) = 1]− Pr

(PK,SK),r
[A$

r(PK) = 1]
∣∣∣∣

where Ar denotes the adversary A with random tape r, and the probabilities are also taken
over the randomness of the oracles EPK , $. Define the insecurity of E as InSeccpa

E (t, q, l, k) =
maxA∈A(t,q,l)

{
Advcpa

E (A, k)
}
. E is (t, q, l, k, ε)-indistinguishable from random bits under chosen

plaintext attack if InSeccpa
E (t, q, l, k) ≤ ε(k). E is called indistinguishable from random bits under

chosen plaintext attack (IND$-CPA) if for every probabilistic polnyomial-time (PPT) A, Advcpa
E (A, k)

is negligible in k.
We note that using a family of trapdoor permutations on domain {0, 1}k, the Efficient Proba-

bilistic Encryption scheme of [11] (generalized from the scheme of [3]) is IND$-CPA secure. Thus,
under the assumption that such families exist, IND$-CPA public-key encryption also exists. In
Appendix D, we show how to construct schemes satisfying this condition under more general cryp-
tographic assumptions, and give direct constructions under popular concrete assumptions.



Existentially Unforgeable Digital Signature Schemes. Let SG = (G,S, V ) be a digital
signature scheme. Consider the following game that an adversary A plays against SG: the adversary
A is given V K and oracle access to SSK , where (SK, V K)← G(1k). A makes q(k) oracle queries
of at most l(k) bits to get back {SSK(M1), ..., SSK(Mq)}. A then outputs a pair (M,σM ). A wins
if M /∈ {M1, ...,Mq} and V (V K,M, σM ) = 1.

Denote the event of Ar winning the game by wins(Ar, k), where r denotes the random coins
used by A, k is the security parameter used to generate the keys, and s denotes the randomness
used by the game (in generating (SK, V K) and in generating the q(k) signatures). Let A(t, q, l) be
the set of adversaries A which make q(k) queries to the oracle of at most l(k) bits and run for t(k)
time steps. Define the EUF-CMA advantage of A against SG as

Advcma
SG (A, k) =

∣∣∣∣ Pr
s,r←{0,1}∗

[wins(Ar, k)]
∣∣∣∣ .

Define the insecurity of SG as InSeccma
SG (t, q, l, k) = maxA∈A(t,q,l)

{
Advcma

SG (A, k)
}
. We say that

SG is (t, q, l, k, ε)-existentially unforgeable under chosen message attack if InSeccma
SG (t, q, l, k) ≤ ε(k).

SG is called existentially unforgeable under chosen message attack (EUF-CMA) if for every PPT
A, Advcma

SG (A, k) is negligible in k. We note that EUF-CMA signature schemes exist if and only if
one-way functions exist [17, 20].

3 Channels

We seek to define steganography in terms of indistinguishability from a “usual” or innocent-looking
distribution on communications. In order to do so, we must characterize this innocent-looking
distribution. We follow [13] in using the notion of a channel, which models a prior distribution on
the entire sequence of communication from one party to another:

Definition. Let D be an efficiently recognizable, prefix-free set of strings, or documents. A channel
is a distribution on sequences s ∈ D∗.1

Any particular sequence in the support of a channel describes one possible outcome of all commu-
nications from Alice to Bob. The process of drawing from the channel, which results in a sequence
of documents, is equivalent to a process that repeatedly draws a single “next” document from a
distribution consistent with the history of already drawn documents. Therefore, we can think of
communication as a series of these partial draws from the channel distribution, conditioned on what
has been drawn so far. Notice that this notion of a channel is more general than the typical setting
in which every symbol is drawn independently according to some fixed distribution: our channel
explicitly models the dependence between symbols common in typical real-world communications.

Let C be a channel. We let Ch denote the marginal channel distribution on a single document
from D conditioned on the history h of already drawn documents; we let Clh denote the marginal
distribution on sequences of l documents conditioned on h. When we write “sample x ← Ch” we
mean that a single document should be returned according to the distribution conditioned on h.
We use CA→B,h to denote the channel distribution on the communication from party A to party B.

We will require that a channel satisfy a minimum entropy constraint for all histories. Specifically,
we require that there exist constants L > 0, b > 0, α > 0 such that for all h ∈ DL, either
PrC [h] = 0 or H∞(Cbh) ≥ α. If a channel does not satisfy this property, then it is possible for Alice
to drive the information content of her communications to 0, so this is a reasonable requirement.
We say that a channel satisfying this condition is L-informative, and if a channel is L-informative
for all L > 0, we say it is always informative. Note that this definition implies an additive-like
property of minimum entropy for marginal distributions, specifically, H∞(Clbh ) ≥ lα . For ease of
1 Hopper, Langford and von Ahn [13] define a channel so that each document in a sequence drawn from the channel

has a time associated with it. These (presumably sending) times must then be respected by their protocols. We
omit this timing information for simplicity, but remark that in a situation where precise timing information is
available, it can be incorporated into our protocols orthogonally, with no effect on our results.



exposition, we will assume channels are always informative in the remainder of this paper; however,
our theorems easily extend to situations in which a channel is L-informative.

In our setting, each ordered pair of parties (P,Q) will have their own channel distribution
CP→Q. In these cases, we assume that among the legitimate parties, only party A has oracle access
to marginal channel distributions CA→B,h for every other party B and history h. On the other
hand, we will allow the adversary oracle access to marginal channel distributions CP→Q,h for every
pair P,Q and every history h. This allows the adversary to learn as much as possible about any
channel distribution but does not require any legitimate participant to know the distribution on
communications from any other participant. We will assume that each party knows the history of
communications it has sent and received from every other participant.

We will also assume that cryptographic primitives remain secure with respect to oracles which
draw from the marginal channel distributions CA→B,h. Thus channels which can be used to solve
the hard problems that standard primitives are based on must be ruled out. In practice this is of
little concern, since the existence of such channels would have previously led to the conclusion that
the primitive in question was insecure.

4 Public-key Steganography

Definition 1. (Stegosystem) A public-key stegosystem is a triple of probabilistic algorithms S =
(SG, SE, SD). SG(1k) generates a key pair (PK,SK) ∈ PK × SK. SE takes a (public) key
PK ∈ PK, a string m ∈ {0, 1}∗ (the hiddentext), and a message history h. SE also has access to
a channel oracle for some channel C, which can sample from Ch for any h. SE(PK,m, h) returns
a sequence of documents s1, s2, . . . , sl (the stegotext) from the support of Clh. SD takes a (secret)
key SK ∈ SK, a sequence of documents s1, s2, . . . , sl, and a message history h, and returns a
hiddentext m. Additionally, for every polynomial p there must exist a negligible µ such that

∀m ∈ {0, 1}p(k) : Pr
(PK,SK)←SG(1k)

[SD(SK,SE(PK,m, h), h) = m] ≥ 1− µ(k)

where the randomization is also over any coin tosses of SE, SD, SG and the oracle to Ch.

Remarks

1. SE will be allowed access to an oracle that can sample from the channel distribution Ch. We
stress that SE need not know the exact probabilities of documents in Ch. This is important
to mention, as it is unreasonable to assume that the probabilities in Ch are known, whereas
anybody communicating can be thought of as an oracle for the channel distribution Ch.

2. We emphasize the terminology: the secret message that Alice wants to send to Bob is called the
hiddentext; documents from the channel are called covertexts, and documents that are output
by SE are called stegotexts.

3. While in general Alice will need to remember the history of documents transmitted to Bob,
it is most desirable if Bob is not required to store the history of documents he has received
from Alice. Some of our protocols require Bob to store this history, but it is straightforward to
rewrite them so that Bob need only remember a collision-intractable digest of the history. In this
paper we are not concerned with attacks in which Ward attempts to disrupt the communication
between Alice and Bob, so the dependence of decoding on accurate history is chiefly a storage
concern.

Steganographic Secrecy

We will model a warden attacking a stegosystem as an efficient oracle machine which plays the
following oracle-distinguishing game:

1. W is given access to an oracle which samples documents from the marginal channel distributions
CA→B,h for any history h. (This oracle allows W to learn the covertext distribution on all
communications.)



2. W is given access to a second oracle which is either STatk or CTatk. The oracle ST (for StegoText)
will model the case in which the pair Alice and Bob are communicating steganographically,
while the oracle CT (for CoverText) will model the case in which they are not. The exact
distributions over STatk, CTatk vary depending on the attack model, atk. Below we will specify
these distributions for atk ∈ {cha, cxo}. Both oracles respond to the null query with any public
keys generated by SG.

3. In the end, W outputs a bit.

We define the advantage of W against stegosystem S over channel C in attack model atk by

Advatk
S,C(W,k) =

∣∣∣Pr
r

[W C,STatk
r (1k) = 1]− Pr

r
[W C,CTatk

r (1k) = 1]
∣∣∣ ,

where the warden uses random bits r and the probabilities are also taken over the oracles. Define
the insecurity of S over channel C by InSecatk

S,C(t, q, l, k) = maxW∈W(t,q,l)

{
Advatk

S,C(W,k)
}
, where

W(t, q, l) denotes the set of all adversaries which make at most q(k) oracle queries totaling at most
l(k) bits, and running in time at most t(k). For ease of notation, we will denote W C by W for the
remainder of the paper.

Definition 2. (Steganographic secrecy) A Stegosystem S is called (t, q, l, k, ε)-steganographically
secret against atk (SS-ATK) for the channel C if InSecatk

S,C(t, q, l, k) ≤ ε(k).

Chosen Hiddentext Attack (CHA). In a chosen hiddentext attack, W is allowed to supply hid-
dentexts to Alice, in hopes of detecting whether or not she is using steganography in her communica-
tions with Bob. Thus W hopes to distinguish, for as many chosen messages m as he needs, between
the case that Alice’s communications are drawn from SE(PKB,m, h) or from C|SE(PKB ,m,h)|

A→B,h (where
all m and h are chosen by W ). Formally, we define the following distributions on STcha and CTcha:

– To sample from STcha: draw (PK,SK) ← SG(1k) once, and respond to all queries with
STcha(m,h)← SE(PK,m, h).

– To sample from CTcha: draw (PK,SK) ← SG(1k) once, and respond to all queries with
CTcha(m,h)← C|SE(PK,m,h)|

h .

Thus, the key pair (PK,SK) is drawn once and fixed, and Ward is allowed to query his oracle with
arbitrary (m,h) pairs. (Note that a chosen hiddentext attack is the steganographic equivalent of a
chosen plaintext attack against an encryption scheme.)

Chosen Exactly-One Attack (CXO). In a chosen exactly-one attack, Ward may both submit
hiddentexts to Alice for encoding, and submit stegotexts to Bob for decoding, but he is prohibited
from accessing both at the same time (i.e., with the same history). This models a scenario in which
Ward can inject messages onto a network, but cannot replace them; for example, this may be
the situation if he is connected to the same shared access network as Bob, but does not control
the medium. As in all of our attack models, Ward’s goal is to determine whether the specific
pair of Alice and Bob are communicating steganographically rather than whether Alice or Bob
are using steganography at all. In the case that Ward asks Bob to decode stegotexts, his goal
is to detect whether Bob is receiving steganography from Alice by watching Bob’s reaction to
stegotexts (allegedly from Alice) generated by Ward himself. If Bob is not receiving steganography
from Alice, he will always output the distinguished message ⊥, meaning “no reaction.” If Bob is
receiving steganography from Alice, he will decode the stegotexts.

We formally define the oracle distributions STcxo, CTcxo as follows: First, draw (PK,SK) ←
SG(1k), and set φ = {}. Respond to queries using these programs:



STcxo(b ∈ {enc, dec},m, h)
if (b = enc) then:

Sample s← SE(PK,m, h)
Set φ = φ ∪ {h}
return s

else
If h ∈ φ return “”
else return SD(SK,m, h)

CTcxo(b ∈ {enc, dec},m, h)
if (b = enc) then:

Sample s← C|SE(PK,m,h)|
h

Set φ = φ ∪ {h}
return s

else
If h ∈ φ return “”
else return ⊥

Note that InSeccha
S,C(t, q, l, k) ≤ InSeccxo

S,C(t, q, l, k), since any CHA warden can be emulated by a
CXO warden making only (enc,m, h)-queries.

SS-CXO is the strongest notion of security that we are able to achieve in the standard model.
Since any stegotext encoded by Alice can be thought of as a “challenge stegotext,” (Ward’s goal
is only to detect that it is, in fact, a stegotext rather than a covertext) this condition is some-
what analogous to non-adaptive chosen ciphertext security (IND-CCA1) for public-key encryption.
However, in the random oracle model and assuming the channel is efficiently sampleable (i.e., there
exists a PPT that can sample from the channel for any history), we can achieve a security condition
analogous to adaptive chosen ciphertext security (IND-CCA2). We outline this security condition as
well as the construction in Section 7.

5 Steganographic Key Exchange

A natural alternative to public-key steganography is steganographic key exchange: Alice and Bob
exchange a sequence of messages, indistinguishable from normal communication traffic, and at the
end of this sequence they are able to compute a shared key. So long as this key is indistinguishable
from a random key to the warden, Alice and Bob can proceed to use their shared key in a secret-key
stegosystem. In this section, we will formalize this notion.

Definition 3. (Steganographic Key Exchange Protocol) A steganographic key exchange protocol,
or SKEP, is a quadruple of efficient probabilistic algorithms SKE = (SEA, SEB, SDA, SDB). SEA
and SEB take as input a security parameter 1k and a string of random bits, and output a sequence of
documents of length l(k); SDA and SDB take as input a security parameter, a string of random bits,
and a sequence of documents of length l(k), and output an element of the key space K. Additionally,
these algorithms satisfy the property that there exists a negligible function µ(k) satisfying:

Pr
rA,rB

[SDA(1k, rA, SEB(1k, rB)) = SDB(1k, rB, SEA(1k, rA))] ≥ 1− µ(k) .

We call the output of SDA(1k, rA, SEB(1k, rB)) the result of the protocol, we denote this result by
SKE(rA, rB), and we denote by Tk(rA, rB) (for transcript) the pair (SEA(1k, rA), SEB(1k, rB)).

Alice and Bob perform a key exchange using SKE by sampling private randomness rA, rB,
asynchronously sending SEA(1k, rA) and SEB(1k, rB) to each other, and using the result of the
protocol as a key. Notice that in this definition a SKEP must be an asynchronous single-round
scheme, ruling out multi-round key exchange protocols. This is for ease of exposition only.

We remark that many authenticated cryptographic key exchange protocols require three flows
without a public-key infrastructure. Our SKE scheme will be secure with only two flows because we
won’t consider the same class of attackers as these protocols; in particular we will not worry about
active attackers who alter the communications between Alice and Bob, and so Diffie-Hellman style
two-flow protocols are possible. This may be a more plausible assumption in the SKE setting, since
an attacker will not even be able to detect that a key exchange is taking place, while cryptographic
key exchanges are typically easy to recognize.



Let W be a warden running in time t. We define W ’s SKE advantage against SKE on channels
CA→B and CB→A with security parameter k by:

Advske
SKE ,CA→B ,CB→A(W,k) =

∣∣∣∣ Pr
rA,rB

[W (Tk(rA, rB), SKE(rA, rB)) = 1]− Pr
σA,σB ,K

[W (σA, σB,K) = 1]
∣∣∣∣ ,

where σA ← Cl(k)
A→B,hA , σB ← C

l(k)
B→A,hB , and K ← K. We remark that, as in our other definitions,

W also has access to channel oracles CA→B,h and CB→A,h. Let W(t) denote the set of all wardens
running in time t. The SKE insecurity of SKE on channels CA and CB with security parameter k is
given by InSecske

SKE ,CA→B ,CB→A(t, k) = maxW∈W(t)

{
Advske

SKE ,CA→B ,CB→A(W,k)
}
.

Definition 4. (Secure Steganographic Key Exchange) A SKEP SKE is said to be (t, ε)-secure for
channels CA→B and CB→A if InSecske

SKE
(t, k) ≤ ε(k). SKE is said to be secure if for all polynomials

p, SKE is (p(k), ε(k))-secure for some negligible function ε.

6 Constructions

Most of our protocols build on the following construction, a generalization of Construction 2 in
[13] and similar to a protocol given by Cachin [5]. Let f : D → {0, 1} be a public function (recall
that C is a distribution on sequences of elements of D). If f is is perfectly unbiased on Ch for all
h, then the following encoding procedure, on uniformly distributed l-bit input c, produces output
distributed exactly according to Clh:

Construction 1. (Basic encoding/decoding routines)

Procedure Basic Encode:
Input: bits c1, . . . , cl, history h, bound k
for i = 1 . . . l do

Let j = 0
repeat:

sample si ← Ch, increment j
until f(si) = ci OR (j > k)
set h = h||si

Output: s1, s2, . . . , sl

Procedure Basic Decode:
Input: Stegotext s1, s2, . . . , sl
for i = 1 . . . l do

set ci = f(si)
set c = c1||c2|| · · · ||cl.
Output: c

Note that for infinitely many Ch there is no perfectly unbiased function f . In appendix C, we prove
Proposition 1, which together with Proposition 2, justifies our use of unbiased functions. The proof
for Proposition 2 is straightforward and is omitted from the paper.

Proposition 1. Any channel C which is always informative can be compiled into a channel C(k)

which admits an efficiently computable function f such that for any polynomial-length sequence
h1, . . . , hn satisfying PrC [hi] 6= 0,

∣∣∣Pr[f(C(k)
hi

) = 1]− 1
2

∣∣∣ is negligible in k for all 1 ≤ i ≤ n.

Proposition 2. If f is ε-biased on Ch for all h, then for any k and s1, s2, . . . , sl:

| Pr
c←Ul

[Basic Encode(c, h, k) = s1, s2, . . . , sl]− Pr
s←Clh

[s = s1, s2, . . . , sl]| ≤ εl .

Using the previous two propositions, we will show that public-key steganography is possible in any
channel that is always informative. We note that procedure Basic Encode has a small probability of
failure: Basic Decode(Basic Encode(c, h, k)) might not equal c. This probability of failure, however,
is negligible in k.



6.1 Chosen Hiddentext security

Let EPK(·) and DSK(·) denote the encryption and decryption algorithms for a public-key cryp-
tosystem E which is indistinguishable from random bits under chosen plaintext attack (IND$-CPA).
Let ` be the expansion function of E , i.e., |EPK(m)| = `(|m|). The following procedures allow
encoding and decoding of messages in a manner which is steganographically secret under chosen
hiddentext attack for the channel distribution C:



Construction 2. (Chosen Hiddentext Security)

Procedure CHA Encode:
Input: message m, history h, key PK
Let c = EPK(m)
Output: Basic Encode(c, h, k)

Procedure CHA Decode:
Input: stegotext s1, s2, . . . , sl, secret key SK
Let c = Basic Decode(s1, s2, . . . , sl)
Output: DSK(c)

Lemma 1. Assume f is ε-biased on Ch for all h. For any warden W ∈ W(t, q, l), we can construct
an IND$-CPA adversary A where

Advcha
CHA,C(W,k) ≤ Advcpa

E (A, k) + `(l)ε.

The running time of A is at most t+O(kl) (k is the security parameter of (PK,SK) and is used
as a bound for Basic Encode), and A makes q encryption queries for a total of l bits of plaintext.

Proof. We are given a program W for distinguishing between the output of Construction 2 and the
ordinary traffic of the channel, and an oracle for sampling blocks from that channel. We construct
a program A which plays the IND$-CPA game: distinguishing an EPK(·) oracle from a uniform
oracle. AO simply runs W , using the encoding procedure CHA Encode with the oracle O in place of
EPK(·) to respond to encoding queries. Consider the two cases for O:

1. O(m) = EPK(m). Then the responses to W ’s queries will be identically distributed to stegotexts
resulting from the normal use of Construction 2, so Pr[AEPK (PK) = 1] = Pr[WSTcha(1k) = 1].

2. O(m) = U|EPK(m)| is chosen uniformly from strings of appropriate length. Then the documents
returned by CHA Encode will be identically distributed to those returned by Basic Encode; thus
|Pr[A$(PK) = 1]− Pr[WCTcha(1k) = 1]| ≤ `(l)ε by Proposition 2.

Combining the cases, we have Advcha
CHA,C(W,k) ≤ |Pr[AEPK (PK) = 1]−Pr[A$(PK) = 1]|+ `(l)ε =

Advcpa
E (A, k) + `(l)ε, as claimed.

Theorem 1. If f is ε-biased on Ch for all h, then

InSeccha
CHA,C(t, q, l, k) ≤ InSeccpa

E (t+O(kl), q, l, k) + `(l)ε .

6.2 Chosen Exactly-One security

Let SG = (GS , S, V ) be a EUF-CMA secure signature scheme, with signature key KS and verification
key KV , and let E = (G,E,D) be a IND$-CPA encryption scheme with public key PK and secret
key SK. Let ` be the expansion function of E and let `σ be the length of signatures generated by
SG. Then the following construction yields a SS-CXO secure stegosystem from Alice to Bob, when
Alice knows PK,KS and Bob knows SK,KV . Assume also that all keys are generated with security
parameter k.

Construction 3. (Chosen Exactly-One Security)

Procedure CXO Encode:
Input: m, h, PK, KS

Let c = EPK(m,SKS (h,m))
Output: Basic Encode(c, h, k)

Procedure CXO Decode:
Input: s1, s2, . . . , sl, h, SK, KV

Let c = Basic Decode(s1, s2, . . . , sl)
Let (m,σ) = DSK(c)
Output: if V (KV , (h,m), σ) = 1 then m, else ⊥

Theorem 2. Assume f is ε-biased on Ch for all h. Then

InSeccxo
CXO,C(t, q, l, k) ≤ InSeccma

SG (t+O(kl), q, l, k) + InSeccpa
E (t+O(kl), q, l+ q`σ, k) + `(l+ q`σ)ε .



Proof. (Sketch) We consider the hybrid oracle H which answers encoding queries using CXO Encode
and answers all decoding queries with ⊥. Distinguishing this hybrid from STcxo equates to distin-
guishing CXO Decode from the constant oracle ⊥ on some history h for which no query of the form
(enc, ∗, h) has been made. This can only happen if a decoding query contains a signature on a
(m,h) pair which was never signed by CXO Encode (because no encoding queries were ever made
with the history h). So, intuitively, distinguishing between H and STcxo requires forging a signa-
ture. Similarly, since both H and CTcxo answer all dec queries by ⊥, distinguishing between them
amounts to a chosen-hiddentext attack, which by Lemma 1 would give an IND$-CPA attacker for
E . The result follows by the triangle inequality. For the full details of the proof, see Appendix A.

The above construction is vulnerable to a more powerful but still quite reasonable adversary.
In particular, if Ward is able to modify messages sent by Alice before they are received by Bob, he
may detect steganographic communications between them. The attack works as follows: suppose
Alice outputs the stegotext s1, . . . , sl. Ward chooses document s′1 such that f(s′1) = f(s1) and
submits s′1, s2, . . . , sl to Bob. Now if Bob decodes with the same history as Alice encoded with, the
result will be a valid hiddentext rather than ⊥. (Notice that this won’t give a CXO attack against
CXO Decode because in a CXO attack Ward must use a different history, which has not been signed
by Alice.) In Section 7 we specify a third security security property, SS-CSA, which guarantees
security against attacks of this type.

6.3 Steganographic Key Exchange

The idea behind behind the construction for steganographic key exchange is simple: let g generate
Z
∗
P , let Q be a large prime with P = rQ + 1 and r coprime to Q, and let ĝ = gr generate the

subgroup of order Q. Alice picks random values a ∈ ZP−1 uniformly at random until she finds one
such that ga mod P has its most significant bit (MSB) set to 0 (so that ga mod P is uniformly
distributed in the set of bit strings of length |P | − 1). She then uses Basic Encode to send all the
bits of ga mod P except for the MSB (which is zero anyway). Bob does the same and sends all
the bits of gb mod P except the most significant one (which is zero anyway) using Basic Encode.
Bob and Alice then perform Basic Decode and agree on the key value ĝab:

Construction 4. (Steganographic Key Exchange)

Procedure SKE EncodeA:
Input: primes P,Q, h, g ∈ Z∗P of order rQ
repeat:

sample a← U(ZP−1)
until MSB of ga mod P equals 0
Let ca = all bits of ga except MSB
Output: Basic Encode(ca, h, k)

Procedure SKE DecodeA:
Input: Stegotext s1, s2, . . . , sl, exponent a
Let cb = Basic Decode(s1, s2, . . . , sl)
Output: crab mod P = ĝab

Lemma 2. Let f be ε-biased on CA→B,hA and CB→A,hB for all hA, hB. Then for any warden W ∈
W(t), we can construct a DDH adversary A where Advddh

ĝ,P,Q(A) ≥ 1
4Advske

SKE(W,k) − ε|P |. The
running time of A is at most t+O(k|P |).

Proof. (Sketch) Define r̂ to be the least element such that rr̂ = 1 mod Q. The algorithm A works
as follows. Given elements (ĝa, ĝb, ĝc) of the subgroup of order Q, we uniformly choose elements
ka, kb ← Zr, and set ca = (ĝa)r̂gkaQ, and cb = (ĝb)r̂gkbQ. If MSB(ca) = MSB(cb) = 0, we then
return W (Basic Encode(ca, hA, k), Basic Encode(cb, hB, k), ĝc), otherwise we return 0. Notice that
the key computed by SKE Decode would be crba =

(
(ĝa)r̂gkaQ

)rb = (ĝab)rr̂grQkab = ĝab.
The decrease in W ’s advantage comes from the fact that A excludes some elements of Z∗P by

sampling to get the MSB = 0, but we never exclude more than 1/2 of the cases for either ca or cb.
The ε|P | difference follows from Proposition 2 and the fact that ca,cb are uniformly distributed on
U|P |−1.



Theorem 3. If f is ε-biased on CA→B,hA and CB→A,hB for all hA, hB, then

InSecske
SKE,C(t, k) ≤ 4ε|P |+ 4InSecddh

ĝ,P,Q(t+O(k|P |))) .

7 Chosen-Stegotext Attacks

We now introduce a security condition analogous to adaptive chosen ciphertext security for en-
cryption schemes (IND-CCA2), SS-CSA. We will construct a stegosystem which is SS-CSA-secure in
the Random Oracle model, for any channel which is efficiently sampleable: that is, for which there
exists a PPT C such that for all h, C(h;Uk) and Ch are indistinguishable.

Definition. We formally define the oracle distributions STcsa, CTcsa as follows: First, draw (PK,SK)←
SG(1k), and set φ = {}. Respond to queries using these programs:

STcsa (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample s← SE(PK,m, h)
Set φ = φ ∪ {(s, h)}
return s

else
If (m,h) ∈ φ return “”
else return SD(SK,m, h)

CTcsa (b ∈ {enc, dec},m, h)
if(b = enc) then:

Sample s← C|SE(PK,m,h)|
h

Set φ = φ ∪ {(s, h)}
return s

else
If (m,h) ∈ φ return “”
else return ⊥

Thus, in a chosen-stegotext attack, Ward may ask Alice to encode any (message, history) pair of
his choosing, as often as he likes, and may query Bob on any pair (s, h) where s was not a result of
an encoding query for history h. Notice that if Ward can ask Bob to decode any message output
by Alice for the same history it was encoded with, he can detect the use of steganography between
Alice and Bob; this is why we do not allow Ward to query Bob on such stegotexts. This restriction
is roughly analogous to the standard restriction that an adaptive chosen-ciphertext attacker may
not query his decryption oracle on the challenge ciphertext. Advantage and insecurity for SS-CSA
are defined analogously to SS-CXO, except that we count encoding and decoding queries separately
(as qe and qd) as well as counting the number of queries made to random oracles.

Construction. We assume that πA, πB are elements of trapdoor one-way permutation family
Πk, where Alice knows π−1

A and Bob knows π−1
B . In addition, we assume all parties have access

to random oracles F : {0, 1}∗ → {0, 1}k, G : {0, 1}∗ → {0, 1}k, H1 : {0, 1}k → {0, 1}∗, and
H2 : {0, 1}∗ → {0, 1}k. The following construction slightly modifies techniques from [4], using the
random oracles H1 and H2 with πB to construct a pseudorandom non-malleable encryption scheme
and the oracle F in conjunction with πA to construct a strongly unforgeable signature scheme.

Construction 5. (Chosen Stegotext Security)

Procedure UEncodeG:
Input: c ∈ {0, 1}l, r ∈ {0, 1}k, h
for i = 1 . . . l do

Let j = 0
repeat:

set si = C(h;G(h, r, c, j))
increment j

until f(si) = ci OR (j > k)
set h = (h, si)

Output: s1, s2, . . . , sl

Procedure CSA EncodeF,G,H :
Input: m1 · · ·m`, h, π−1

A , πB
Choose r ← Uk
Let σ = π−1

A (F (r,m, h))
Let e = H1(r)⊕ (m,σ)
Let τ = H2(r,m, h)
Let y = πB(r)
Let c = y||e||τ
Output: UEncodeG(c, r, h)

Procedure CSA DecodeF,G,H :
Input: s1, . . . , sl, h, πA, π−1

B
Let c = Basic Decode(s1, . . . , sl)
Parse c as y||e||τ .
Set r = π−1

B (y).
If s 6= UEncodeG(c, r, h) return ⊥.
Let (m,σ) = e⊕H1(r)
If τ 6= H2(r,m, h) return ⊥.
If πA(σ) 6= F (r,m, h) return ⊥.
Output: m



Theorem 4. If f is ε-biased for C, then

InSeccsa
CSA,C(t, qe, qd, qF , qG, qH1 , qH2 , l, k) ≤ (2qe + qF )InSecow

π (t′, k) + (l + 3qek)ε+ (q2
e + 2qd)/2k ,

where t′ ≤ t+ (qG + qF + qH1 + qH2)(qe + qd)Tπ + k(l+ 3qek)TC, Tπ is the time to evaluate members
of π, and TC is the running time of C.

Intuitively, this stegosystem is secure because the encryption scheme employed is non-malleable,
the signature scheme is strongly unforgeable, and each triple of hiddentext, history, and random-
bits has a unique valid stegotext, which contains a signature on (m,h, r). Thus any adversary
making a valid decoding query which was not the result of an encoding query can be used to forge
a signature for Alice — that is, invert the one-way permutation πA. The full proof is omitted for
space considerations; see Appendix B for details.

We conjecture that the cryptographic assumptions used here can be weakened — in particular,
a random oracle is not necessary given a public-key encryption scheme which satisfies IND$-CPA
and is non-malleable2, and a signature scheme which is strongly unforgeable. However, it seems
challenging to prevent our motivating attack without assuming ability to efficiently sample the
channel.

8 Discussion and Open Problems

Need for a PKI. A potential stumbling block for public-key steganography is the need for a
system which allows Alice and Bob to publish public keys for encryption and signatures without
raising suspicion. The most likely source of a resolution to this issue is the existence of a global
public-key infrastructure which publishes such public keys for every party in any case. In many cases
(those modeled by the chosen hiddentext attack), however, it may be Alice who is trying to avoid
suspicion while it is Bob who publishes the public key. For example Alice may be a government
employee who wishes to leak a story and Bob a newspaper reporter, who may publish his public
key daily.

In case Alice and Bob are both trying to avoid suspicion, it may be necessary to perform SKE
instead. Even in this case, there is a need for a one-bit “secret channel” which alerts Bob to the fact
that Alice is attempting key exchange. However, as long as Bob and Alice assume key exchange is
occurring, it is easy to check at completion that it has indeed ocurred by using Basic Encode to
exchange the messages FK(A, hA), FK(B, hB) for F a pseudorandom function.

Stegosystems with backdoors. Suppose we wish to design steganography software which will
be used as a black box by many users. Then as long as there is some entropy in the stegosystem of
choice, we can use public-key steganography to implement a backdoor into the stegosystem which
is provably undetectable via input/output behavior, by using the encoding routine as an oracle for
Construction 2, with a fixed hiddentext (1k, for instance). This will make it possible, with enough
intercepted messages, to detect the use of the steganography software. If a total break is desired
and the software implements private-key steganography, we can replace 1k by the user’s private
key.

Relationship to PKC: Complexity-theoretic implications. The definition of a SS-CHA
secure public-key stegosystem already implies semantic security, so we have that if secure public-
key stegosystems exist, then secure public-key cryptography exists; and likewise it is clear that
SS-CSA security implies non-malleability. In contrast to the private-key results of [13], we are
2 We are unaware of an encryption scheme in the standard model satisfying this requirement: nonmalleable encryption

schemes following the Naor-Yung paradigm [18, 10, 21, 15] are easily distinguishable from random bits, and the
schemes of Cramer and Shoup [7, 8] all seem to generate ciphertexts which are elements of recognizable subgroups.



not aware of a general result showing that the existence of any semantically secure public-key
cryptosystem implies the existence of secure public-key steganography. However, our results allow
construction of provably secure public-key steganography based on the security of any popular
public-key cryptosystem.
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A Proof of Chosen Exactly-One security

Proof. Let W ∈ W(t, q, l). We will show that W must either forge a signature or distinguish the
output of E from random bits. We will abuse notation slightly and denote WSTcxo by WSE,SD, and
WCTcxo by W C,⊥. Then we have that

Advcxo
CXO,C(W,k) =

∣∣∣Pr[WSE,SD = 1]− Pr[W C,⊥ = 1]
∣∣∣ .

Consider the “hybrid” distribution which results by answering encoding queries using CXO Encode
but answering all decoding queries with ⊥. (We denote this oracle by (SE,⊥))

We construct a EUF-CMA adversary Af which works as follows: given KV , and a signing oracle
for KS , choose (PK,SK)← GE(1k); use the signing oracle and EPK , DSK to emulate CXO Encode
and CXO Decode to W . If W ever makes a query to CXO Decode which does not return ⊥ then Af

halts and returns the corresponding ((m,h), σ) pair, otherwise Af runs until W halts and returns
(0, 0). If we let F denote the event that WSE,SD submits a valid decoding query to CXO Decode,
then we have that Advcma

(GS ,S,V )(Af ) = Pr[F ].

We also construct a IND$-CPA adversary Ad which works as follows: given an encryption oracle,
choose (KS ,KV ) ← GS(1k), use KS and the encryption oracle to emulate CXO Encode to W , and
respond to any decoding queries with ⊥. Ad returns the output of W . Note that Advcpa

E (Ad) +
`(l + q`σ)ε ≥

∣∣Pr[WSE,⊥ = 1]− Pr[W C,⊥ = 1]
∣∣, which follows from Theorem 1.

Then we have the following inequalities:

Advcxo
CXO,C(W ) =

∣∣∣Pr[WSE,SD = 1]− Pr[W C,⊥ = 1]
∣∣∣

≤
∣∣∣Pr[WSE,SD = 1]− Pr[WSE,⊥ = 1]

∣∣∣+
∣∣∣Pr[WSE,⊥ = 1]− Pr[W C,⊥ = 1]

∣∣∣
≤
∣∣∣Pr[WSE,SD = 1]− Pr[WSE,⊥ = 1]

∣∣∣+ Advcpa
E (Ad) + `(l + q`σ)ε

≤ Advcma
(GS ,S,V )(Af ) + Advcpa

E (Ad) + `(l + q`σ)ε

Where the last line follows because (let D denote the event WSE,SD = 1, and notice that D|F ≡
WSE,⊥ = 1):

∣∣∣Pr[D]− Pr[WSE,⊥ = 1]
∣∣∣ =

∣∣∣Pr[D|F ] Pr[F ] + Pr[D|F ] Pr[F ]− (Pr[WSE,⊥ = 1])
∣∣∣

=
∣∣∣Pr[D|F ] Pr[F ] + Pr[WSE,⊥ = 1](1− Pr[F ])− (Pr[WSE,⊥ = 1])

∣∣∣
=
∣∣Pr[F ](Pr[D|F ]− Pr[D|F ])

∣∣
≤ Pr[F ]
= Advcma

(GS ,S,V )(Af )

The theorem follows by the definition of insecurity, since both Ad and Af run in time at most
t+O(kl).



B Proof of Chosen-Stegotext Security

We define the following sequence of hybrid oracle distributions:

1. P0(b,m, h) = CTcsa, the covertext oracle.
2. P1(b,m, h) responds to dec queries as in P0, and responds to enc queries using CSA EncodeF,G,H

but with calls to UEncodeG replaced by calls to Basic Encode.
3. P2(b,m, h) responds to dec queires as in P1, and responds to enc queries using CSA EncodeF,G,H .
4. P3(b,m, h) = STcsa, the stegotext oracle.

We are given a CSA attacker W ∈ W(t, qe, qd, qF , qH , qH1 , qH2 , l) and wish to bound his ad-
vantage. Notice that Advcsa

CSA,C(W,k) ≤ |Pr[WP0(1k) = 1] − Pr[WP1(1k)]| + |Pr[WP1(1k) =
1] − Pr[WP2(1k) = 1]| + |Pr[WP2(1k) = 1] − Pr[WP3(1k) = 1]|. Hence, we can bound the ad-
vantage of W by the sum of its advantages in distinguishing the successive hybrids. For hybrids
P,Q we will denote this advantage by AdvP,Q(W,k) = |Pr[WP(1k) = 1]− Pr[WQ(1k) = 1]|.

Lemma 3. AdvP0,P1(W,k) ≤ qeInSecow
Π (t′, k) + 2−k(q2

e/2− qe/2) + (l + 3qek)ε

Proof. Assume WLOG that Pr[WP1(1k) = 1] > Pr[WP0(1k) = 1]. Let Er denote the event that,
when W queries P1, the random value r never repeats, and let Eq denote the event that W never
makes random oracle queries of the form H1(r) or H2(r, ∗, ∗) for an r used by CSA EncodeF,G,H ,
and let E ≡ Er ∧ Eq. Then:

Pr[WP1(1k) = 1]− Pr[WP0(1k) = 1] = Pr[WP1(1k) = 1|E](1− Pr[E]) + Pr[WP1(1k) = 1|E] Pr[E]

− Pr[WP0(1k) = 1]

= Pr[E]
(

Pr[WP1(1k) = 1|E]− Pr[WP1(1k) = 1|E]
)

+
(

Pr[WP1(1k) = 1|E]− Pr[WP0(1k) = 1]
)

≤ Pr[E] + (l + 3qek)ε

≤ Pr[Er] + Pr[Eq] + (l + 3qek)ε

≤ 2−k
qe(qe − 1)

2
+ Pr[Eq] + (l + 3qek)ε ,

because if r never repeats andW never queriesH1(r) orH2(r, ∗, ∗) for some r used by CSA EncodeF,G,H ,
then W cannot distinguish between the ciphertexts passed to Basic Encode and random bit strings.

It remains to bound Pr[Eq]. Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way
permutation adversary A against πB which is given a value πB(x) and uses W in an attempt to
find x, so that A succeeds with probability at least (1/qe) Pr[Eq]. A picks (πA, π−1

A ) from Πk and
i uniformly from {1, . . . , qe}, and then runs W answering all its oracle queries as follows:

– enc queries are answered as follows: on query j 6= i, respond using CSA EncodeF,G,H but with
calls to UEncodeG replaced by calls to Basic Encode. On the i-th query respond with s =
Basic Encode(πB(x)||e1||τ1, h) where e1 = h1 ⊕ (m,σ1) and h1, σ1, τ1 are chosen uniformly at
random from the set of all strings of the appropriate length (|e1| = |m|+ k and |τ1| = k), and
set φ = φ ∪ {(s, h)}.

– dec queries are answered using CTcsa.
– Queries to G,F,H1 and H2 are answered in the standard manner: if the query has been made

before, answer with the same answer, and if the query has not been made before, answer with
a uniformly chosen string of the appropriate length. If a query contains a value r for which
πB(r) = πB(x), halt the simulation and output r.



It should be clear that Pr[A(πB(x)) = x] ≥ 1
qe

(Pr[Eq]).

Lemma 4. AdvP1,P2(W,k) ≤ qeInSecow
Π (t′, k) + 2−k(q2

e/2− qe/2)

Proof. Assume WLOG that Pr[WP2(1k) = 1] > Pr[WP1(1k) = 1]. Denote by Er the event that,
when answering queries for W , the random value r of CSA EncodeF,G,H never repeats, and by Eq
the event that W never queries G(∗, r, πB(r)||∗, ∗) for some r used by CSA EncodeF,G,H , and let
E ≡ Er ∧ Eq. Then:

Pr[WP2(1k) = 1]− Pr[WP1(1k) = 1] =
(

Pr[WP2(1k) = 1|E] Pr[E] + Pr[WP2(1k) = 1|E] Pr[E]
)

−
(

Pr[WP1(1k) = 1|E] Pr[E] + Pr[WP1(1k) = 1|E] Pr[E]
)

= Pr[E]
(

Pr[WP2(1k) = 1|E]− Pr[WP1(1k) = 1|E]
)

≤ Pr[E]

≤2−k
qe(qe − 1)

2
+ Pr[Eq]

Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way permutation adversary A against
πB which is given a value πB(x) and uses W in an attempt to find x. A picks (πA, π−1

A ) from Πk

and i uniformly from {1, . . . , qE}, and then runs W answering all its oracle queries as follows:

– enc queries are answered as follows: on query j 6= i, respond using CSA EncodeF,G,H . On the i-th
query respond with s = UEncodeG(πB(x)||e1||τ1, r1, h) where e1 = h1⊕ (m,σ1) and h1, σ1, τ1, r1

are chosen uniformly at random from the set of all strings of the appropriate length (|e1| = |m|+k
and |τ1| = k), and set φ = φ ∪ {(s, h)}.

– dec queries are answered using CTcsa.
– Queries to G,F,H1 and H2 are answered in the standard manner: if the query has been made

before, answer with the same answer, and if the query has not been made before, answer with
a uniformly chosen string of the appropriate length. If a query contains a value r for which
πB(r) = πB(x), halt the simulation and output r.

It should be clear that Pr[A(πB(x)) = x] ≥ 1
qe

(Pr[Eq]).

Lemma 5. AdvP2,P3(W,k) ≤ qF InSecow
Π (t′, k) + qd/2k−1 + qe/2k

Proof. Given W ∈ W(t, qe, qd, qF , qG, qH1 , qH2 , l) we construct a one-way permutation adversary A
against πA which is given a value πA(x) and uses W in an attempt to find x. A chooses (πB, π−1

B )
from Πk and i uniformly from {1, . . . , qF }, and then runs W answering all its oracle queries as
follows:

– enc queries are answered using CSA EncodeF,G,H except that σ is chosen at random and F (r,m, h)
is set to be πA(σ). If F (r,m, h) was already set, fail the simulation.

– dec queries are answered using CSA DecodeF,G,H , with the additional constraint that we reject
any stegotext for which there hasn’t been an oracle query of the form H2(r,m, h) or F (r,m, h).

– Queries to G,F,H1 and H2 are answered in the standard manner (if the query has been made
before, answer with the same answer, and if the query has not been made before, answer with a
uniformly chosen string of the appropriate length) except that the i-th query to F is answered
using πA(x).

A then searches all the queries that W made to the decryption oracle for a value σ such that
πA(σ) = πA(x). This completes the description of A.



Notice that the simulation has a small chance of failure: at most qe/2k. For the rest of the proof, we
assume that the simulation doesn’t fail. Let E be the event that W makes a decryption query that
is rejected in the simulation, but would not have been rejected by the standard CSA DecodeF,G,H .
It is easy to see that Pr[E] ≤ qd/2k−1. Since the only way to differentiate P3 from P2 is by making
a decryption query that P3 accepts but P2 rejects, and, conditioned on E, this can only happen by
inverting πA on a some F (r,m, h), we have that:

AdvP2,P3(W,k) ≤ qF InSecow
Π (t′, k) + qd/2k−1 + qe/2k

C Negligibly biased functions for any channel

Our constructions require the existence of a function which is unbiased for Ch for every h which the
warden W chooses. It is easy to see that for infinitely many channels, no such f exists. This is not
a difficulty for our protocols, however, because we can compile any channel C into a new channel
C(k) which admits an efficient function which has bias negligible in k.

Let l(k) = ω(log k). Then the channel C(k) is simply a distribution on sequences of documents
which are elements of Dl(k) and the marginal distributions C(k)

h are simply Cl(k)
h . The minimum

entropy requirement from Section 3 then gives us that for any h which has non-zero probability,
H∞(C(k)

h ) = ω(log k).
Let h1, h2, ..., hm be any sequence of histories which all have non-zero probability under C(k)

and let f : {0, 1}m(k) ×D × {0, 1} be a universal hash function. Let Y, Z ← Um(k), and Di ← C(k)
hi

.
Let L(k) = miniH∞(Di), and note that L(k) = ω(log k). Then the “Leftover Hash Lemma” (see,
e.g., [12]) implies that

| Pr
Y,Di

[(Y, fY (D1), ..., fY (Dm)) = (y, b1, ..., bn)]− Pr
Z,B←{0,1}m

[(Z,B) = (y, b1, ..., bn)]| ≤ m2−L(k)/2+1 .

from which it is immediate that if we choose Y ← Um(k) once and publicly, then for all 1 ≤ i ≤ m,
fY will have negligible bias for Chi except with negligible probability.

The same approach can be applied in the case that f is a pseudorandom function, since a
random function will have neglible bias for C(k)

hi
except with negligible probability, and testing for

any specific non-negligible bias can be accomplished by a polynomial time oracle machine. Note
that in this scenario, we only need the pseudorandomness of f to prove that it is unbiased, and so
it is permissible to publish a single choice of key once and for all.

D IND$-CPA Public-Key Encryption

We show how to construct IND$-CPA public-key encryption schemes from a variety of well-established
cryptographic assumptions.

Definition. A trapdoor one-way predicate family P is a sequence {Pk}k, where each Pk is a set
of efficiently computable predicates p : Dp → {0, 1}, along with an algorithm G(1k) that samples
pairs (p, Sp) uniformly from Pk; Sp is an algorithm that, on input b (a bit) samples x uniformly
from Dp subject to p(x) = b. For a PPT A running in time t(k), denote the advantage of A against
P by

Advtp
P (A, k) = Pr

(p,Sp)←G(1k),x←Dp
[A(x, Sp) = p(x)] .

Define the insecurity of P by InSectp
P (t, k) = maxA∈A(t)

{
Advtp

P (A, k)
}

, where A(t) denotes the
set of all adversaries running in time t(k). We say that P is a trapdoor one-way predicate family if
for every probabilistic polynomial-time (PPT) A, Advtp

P (A, k) is negligible in k.



IND$-CPA public-key encryption schemes can be constructed from any primitive which implies
trapdoor one-way predicates p with domains Dp satisfying one of the following conditions:

– Dp is computationally or statistically indistinguishable from {0, 1}poly(k): in this case it follows
directly that encrypting the bit b by sampling from p−1(b) yields an IND$-CPA scheme. The
results of Goldreich and Levin imply that such predicates exist if there exist trapdoor one-way
permutations on {0, 1}k, for example.

– Dp has an efficiently recognizable, polynomially dense encoding in {0, 1}poly(k); in this case,
we let q(·) denote the polynomial such that every Dp has density at least 1/q(k). Then to
encrypt a bit b, we draw ` = kq(k) samples d1, . . . , d` ← Upoly(k); let i be the least i such
that di ∈ Dp; then transmit d1, . . . , di−1, p

−1(b), di+1, . . . , d`. (This assumption is similar to
the requirement for common-domain trapdoor systems used by [6], and all (publicly-known)
public-key encryption systems seem to support construction of trapdoor predicates satisfying
this condition.)

Stronger assumptions allow construction of more efficient schemes. Here we will construct
schemes satisfying IND$-CPA under the following assumptions: trapdoor one-way permutations
on {0, 1}k (Section D.1), the RSA assumption (D.2), and the Decisional Diffie-Hellman assumption
(D.3). Notice that although both of the latter two assumptions imply the former through standard
constructions, the standard constructions exhibit considerable security loss which can be avoided
by our direct constructions.

D.1 Efficient Probabilistic Encryption

The following “EPE” encryption scheme is described in [11], and is a generalization of the protocol
given by [3]. When used in conjunction with a family of trapdoor one-way permutations on domain
{0, 1}k, it is easy to see that the scheme satisfies IND$-CPA:

Construction 6. (EPE Encryption Scheme)

Procedure Encrypt:
Input: plaintext m, trapdoor OWP π
Sample x0, r ← Uk
let l = |m|
for i = 1 . . . l do

set bi = xi−1 � r
set xi = f(xi−1)

Output: xl, r, b⊕m

Procedure Decrypt:
Input: Ciphertext x, r, c, trapdoor π−1

let l = |c|, xl = x
for i = l . . . 1 do

set xi−1 = π−1(xi)
set bi = xi−1 � r

Output: c⊕ b

IND$-CPA-ness follows by the pseudorandomness of the bit sequence b1, . . . , bl generated by the
scheme and the fact that xl is uniformly distributed in {0, 1}k.

D.2 RSA-based construction

The RSA function EN,e(x) = xe mod N is a trapdoor one-way permutation family with dense
domains, and can be transformed through standard constructions to a trapdoor OWP family on
domain {0, 1}k, but such transformation incurs a heavy security loss. Here we give a direct appli-
cation of the previous scheme which uses Young and Yung’s Probabilistic Bias Removal Method
(PBRM) to ensure that xl from the previous scheme is uniformly distributed on {0, 1}k rather than
ZN :



Construction 7. (Bias-corrected RSA-based EPE Encryption Scheme)

Procedure Encrypt:
Input: plaintext m; public key N, e
let k = |N |, l = |m|
repeat:

Sample x0 ← Z
∗
N

for i = 1 . . . l do
set bi = xi−1 mod 2
set xi = xei−1 mod N

sample c← U1

until (xl ≤ 2k −N) OR c = 1
if (x1 ≤ 2k −N) and c = 0 set x′ = x
if (x1 ≤ 2k −N) and c = 1 set x′ = 2k − x
Output: x′, b⊕m

Procedure Decrypt:
Input: Ciphertext x′, c; private key N, d
let l = |c|, k = |N |
if (x′ > N) set xl = x′

else set xl = 2k − x′
for i = l . . . 1 do

set xi−1 = xdi mod N
set bi = xi−1 mod 2

Output: c⊕ b

The IND$-CPA security of the scheme follows from the correctness of PBRM and the fact that
the least-significant bit is a hardcore bit for RSA. Notice that the expected number of repeats in
the encryption routine is at most 2.

D.3 DDH-based construction

Let E(·)(·), D(·)(·) denote the encryption and decryption functions of a private-key encryption
scheme satisfying IND$-CPA, keyed by κ-bit keys, and let κ ≤ k/3 (private-key IND$-CPA encryption
schemes have appeared in the literature; see, for instance, [13]). Let Hk be a family of pairwise-
independent hash functions h : {0, 1}k → {0, 1}κ. We let P be a k-bit prime (so 2k−1 < P < 2k),
and let P = rQ+ 1 where (r,Q) = 1 and Q is also a prime. Let g generate Z∗P and ĝ = gr mod P
generate the unique subgroup of order Q. The security of the following scheme follows from the
Decisional Diffie-Hellman assumption, the leftover-hash lemma, and the security of (E,D):

Construction 8. (ElGamal-based random-bits encryption)

Procedure Encrypt:
Input: plaintext m; public key g, ĝa, P
Sample h← Hk

repeat:
Sample b← ZP−1

until (gb mod P ) ≤ 2k−1

set K = h((ĝa)b mod P )
Output: h, (gb mod P ) mod 2k−1, EK(m)

Procedure Decrypt:
Input: Ciphertext h, s, c; private key a, P,Q
let r = (P − 1)/Q
set K = h(sra mod P )
Output: DK(c)

The security proof considers two hybrid encryption schemes: H1 replaces the value (ĝa)b by a
random element of the subgroup of order Q, ĝc, and H2 replaces K by a random draw from {0, 1}κ.
Clearly distinguishing H2 from random bits requires distinguishing some EK(m) from random bits.
The Leftover Hash Lemma gives that the statistical distance between H2 and H1 is at most 2−κ.
Finally, any q-query distinguisher for H1 from the output of Encrypt with advantage ε can be used
to solve the DDH problem with advantage at least ε/2q, using the same technique from Lemma 2
and a standard hybrid argument.


