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Abstract. A compact mesh architecture for supporting the relation col-
lection step of the number field sieve is described. Differing from TWIRL,
only isolated chips without inter-chip communication are used. Accord-
ing to a preliminary analysis for 768-bit numbers, with a 0.13 µm process
one mesh-based device fits on a single chip of ≈(4.9 cm)2—the largest
proposed chips in the TWIRL cluster for 768-bit occupy ≈(6.7 cm)2.
A 300 mm silicon wafer filled with the mesh-based devices is ≈ 6.3 times
slower than a wafer with TWIRL clusters, but due to the moderate chip
size, lack of inter-chip communication, and the comparatively regular
structure, from a practical point of view the mesh-based approach might
be as attractive as TWIRL.
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1 Introduction

Initiated by Bernstein’s paper [Ber01], in the last few years several proposals for
speeding-up the linear algebra step of the number field sieve (NFS) by means of
specialized hardware have been put forward. While Bernstein’s original proposal
relied on the use of a parallel sorting algorithm, Lenstra et al. derived an im-
proved mesh architecture that relies on a parallel routing algorithm [LSTT02].
Finally, in [GS03b] distributed variants of the proposals in [Ber01,LSTT02] are
discussed where the main focus is on deriving a design that can be realized with
current standard technology. In summary, building a device that performs the
linear algebra step of the NFS for 768- or 1024-bit numbers within a few hours
must be considered as doable with current technology.

Using the words from [LSTT02], one can “conclude that from a practical
standpoint, the security of RSA relies exclusively on the hardness of the relation
collection step of the number field sieve.” Thus, it is no surprise that several
attempts have been made to apply dedicated hardware to speed-up the relation
collection step of the NFS, too. In particular, the TWINKLE device [Sha99,LS00]
and the mesh-based design of [GS03a] can be seen in this context. However, none
of these devices was practically capable of coping with the relation collection step
of 1024-bit numbers. A significant step forward has been achieved by Shamir and



Tromer [ST03] recently: the TWIRL device they describe could in principle com-
plete the sieving part of the NFS for 1024-bit numbers in less than a year by
means of current technology. However, already for 768-bit numbers chip sizes of
up to ≈(6.7 cm)2 (with an irregular layout) have been proposed. Although the
proposed TWIRL parameters are not optimized for chip size, actually manufac-
turing a TWIRL cluster seems extraordinary challenging. For 1024-bit numbers
a TWIRL cluster including a wafer-sized silicon chip has been proposed; thus,
from a practical point of view the question arises, whether it is possible to do
with more regular and smaller chips. Also, avoiding inter-chip communication
seems desirable.

In this contribution we discuss a different design which is based on a routing
mesh running at 500 Mhz (instead of 1 GHz in TWIRL, where the time-critical
operations are simpler). For 768-bit numbers our proposal consists of a mesh
of 256× 256 almost identical processing units. The layout is rather regular and
the estimated silicon area for a complete mesh is about (4.9 cm)2. Counting
processing time per wafer, the estimated time needed for the sieving step with
768-bit numbers is about 6.3 times higher than estimated in [ST03] for TWIRL.
However, due to the simpler design, manufacturing the device and applying it
at least to 768-bit does not seem unrealistic. For 1024-bit numbers we cannot
give a reliable answer yet, but as the design presented here allows for a rather
compact storage of the factor bases—a critical point in TWIRL—exploring the
1024-bit case in more detail is certainly worthwhile.

2 Preliminaries

2.1 The sieving part of the NFS

A standard reference for an introduction to the number field sieve is [LHWL93].
Here we only recall those aspects of the sieving step which are relevant for
describing our device.

In the first step of the NFS two univariate polynomials f1(x), f2(x) ∈ Z[x]
are determined that share a common root m modulo n:

f1(m) ≡ f2(m) ≡ 0 (mod n)

Typically, f1(x) is of degree d ≥ 5 and f2(x) is monic and linear (i. e., f2(x) =
x − m). From these two polynomials the bivariate and homogeneous polyno-
mials F1(x, y), F2(x, y) ∈ Z[x, y] are derived via F1(x, y) := yd · f1(x/y) resp.
F2(x, y) := y · f2(x/y). Now everything related to f1(x) resp. F1(x, y) is said
to belong to the algebraic side, and everything related to f2(x) resp. F2(x, y)
is refered to as the rational side. In particular, for given smoothness bounds
B1, B2 ∈ N0 the sets

Pi := {(p, r) : fi(r) ≡ 0 (mod p), p prime, p < Bi, 0 ≤ r < p} ⊆ N2 (i = 1, 2)

are refered to as algebraic and rational factor base, respectively. Following [ST03],
for the factorization of a 768-bit number, we assume B1 = 109 and B2 = 108.
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Throughout the relation collection step, pairs of coprime integers (a, b) ∈
Z × N are to be found, such that the values F1(a, b) and F2(a, b) are smooth.
This means that both F1(a, b) and F2(a, b) factor over the primes < B1 resp.
< B2, except for a small number of prime factors; the precise number of ‘extra’
prime factors on the rational and algebraic side is not necessarily identical. The
actual computation of (a, b)-pairs where both F1(a, b) and F2(a, b) are smooth
can be performed by sieving over a rectangular region −A ≤ a < A, 0 < b ≤ B
where A,B ∈ N. For organizing this sieving, different techniques are available;
here we focus on so-called line sieving which is outlined in Figure 1. At this
the threshold bounds Ti correspond to the bitlength of the remaining cofactor
on the algebraic resp. rational side. These bounds have to be updated several
times throughout the sieving. In an actual implementation the values log2(p) are
usually replaced by an integer approximation. Also the use of base 2-logarithms
is not mandatory; in analogy to [ST03], subsequently we use a 10-bit counter
for summing up approximations dlog√2(p)e. Finally, note that in the last step
of the main loop in Figure 1 it is computationally too expensive to identify the
factors of Fi(a, b) through a simple trial-division by the primes in the respective
factor base. To cope with this problem the sieving mesh described below reports
prime factors of Fi(a, b) that have been found.

2.2 Clockwise transposition routing

An important algorithmic tool used in the sieving device described below is
a modification of a fast parallel routing algorithm described in [LSTT02] in
the context of fast matrix-vector multiplication. We start by recalling the main
ingredients of this clockwise transposition routing:

– the hardware platform is a mesh of (rather simple) processing units where
each unit is connected to its horizontal and vertical neighbours.

– In each step of the algorithm a processing unit holds no more than one packet
that is to be routed; only one packet can be sent and received per step.

– At the beginning of the algorithm some mesh nodes contain a data packet
(the other nodes contain a nil value). Along with each data packet the coor-
dinates of a processing unit in the mesh, the so-called target node, are stored,
and the goal of the algorithm is to route all packets to the respective target.

b← 0
repeat
b← b+ 1
for i← [1, 2]
si(a)← 0 (∀a : −A ≤ a < A)
for (p, r)← Pi
si(br + kp)← si(br + kp) + log2(p) (∀k : −A ≤ br + kp < A)

for a← {−A ≤ a < A : gcd(a, b) = 1, s1(a) > T1, and s2(a) > T2}
check if both F1(a, b) and F2(a, b) are smooth

until enough pairs (a, b) with both F1(a, b) and F2(a, b) smooth are found

Fig. 1. line sieving
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– The actual routing is done by repeating the following four steps until the
mesh is ‘empty’, i. e., all packets have reached their target node (where a
packet is removed from the mesh):
1. Each node located on an odd row compares its packet with the node

above it (if any). The packets are exchanged if and only if the distance-
to-target of the non-nil value that vertically is farthest away from its
target node is reduced in this way.

2. Each node located on an odd column compares its packet with the node
to its right (if any). The packets are exchanged if and only if the distance-
to-target of the non-nil value that horizontally is farthest away from its
target node is reduced in this way.

3. Identical to the first step with ‘above’ replaced by ‘below’.
4. Identical to the second step with ‘right’ replaced by ‘left’.

A theoretical analysis of this algorithm is still lacking, but experimental results
demonstrate its efficiency: e. g., for the situation considered in [LSTT02], the
running time of the algorithm did not exceed 2M steps, when dealing with an
M ×M mesh. In the application below, no ‘packet-cancellation’ (see [LSTT02])
is used and several parts of the original algorithm have been modified. Again,
simulations indicate that the resulting algorithm is rather efficient. However,
analogously as in [LSTT02], we cannot provide a theoretical analysis of our
approach at the moment.

Although we never encountered an infinite loop in our simulations, it can in
principle even happen that our routing algorithm for certain parameter choices
does not terminate. But this is of no practical concern: in the sieving procedure
described later, only a certain period of time is alloted for sieving a particular
range of numbers, and in the (rare) case that the routing cannot be completed
within this time limit, say due to an infinite loop, only some (a, b)-candidates of
that sieving interval are lost. In contrast to the linear algebra step of the NFS,
where an incorrect intermediate result can have devastating consequences, the
sieving process is rather robust with respect to such errors.

3 Adapting the Routing Algorithm

Subsequently, we will deal with a mesh of size M ×M = 2m × 2m; for 768-bit
numbers we can think of m = 8. Consequently, the largest distance a packet may
have to travel during the routing is 2 · (M−1) = 2M−2. As a first modification,
we want to ‘connect’ the borders of the mesh to get a torus topology and thereby
reduce this maximal distance to 2 · (M/2) = M .

3.1 Using a torus topology

Having in mind an actual mesh of processing units, it is not desirable to install
physical connections between the horizontal resp. vertical borders of the mesh,
as the wires used for the ‘wrap around’ had to cross a length of at least M − 2
processing units. Instead, a standard trick can be used to derive a layout where
connecting wires never cross more than one processing unit:
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1. The 2m × 2m processing units are arranged in a square, and we denote the
ith column in this square by ci (1 ≤ i ≤ 2m): c1|c2|c3|c4| . . . |c2m−2|c2m−1|c2m

2. Reversing the order of the columns c2m−1+1, . . . , c2m followed by applying a
perfect shuffle yields the desired column positions:

c1|c2m |c2|c2m−1| . . . |c2m−1+2|c2m−1 |c2m−1+1

3. For implementing the vertical wrap around now the same trick is applied to
the rows of the resulting arrangement.

This rearrangement of the processing units is ‘just’ for the ease of implementation
and helps to circumvent the handling of extremely unbalanced running times of
signals. Thus, in the sequel when discussing algorithmic aspects and the labeling
of processing units used in a computation we can ignore this implementation
detail and think of an ordinary mesh architecture with wrapped-around borders.

3.2 Finding the route to a target node

Each sieving line is split into subintervals of length S, and the mesh will process
these subintervals one by one. For 768-bit numbers, we can think of S = 224, thus
in a mesh of size 256×256 each processing unit will be in charge of 256 = 224−16

consecutive sieve positions, and we focus on this parameter choice.
When preparing a packet that is to be routed in our sieving procedure, we are

given a 24-bit number r that represents a non-negative integer 0 ≤ r < S, and
we use only this value to identify the corresponding packet’s route to its target
node. W. l. o g. we can choose the start s0 of the sieving subinterval such that
256 | s0, i. e., once the packet containing r arrived at the processing unit that
processes the range {s0 + i ·256, . . . , s0 + i ·256+255} (with i ∈ {0, . . . , 216−1}),
the least-significant 8 bit of r determine which of the sieve positions of that
processing unit has to be addressed. Thus, we want to interprete the 16-bit
number i, that indicates the number of the processed subinterval, as (x, y)-
coordinate (0 ≤ x, y ≤ 28 − 1) of the target node.

There are various possibilities to encode these coordinates in the remaining
24 − 8 = 16 bit of r. For our purposes the following approach is useful: we
store the x-coordinate of the target node in the odd-numbered bit positions
(23, 21, 19, 17, . . . , 9, where bit no. 23 is the most-significant bit) and the y-
coordinate in the even bit positions (22, 20, 18, 16, . . . , 8). This interleaving of the
coordinates can also be interpreted as a Kronecker/tensor product: the leading
two bit of r determine in which 27 × 27-(sub)quadrant of the 28 × 28-mesh the
target node is located. Similarly, the next two bit determine which (sub)quadrant
(of size 26 × 26) inside the 27 × 27-quadrant has to be addressed, etc. To get a
better image of the resulting pattern, Figure 2 sketches for small values of i to
which processing unit the sieving range {s0 + i · 256, . . . , s0 + i · 256 + 255} is
assigned; e. g., the processing unit at the left border of the third line in the mesh
handles the 256 values {s0 + 4 · 256, . . . , s0 + 4 · 256 + 255}.

Given an r-value we can extract the x-coordinate xt and the y-coordinate
yt of the respective target unit by reading off the odd- resp. even-numbered
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0 2 8 10 32 34 40 42
1 3 9 11 33 35 41 43

4 6 12 14 36 38 44 46
5 7 13 15 37 39 45 47

16 18 24 26 48 50 56 58
17 19 25 27 49 51 57 59

20 22 28 30 52 54 60 62
21 23 29 31 53 55 61 63

· · ·

...

Fig. 2. assigning sieving ranges to processing units

bit positions. While in the original clockwise transposition routing as described
in [LSTT02] storing the target coordinates in each packet is sufficient for deciding
efficiently when two packets have two be exchanged, here we also have to take
care of the wrapped around borders. For this, we provide one extra bit along each
axis which is set if and only if the packet wants to ‘cross the border’ for reaching
its target. In other words, for a node with coordinates (x0, y0) in a 2m×2m-mesh,
the ‘horizontal cross border bit’ is set if and only if |xt−x0| > 2m−1. Thus, with
each package that is to be routed we store the two (m-bit) target coordinates
(xt, yt) plus the two ‘cross border flags’. Using an 8-bit comparer and a simple
circuit that deals with the cross border flags and the most significant bit of the
target coordinates, we can easily decide if two adjacent nodes have to exchange
their packets. Analogously as in [LSTT02] we assume that no more than one
clock cycle is to be used for such a compare/exchange operation.

3.3 Refilling the mesh while routing

Experimentally it turns out, that the routing algorithm performs better if the
number of ‘travelling’ packets is not too high. In our application, a processing
unit usually has several packets that have to be output on the mesh for being
routed to the respective target node. In principle, a processing unit can release
a new packet whenever no other packet has to be stored. However, to avoid a
slow-down through congestion of the mesh, in our experiments it turned out to
be more efficient to release a new packet only if in the previous two clock cycles
no packet was stored in that node. In this way usually ≈ 25% of the processing
units are ‘free’, which—experimentally—allows for a quite efficient routing. Each
routed packet represents a divisor of some number in the currently processed
sieving range, and the next section explains this connection in more detail.

4 Organizing the sieving

The basic organization of the sieving process is identical as in [GS03a], in par-
ticular we use line sieving, and when changing to a new line, i. e., increasing the
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current b-value, new data has to be loaded into the mesh. For sieving one line
−A ≤ a < A of (≈ 3.4 · 1013) a-values, only local operations inside the mesh
nodes are used. As indicated above already, a sieving line is not processed ‘as one
piece’, but divided into consecutive intervals of length S(= 224). Before going
into the details of how these subintervals are processed, we have to say how the
two factor bases are represented in the mesh—at this we want to exploit the
Kronecker/tensor product arrangement explained in Section 3.2.

4.1 Storing the factor bases in the mesh

Each processing unit stores1 all elements (p, r) of the factor bases where the
prime p is smaller than the size of the subinterval of the current sieving line
processed by that processor—with the mentioned parameters for 768-bit num-
bers this translates to the condition p ≤ 28. More precisely, for p ≤ 28 and (p, r)
being contained in a factor base, each processing stores the value (p, (s0 + r +
28 · i) mod p) where s0 is the first value in the processed sieving range of length
S, and i ∈ {0, . . . , 216 − 1} is the number of the subinterval of length 256 pro-
cessed by that unit. The idea here is, that a processing unit will be able to test
locally which ‘tiny’ primes divide an element in the sieving range processed in
that node. Next, all pairs (p, r) with primes p that are ‘up to 4 times larger’—
namely with 28 < p ≤ 210—are stored ‘once per 2× 2-square’ of the mesh. With
the numbering from Section 3.2, this means that the prime p (along with the
corresponding (s0 + r + 210 · i) mod p-values) is stored in all processing units
where the ‘least significant tensor coordinates’—bits no. 0 and 1 in the binary
representation of the number i of the subinterval of length 256—coincide. Again,
the idea is to allow for a ‘local’ handling of prime divisors: a subquadrant of size
2 × 2 covers a sieving range of 22 · 28 = 210 numbers, and all prime divisors of
size ≤ 210 are available inside that square.

Next, we proceed analogously for submeshes of size 4 × 4 and primes 210 <
p ≤ 212. In other words, all processing units where the bits no. 0–3 of the
binary representation of the number i of the processed subinterval coincide,
store the same pairs (p, r)—where in analogy to the above r is replaced by
(s0 + r + 212 · i) mod p. So in each 4× 4 subquadrant—which corresponds to a
sieving range of length 42 · 28 = 212 all primes ≤ 212 are ‘available’. Going on in
this way, in each submesh of size 8×8 we store the pairs (p, r) with 212 < p ≤ 214,
in each submesh of size 16 × 16 we take care of the primes 214 < p ≤ 216, in
each submesh of size 32× 32 we deal with the primes 216 < p ≤ 218, and in each
submesh of size 64×64 we store the pairs (p, r) with 218 < p ≤ 220. All pairs (p, r)
with p > 220 are stored only once in the mesh. We do not consider subquadrants
of size 128×128: due to the underlying torus topology, the horizontal or vertical
distance between two nodes cannot be larger than 128 anyway.

For an actual implementation, the question of how to store the pairs (p, r)
is crucial: with smoothness bounds B1 = 109 and B2 = 108, the rational factor
base contains 5, 761, 456 pairs (p, r) in total, and the algebraic factor base can
1 For the moment, we postpone a discussion of how to store these pairs.
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be assumed to consist of ≈ 50, 850, 000 pairs. With the prime distribution just
described and leaving some leeway for multiple prime factors, we conclude that
each node in a 256 × 256 mesh has to store ≈ 1, 300 pairs (p, r). Storing them
as pairs of 30-bit numbers in DRAM is extraordinary space/area-consuming,
and not suitable for our purposes. Thus, before going into algorithmic details
we should clarify how to store these pairs more efficiently: for storing its factor
base elements, each node is equipped with three rectangular blocks of DRAM,
where one DRAM block can be accessed in ‘words’ of 28 bit, one block can be
accessed in ‘words’ of 31 bit, and the other block allows for access in ‘words’ of
7 bit. Within each block, sequential access is sufficient—random access is not
required. The usage of the memory blocks depends on the size of the processed
primes p: in analogy to [ST03], we call p

– tiny, if 2 ≤ p < 217,
– smallish, if 217 ≤ p ≤ S

– largish, if S < p ≤ B2.
– hugish, if p > B2

For reasons of efficiency, with each tiny or smallish prime we also store the (non-
negative) values S mod p and dlog√2(p)e. The details of the encoding used for
storing the four different ‘prime types’ efficiently are given in Appendix A.

4.2 Sieving a subinterval

Let ã be an arbitrary number from a subinterval of length S = 224 and (p, r) ∈ Pi
an element of a factor base. Then dlog√2(p)e is added to the ‘length counter’
si(ã) during line sieving if and only if ã ≡ br (mod p) (i = 1, 2). When the
factor bases have been loaded into the mesh as described, the mesh is prepared
to sieve the first subinterval −A ≤ a < −A+S with b = 1. Each processing unit
is in charge of 256 a-values (see Section 3.2), and conceptually splits into three
parts:

The main part contains the DRAM with the stored factor bases along with the
necessary logic to read out these elements. In particular, this logic is in charge of
a flag which indicates whether currently the unique rational root (which is always
stored first) or an algebraic root is processed. Also the 6-bit representation of
the current dlog√2(p)e-value is stored in this part of the processing unit.

After having retrieved an r-value from the DRAM, first we check whether it
is ‘relevant’ for the current sieving subinterval of length S: as primes are stored
repeatedly in the mesh, this ‘relevance’ does not depend only on r, but also on the
size of p. More precisely, for p ≤ 256 all values r < 256 have to be considered, for
256 < p ≤ 1024 all values r < 1024 are relevant, etc. For checking this ‘relevance
condition’ efficiently we can make use of several OR gates that check the leading
bits of r and a chain of multiplexers that is controlled by dlog√2(p)e. If this r-
value turns out to be not relevant, then we replace the old r-value in the DRAM
by the new

r :=
{
r − (S mod p) , if r − (S mod p) ≥ 0
r − (S mod p) + p , otherwise .
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In this way, r is ‘shifted’ in the next subinterval of length S (cf. [GS03a]). Note
that the value S mod p is known already (for tiny and smallish primes it is stored
in the DRAM and for largish and hugish primes we have S = S mod p), so this
computation can be implemented efficiently by means of a 30-bit adder. Now
the next root or prime can be processed.

On the other hand, if an r-value is identified as relevant, then the (xt, yt)-
coordinates of the node that is in charge of this value are determined by append-
ing the corresponding odd/even bit positions of r to the respective number of
most significant bits of the node’s own horizontal/vertical coordinate. In anal-
ogy to the relevance test, the precise number of bits that are to be copied from
the node’s own coordinates depends on p. Then the ‘cross border’ flags cx, cy
are determined; for doing so, we may either use general adders with two (8-bit)
inputs or an optimized component that can check whether the horizontal resp.
vertical coordinate of the current node differs from xt resp. yt by more than 128.
If the coordinates (xt, yt) are not identical with the node’s own coordinates, then
(xt, yt), (cx, cy), a ‘footprint’ of p, dlog√2(p)e (6 bit), the least significant 8 bit
of r, and the flag which indicates whether the prime belongs to the algebraic or
rational side are written into an output buffer which will be read by—but is not
part of—the mesh part of the node (see below). What does ‘footprint’ of p mean?
For promising (a, b)-pairs this footprint will be output to the processor that is in
charge of the post-processing of the candidate pairs; for primes larger than some
predetermined bound Bf , say Bf = 222, it should be possible to recover p from
the footprint. In principle we could send the complete value p up to the least
significant bit here, however to save some space a different footprint is prefer-
able: we send the coordinates of the current node (2 · 8 bit) concatenated with
the bits no. 1–10 of p (i. e., the 10 least significant bits after dropping bit no. 0
which is always set). As each processing unit stores only ≈ 850 prime numbers
larger than Bf = 222, this determines p in most cases uniquely. If a processing
unit contains more than one prime with this footprint, in the postprocessing all
primes with this footprint have to be taken into account. In summary, we write
xt, yt (8 bit each), cx, cy (1 bit each), dlog√2(p)e (6 bit), the footprint (26 bit),
the least significant 8 bits of r, and a one bit flag that distinguishes between
the algebraic and the rational side into a 59-bit output buffer which will be read
by the mesh part of the node (see below). According to our experiments, it is
sufficient to provide space for two 59-bit entries in the output buffer; for storing
the buffer entries, we can use latches which require only 4 transistors per bit.2

Now the currently processed prime p is added to the current r-value (with a
30-bit adder needing no more than 2 clock cycles), and we have to check as above
whether the resulting new value r := r + p is also ‘relevant’ for the processed
sieving subinterval of length S. If this is not the case, then we update the old
r-value in the DRAM accordingly for the next sieving subinterval, and otherwise
we determine another (xt, yt)-pair.

2 Actually, we could do with fewer bits: as the node’s own coordinates (which are
part of the 26-bit-footprint) are identical for all buffer entries, we could save some
transistors by ‘hardcoding’ these bits.
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Once an (xt, yt)-pair with the nodes own coordinates is encountered, the re-
spective r-value has to be handled by the node itself and thus the least significant
8 bit of r, dlog√2(p)e (6 bit), the 26-bit footprint of p, and a 1-bit flag which
indicates whether we deal with the rational or algebraic side are written in a
41-bit input buffer that is to be read by—and is part of—the memory part of
the node (see below). Hereafter, p is added to the current r-value and checked
for ‘relevance’ as already described. In summary, we estimate that realizing the
main part requires ≈ 2, 750 transistors. Reading a DRAM entry takes 2 clock
cycles, and the retrieved values can be processed in a pipeline structure. Thus,
provided that the respective buffer is not full, basically every 4 clock cycles3 an
output is produced or the next p-value is selected. For storing the factor base
elements, about 55, 000 bit of DRAM are needed.

The memory part of the node provides two 10-bit DRAM entries for each of the
256 a-values the node has to take care of—one 10-bit counter for the algebraic
and one for the rational side. These 10-bit words are initialized with zero and used
to store the sum of the dlog√2(p)e-values that ‘hit’ the corresponding a-value
during sieving on the algebraic resp. rational side. It is convenient to organize
the DRAM for the 10-bit counters in 20-bit words, so that the algebraic and
rational counter can be read simultaneously—we will exploit this when checking
for simulteneous smoothness on the algebraic and the rational side.

The memory part reads from the mentioned 41-bit input buffer and uses
the least significant 8 bit of r and the rational/algebraic flag to address the
correct counter. To add the dlog√2(p)e-value read from the input buffer to the
respective 10-bit value in the DRAM, a 10-bit adder is used. Finally, a different
part of the DRAM is needed to store footprints of prime factors larger than the
already mentioned predetermined bound Bf , say Bf = 222. As explained above,
for storing one footprint we need 26 bits. Moreover, we need 8 bits to identify
the precise sieving location within the node, plus 1 bit to distinguish between
the rational and the algebraic side. Thus, in total one complete entry occupies
26+8+1=35 bit of DRAM. However, instead of equipping each individual node
with DRAM for storing found prime factors, it seems more efficient to share
this DRAM among two nodes that are physical (cf. Section 3.1) neighbours.
Consequently, we add one bit to each entry to identify the processing unit. Of
course, the question arises how many prime factors will be encountered per
sieving subinterval. According to our experiments for Bf = 222 and 256 targets
per node, a DRAM size of 325 · 36 bit (shared by two nodes) seems reasonable.
Further on, the question of choosing the size of the input buffer arises—according
to our experiments a buffer with a single 41-bit entry should already be sufficient
to avoid a performance bottleneck.

Finally, we have to explain how to identify ‘good’ (a, b)-pairs and how to out-
put the respective prime factors from the device. For this purpose, the (somewhat
dirty) approach explained in Appendix B seems reasonable. In summary, for im-

3 Largish and hugish primes can usually be processed in 2 clock cycles, as most of
them do not ‘hit’ in the current subinterval of length S.
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plementing the memory part ≈ 1, 250 transistors should be sufficient (excluding
the DRAM). For incrementing one dlog√2(p)e-counter and checking both thresh-
olds we allow 4 clock cycles which should provide enough leeway to store the
(footprint of the) prime factor p into the DRAM. In addition to this, on average
≈ 11, 000 bit of DRAM (with random access) are needed for the found prime
factors resp. for the dlog√2(p)e-counters and the thresholds Tr, Ta.

In the mesh part the complete logic necessary for the clockwise transposition
routing is located. In particular, this includes an 8-bit comparison unit plus
some circuitry for taking care of the ‘cross border flags’ in each second node,
which allows for an efficient (one clock cycle—cf. Section 3.2) exchange operation.
The mesh part contains a register to store a complete packet as transported
in the mesh. This register has the same width as the output buffer, and if a
packet with (xt, yt) being identical to the node’s own coordinates is encountered
(and the input buffer of the memory part is not full), the 26-bit footprint of p,
dlog√2(p)e, the least significant 8 bits of r, and the factor base flag are copied
into the input buffer of the memory part. New packets that have to be released
into the mesh are read from the output buffer (which in turn is filled by the
main part of the node as explained above). Implementing the mesh part should
‘on average’4 require no more than 1, 100 transistors.

4.3 Output of the result and moving to the next sieving interval

Once a complete subinterval of size S has been sieved, we have to output the
found (a, b)-pairs: for doing so, each processing unit that has set the ‘done’ flag
during the sieving procedure, outputs the footprints of all stored prime factors
along with the corresponding factor base indices (1 bit each), the coordinates (2×
8 bit) of the processing unit that found the factor, and the least significant 8 bit of
the corresponding r-value. Note here, that due to the ‘cleaning process’ the end of
the list of factors is marked with an ‘all zero’ entry. The output values are received
by supporting hardware that has to perform the final smoothness testing. Using
the available 59-bit bus for this purpose, reading out the results should require
less than 700 clock cycles. Of course, before outputing the results, we have to
be sure that the sieving of the subinterval is indeed complete. However, there is
no need to use a complicated logic for this: from a simulation one can determine
a reasonable upper bound for the number of clock cycles that are needed to
complete the sieving of a complete subinterval—for S = 224 on a 256×256 mesh
such a bound can be 39, 500 clock cycles (this estimation is based on simulations
by means of the computer algebra system Magma [BCP97]). After that time
we simply instruct each processing unit to clear its input and output buffer,
to complete any missing updates of its r-values, and to output its results. In
the worst case (say the routing circuit encountered an infinite loop), potentially
useful (a, b)-pairs from a single subinterval of length S are lost in this way.

4 Recall that the comparer is needed only in each second node.

11



If the next subinterval to be sieved is in the same line, i. e., the b-value does
not change, each processing unit simply has to reset its 256× 2 10-bit counters
to zero now, and is ready to sieve the next subinterval of length S. Analogously
as in [GS03a], in this case no new data has to be loaded into the device, as all
r-values have already been updated during the processing of the last sieving
interval. Thus the change into the next sieving interval can be estimated to take
no more than 500 clock cycles. Finally, passing to the next b-value requires a
replacement of the stored r-values in the processing units, analogously as in
[GS03a]. Using the 59-bit bus, 2000 pins per chip, and an I/O clocking rate of
133 MHz, we expect that loading the data into the DRAM takes no more than
0.02 seconds.

5 An improvement

Before discussing the performance of the above design, one may ask about pos-
sible improvements of the discussed parameters and the design. E. g., one may
think of using larger or smaller mesh sizes, of different values for S or of changing
the number of primes that each processing unit deals with locally. In this paper
we focus on one (which we think reasonable) parameter choice, but there is still
leeway for experimenting here—lacking a theoretical analysis of the underlying
routing algorithm, we cannot make reliable theoretical predictions.

In Appendix C a significant improvement is described which affects the phys-
ical arrangement of the processing units as discussed in Section 3.1. The basic
idea is to use four interleaving meshes instead of one. Certainly there are also
other modifications of the above design, but in the estimations given in the next
section we restrict to this improvement using four meshes.

6 Space requirements and performance of the device

Due to the ‘small’ DRAM banks, we take 0.3µm2 (0.5µm2) for a DRAM bit
with sequential (random) access and 2.8µm2 per transistor into account, which
is somewhat larger than the estimates in [LSTT02, Table 2] for a specialized
0.13µm DRAM process. Combined with our estimations for the sizes of the node
parts, this yields an estimated total size of a 256 × 256-mesh of ≈ (4.9 cm)2.
Here the use of four meshes as described in Appendix C is assumed.

Having in mind the comparatively regular layout and that 90nm processes
are becoming more widespread, manufacturing such chips does not seem to be
unrealistic (recall that for the proposed TWIRL parameters—which are not
optimized for chip size—already the algebraic sieve has an estimated size of
≈(6.7cm)2 [ST03, Section 4.4]). In contrast to TWIRL, in the above mesh-based
design a single device handles both factor bases, and we do not require any
inter-chip communication, which is in particular helpful for cooling the chips.
But what about the performance of the above device which we assume to be
clocked with 500 MHz (instead of 1 GHz in TWIRL, where the time-critical
operations are simpler)? Assuming a sieve line width of 3.4 · 1013 (see [ST03,
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Table 1]) and that 40, 000 clock cycles are needed per sieving subinterval of size
S = 224, a single chip with a mesh of size 256 × 256 can process a sieve line in
≈ 163 seconds. This is almost a factor 20 slower than a TWIRL cluster consist-
ing of four rational sieves (each of size ≈(3.6cm)2) and one algebraic sieve (of
size ≈(6.7cm)2). However, while only six TWIRL clusters fit on a single 300 mm
silicon wafer, we can fit 21 mesh-circuits of size 256× 256 on such a wafer. With
21 chips we can handle a sieve line in ≈ 7.8 seconds, which is ≈ 6.3 times more
than a wafer with six TWIRL clusters.

Moreover, in [ST03] the authors explain how to exclude sieve regions where a
and b have a common divisor 2 or 3. The common divisor 2 can be handled easily
by our device—essentially, we have to add 2p to r instead of p. Handling the
common divisor 3 is in principle possible, but would require significant additional
logic, and we do not consider such a modification here. Hence, instead of an
‘essentially free’ 33% time reduction in TWIRL, we assume only an ‘essentially
free’ 25% time reduction. Thus, for completing all expected 8.9 ·106 sieving lines
(see [ST03, Table 1]) for a 768-bit number, with one wafer we expect that ≈ 600
days are needed—roughly 6.3 times more than with TWIRL. But as smaller and
regular chips are simpler to produce, and as our design does not rely on inter-
chip communication, from a practical point of view the mesh-based approach
might be an interesting alternative to TWIRL clusters.

7 Conclusions and further work

The above discussion shows that building a mesh-based sieving device for 768-bit
numbers could be feasible with current technology. Depending on the number of
chips one is willing to use, performing the sieving step for such numbers within
a few months seems feasible. In comparison to the proposed TWIRL clusters
(which are not optimized for chip size), the chips in our design are smaller,
no inter-chip communication is involved, and the rather regular layout should
simplify the production of a detailed hardware layout. A main drawback of the
mesh-based approach is a slow-down of a factor≈ 6.3 compared to TWIRL. How-
ever, the simpler hardware requirements might outweigh this drawback. Also, we
would like to emphasize that the discussed mesh is certainly not optimal, and
modifying some of the paramter choices may yield relevant speed-ups. E. g., ex-
periments show that if one is willing to allow for larger output buffers (which of
course increases the chip size), the required number of clock cycles per sieving
subinterval can be reduced.

Moreover, to further reduce the chip size, one can think of using a smaller
mesh with only 128× 128 nodes. According to our experiments, such a design is
less efficient, but of course the resulting chips are smaller and producing them can
be expected to be cheaper. On the other hand, one can ask whether implementing
a larger 512 × 512 mesh is still feasible and whether a significant speed-up is
possible in this way. We have not enough experimental results to give a reliable
answer here, but exploring larger meshes is certainly worthwhile, in particular
in regard to 1024-bit numbers: it is a natural question to ask to what extent
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the above mesh-based approach can deal with 1024-bit numbers. We cannot
give a satisfying answer here at the moment. However, due to the compact
representation of the factor bases in our device, it is certainly worthwhile to
explore the 1024-bit case in more detail: the DRAM required for storing the
factor bases is one of the critical issues in TWIRL, and it seems to be a very
interesting question to explore the potential of the above mesh-based approach
for 1024-bit numbers.
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Appendix

A Storing the factor base elements

For the tiny primes, we store the 17-bit representation of p followed by the most
significant 8 bit of S mod p and a three-bit ‘log-increase value’ lp in the first
‘28-bit word’. The value lp is added to the dlog√2(p̃)e-value of the previously
processed5 prime p̃, i. e., we store the primes in increasing order. In the next
‘28-bit word’ we write the (unique!) 17-bit value r with (p, r) ∈ P2 followed
by the least significant 9 bit of S mod p, a zero bit, and two flag bits b26, b27.
W. l. o. g., we assume b26 and b27 to be the most significant bits, say b27 is the
most significant one. The flag b26 is set if and only if there is also some pair
(p, r′) ∈ P1, i. e., a root on the algebraic side belonging to p; in this case, the
next 28-bit word contains the (first) algebraic root r′ (a 17-bit value) followed by
9 reset bits. If bit no. 26 is reset, then the next entry contains another algebraic
root of the currently processed prime, and otherwise the next entry belongs to
a new tiny prime. To mark the last tiny prime we set the flag b27 resp. the most
significant bit in the last root belonging to that prime. Thus, once the control
logic encounters such a set most-significant bit, beginning with the next DRAM
entry smallish primes have to be processed. Figure 3 surveys the DRAM usage
for a tiny prime.

tiny prime p (17 bit) m.s. 8 bit of S mod p lp (3 bit)

rational root (17 bit) l.s. 9 bit of S mod p b26 (1 bit) b27 (1 bit)

first algebraic root (17 bit) 0 . . . 0 (9 bit) b26 (1 bit) b27 (1 bit)

· · ·

Fig. 3. storing tiny primes

For smallish primes we use a similar approach, but here we reserve a complete
29-bit word for storing the smallish prime itself. More precisely for S = 224, a
smallish prime p is stored in the least-significant 24 bit of the first 28-bit word,
followed by a zero bit, and a three-bit ‘log-increase value’ lp as described above.
The next 28-bit word contains the 24-bit value S mod p followed by 4 zero bits.
Finally, the subsequent words are used in the same way as for smallish primes,
with the only difference that now 24 (instead of 17) bit are used to represent
the respective r-value. In particular, the most significant two bits serve again
as flags to mark the last root belonging to the prime p and to mark the last
smallish prime. This time, a set bit no. 27 indicates that the next prime to be

5 Before starting the processing of the primes, an initial value—that depends on the
number of small primes one wants to ignore and is identical for all processing units—
has to be fixed here.
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processed is a largish one. The DRAM usage for smallish primes is summarized
in Figure 4.

smallish prime p (24 bit) 0 (1 bit) lp (3 bit)

S mod p (24 bit) 0 . . . 0 (4 bit)

rational root (24 bit) 0 0 (2 bit) b26 (1 bit) b27 (1 bit)

first algebraic root (24 bit) 0 0 (2 bit) b26 (1 bit) b27 (1 bit)

· · ·

Fig. 4. storing smallish primes

The majority of the primes on the rational side are largish ones, and it is
desirable to use a compact encoding here (without losing the ability to read out
the data efficiently). A simple trick to achieve this (and which allows for an easy
decoding of the DRAM entries) is to store prime differences instead of the prime
values themselves: between 224 and B2 = 108, the maximal difference between
two consecutive primes is 220. Obviously all these differences are even, and thus
we can store them by storing only the most significant 7 bits of such a difference.
As we are dealing with primes p > S now, storing the value S mod p does not
make sense, and we use the following encoding: if the first word in the 7-bit
DRAM block is not identically 0, then these 7 bit are the most significant bits
of the difference ∆p between the currently stored prime p′ and the next prime
p to be processed. From the leading bits of p′ when computing p = p′ + ∆p,
we can check whether the dlog√2(p′)e-value has to be increased by one. The
next entry in the 28-bit DRAM block stores the full 27-bit representation of the
rational zero corresponding to that prime, followed by a one-bit flag b27 which
indicates whether for this prime also an algebraic root exists. If this flag is set,
then the next 28-bit DRAM entry contains the 27-bit representation of the (first)
algebraic root followed by a one bit-flag b27 which is set if and only if another
algebraic root is stored for this prime. If this flag is reset, then no more data
is available for the currently processed prime, and the next entry of the 7-bit
DRAM is to be read and processed in the same way.

If a value read from the 7-bit DRAM is zero, then this indicates a ‘big prime
difference’: in this case, the prime p to be processed is found in the next 28-bit
DRAM entry. Namely, this 28-bit word contains the most significant 26 bit of
p (all largish primes are odd) followed by a two-bit ‘log-increase value’ lp. The
subsequent 28-bit words encode the rational and (if existent) the corresponding
algebraic roots in the same way as before, i. e., after the 27-bit representation of
the r-value a flag indicates whether another (algebraic) root is available for this
prime. To recognize the end of the list of largish primes we store the all-one-word
in the 7-bit DRAM. Figure 5 summarizes the memory usage for largish primes.

Finally, the hugish primes < 227 can be handled in the same way as the
largish ones. The only difference is, that no rational root r is stored here, as the
hugish primes are relevant for the algebraic side only. As the 28-bit words are too
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7-bit DRAM 28-bit DRAM

∆p/2(6= 0, 7 bit) −→ rational root (27 bit) b27 (1 bit)

first algebraic root (27 bit) b27 (1 bit)

. . .

0 . . . 0 (7 bit) −→
(p− 1)/2 (26 bit) lp (2 bit)

rational root (27 bit) b27 (1 bit)

first algebraic root (27 bit) b27 (1 bit)

. . .

1 . . . 1 (7 bit) −→ (end of largish primes)

Fig. 5. storing largish primes

small for storing hugish primes ≥ 227 conveniently, we use again an all-one-entry
in the 7-bit entry to indicate that the remaining hugish primes can be found in
the 31-bit DRAM. The storage format used in the 31-bit DRAM is identical to
that of the 28-bit DRAM. Eventually, to indicate the end of the list of stored
primes, we use another all-one-entry in the 7-bit DRAM; Figure 6 summarizes
the memory usage for hugish primes.

For some tiny prime numbers p one may like to include powers pν in the
sieving process. In principle we can do so easily by just inserting the respective
entry at the correct position in the list of tiny primes. However, due to the
sieving procedure which we want to use, there is a small subtlety here: when
reporting a multiple factor pν , our sieving procedure also reports all divisors pµ

with µ < ν. To compensate for this, multiple factors pν should only contribute
dlog√2(p)e to the ‘length’ counter instead of dlog√2(pν)e, and therefore we store
the multiples pν immediately after the tiny prime p with a ‘log-increase value’
lp = 0. As with the other elements of the factor bases, the number of processing
units that store a prime power pν depends on the size of pν ; e. g., if we want to
take 29 into account, then this value is stored once per 2× 2 subquadrant.

B Storing found prime factors

In the memory part, for updating a 10-bit counter on the algebraic resp. rational
side, a complete 20-bit word is read from the DRAM which contains also the
corresponding rational resp. algebraic counter. Thus, after having performed a
counter update (and if necessary stored the most recent prime factors) we can
check whether both the rational and the algebraic counter are larger than a
smoothness threshold Tr resp. Ta6 (each requiring 10 bit of DRAM). In this

6 These smoothness bounds change throughout the sieving process, and we can update
them through an external signal when passing to a new sieving subinterval, for
instance.
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7-bit DRAM 28-bit DRAM

∆p/2(6= 0, 7 bit) −→ first algebraic root (27 bit) b27 (1 bit)

. . .

0 . . . 0 (7 bit) −→ (p− 1)/2 (26 bit) lp (2 bit)

first algebraic root (27 bit) b27 (1 bit)

. . .

1 . . . 1 (7 bit) −→ (end of hugish primes < 227)

31-bit DRAM

∆p/2(6= 0, 7 bit) −→ first algebraic root (30 bit) b27 (1 bit)

. . .

0 . . . 0 (7 bit) −→ (p− 1)/2 (29 bit) lp (2 bit)

first algebraic root (30 bit) b27 (1 bit)

. . .

1 . . . 1 (7 bit) −→ (end of hugish primes)

Fig. 6. storing hugish primes

case, a potentially useful (a, b)-pair has been identified, and the processing unit
sets a ‘done’ flag to indicate that a candidate (a, b)-pair has been found. Setting
this flag prevents that the processing unit or its physical neighbour writes any
further prime factors into the (shared) list of prime factors—counter increments
are performed as before. Once this ‘done’ flag is set, the DRAM with the stored
prime factors is ‘cleaned’, i. e., all entries that do not belong to the promising
(a, b)-candidate (these entries are identified by means of a circuit that can decide
equality of 8-bit entries) are reset to zero, and the factors belonging to this (a, b)-
candidate are stored at the beginning of the memory. This will later facilitate a
quick output of the sieving result.

Once the ‘DRAM cleaning’ has been completed, we can set a ‘cleaning ok’
flag which means that from now on prime factors can be stored again provided
that they belong to a(nother) promising (a, b)-pair. So for the (rare) case that
in a range of 2 · 256 = 512 a-values more than one hit is encountered, we can
store at least some of the large prime factors of the additional hit.

C Using four dedicated meshes

The improvement of the original mesh architecture described in this section also
affects the physical arrangement of the processing units discussed in Section 3.1.
Namely, we want to replace the single torus along each axis by two ‘interleaved’
tori. To be able to do this, we start with an ordinary 2m×2m-array of processing
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units—without connections among the processing units. Next, we divide the
nodes into 2m−1 × 2m−1 ‘macro nodes’ where each macro node is comprised of
four processing units. Now we form four separate meshes where
– Mesh I connects the ‘left-upper’ processing units of the macro nodes,
– Mesh II connects the ‘left-lower’ processing units of the macro nodes,
– Mesh III connects the ‘right-lower’ processing units of the macro nodes, and
– Mesh IV connects the ‘right-upper’ processing units of the macro nodes.

In each of the four meshes we want to pass to a torus topology without
destroying the 2×2-macro nodes. To do so in an implementation we can proceed
in exactly the same manner as described in Section 3.1; the only difference is
that now the interleaving of rows and columns has to be done with the 2 × 2-
macro nodes instead of the individual processing units. Why keeping the 2× 2-
blocks ‘in one piece’? At the moment, the meshes I–IV, which can be realized on
separate metal layers, are not connected at all, and consequently routing a packet
from one processing unit to another is in general not possible. To overcome this
problem, we replace the four separate output buffers in a macro node with one
buffer that is readable for each of the four mesh parts present in the macro node.
The mesh part of the ‘left-upper’ processing unit will read out all packets where
both the x- and the y-coordinate are even, etc. In this way, each packet will
automatically get into the right mesh. However, each of the four meshes now has
a size of 2m−1 × 2m−1, and once the packet is read by the respective mesh part
we can drop the least significant bits of the two target coordinates. E. g., instead
of dealing with a 256× 256-mesh we now can deal with four 128× 128-meshes.
This also reduces the size of the comparison units and registers needed in each
of the four mesh parts.

Of course, all four main parts of a macro node need write-access to the
common output buffer, and the question arises of how large the output buffer
should be. According to our experiments, for a 256×256-array (with four meshes)
it is enough to allow for eight entries (again 58 bit each, as the least significant
bits of the target coordinates are needed in the output buffer to address the
mesh). Concerning the space requirement of our device, the size of the main and
memory parts of the nodes are basically left unaltered by our modification—
combining the four output buffers to one does not change the ‘average’ size of
the nodes significantly. However, the structure of the mesh part has changed—a
slightly more complicated logic for reading from the output buffer is needed now,
but the comparison unit and the register for storing a packet have become a bit
smaller. In summary, for the 256 × 256-array with four meshes we assume the
modified target unit to be realizable with ≈ 1, 100 transistors, too.
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