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Abstract 
Forward-secure signatures are used to defeat signature forgeries in cases of key 

exposure. In this model, the signature key evolves with time and it is 
computationally infeasible for an adversary to forge a signature for some time-
period prior to the key’s exposure.  

In this paper a new forward-secure digital signature scheme is presented, which 
is based on the use of bilinear maps recently advocated by Boneh and Franklin [9]. 
This scheme is efficiently constructed and can be used with a large number of time 
periods with a log magnitude complexity.  The signing and key-update operations 
are very efficient when compared with other previously available schemes. A 
formal definition, as well as a detailed analysis of the security performance or this 
scheme, is presented. The security proof for this scheme is based on the 
Computational Diffie-Hellman assumption, which leads to a unique approach to 
proving security in the random oracle model.  Furthermore, within the proof both 
the hash oracle and the signing oracle are constructed in an innovative manner.  

 

1 Introduction 

1.1 The Key Exposure Problem 
The Key exposure problem has been classified as one of the biggest problems for a security 
system. In a conventional system, the system security is completely compromised once the 
key is exposed. Together with the increasing use of small, easy-to-lose, handheld devices, the 
key exposure problem is rapidly becoming more prevalent. Since users are employing their 
portable devices for a variety of transactions, cryptographic computations are inevitably 
required. While exposure of the key is certainly of great concern to the user, corporations and 
services providers must also employ stronger security measures in their systems in order to 
protect themselves from key exposure resulting from either malicious break-in or 
unintentional leakage.  

To address this problem, several different approaches have been suggested. Many of them 
try to minimize exposure of the secret by splitting it and storing the parts in different places, 
usually via secret sharing [8, 30]. There are many follow-ups to this idea, including a 
threshold signature [13] and proactive secret sharing [22, 23]. However, as indicated in [5], 
distribution can be quite costly and not a viable option for the average user. The highly 
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cooperative and interactive nature of the threshold schemes also makes the communication 
and computation burden prohibitively high for wireless devices.  

1.2 The Forward-secure Signature 
The term (perfect) “forward secrecy” was first used by Günther [21] within the context of 
session key exchange protocols, and again later in [14]. The basic idea is simply that 
compromising a long-term key does not compromise past session keys; therefore, action in 
the past is in some way protected against a loss of the current key. Anderson suggested this 
paradigm and the idea of a digital scheme with forward security in an invited lecture 
presented at the year 1997 ACM CCS conference [3]. It was first formalized by Bellare and 
Miner in the context of a forward-secure signature scheme [5].  

The basic idea presented in [5] is the use of a key-evolving signature scheme whose 
operation is divided into time-periods, with a different secret key being used for each time-
period. Each secret key is used to sign the message in the current time-period and derive the 
secret key for the next time-period. Like the ordinary signature scheme, the public key is 
constant for all time-periods. A verification scheme checks both the signature’s validity and 
time-period. The signature scheme is forward-secure because it is impossible for an adversary 
to forge a signature for a previous time-period even if it obtains the current secret key.  

Following the initial work by [5], a sequence of other deviations of the forward-secure 
signature [1, 27, 24, 28] was suggested. In [1], an improved forward-secure signature scheme 
with much shorter keys than those outlined in [5] was proposed. Krawczyk [27] suggested a 
method for constructing a forward-secure scheme from any signature scheme, and thus made 
the forward security of standard signature schemes (RSA, DSS) possible. Itkis and Reyzin 
[24] proposed another forward-secure signature scheme based on the Guillou-Quisquater 
signature. It provides efficient signing, verifying and storage, but the price tag for these 
features is a longer running time for the key generation and update routine. Maklin [28] 
proposed a generic construction that can be based on any underlying signature with an 
unlimited total number of time-periods.  

Integrating forward-secure signature with threshold techniques has also been investigated 
[2, 31]. The forward-secure encryption scheme considered in [7] and [12] focused on private 
and public key cryptography respectively. Key insulated cryptography [16] and intrusion 
resilient cryptography [25, 17] were recently introduced to achieve a higher level of security. 
However, these two approaches require time synchronization and interaction between the 
device and server for each time-period. Therefore, they may not be applicable in some 
scenarios.  

1.3 Our Contribution 
The scheme outlined in this paper extends the work by Gentry-Silverberg [20], Canetti-
Halevi-Katz [12] and Dodis etc. [17], and is the first construction of forward-secure 
signatures based on bilinear maps.  Although the underlying signature scheme (HIDS) for this 
approach was initially considered by Gentry and Silverberg [20], their scheme works in a 
different context and is not forward-secure. Furthermore, the authors have not provided any 
security proof for their scheme (HIDS). Inspired by the works in [12, 17], we construct a 
forward-secure signature scheme based on the scheme outlined in [20]. The security of this 
new approach is based on the Computational Diffie-Hellman assumption, and leads to a 
unique way of proving security in the random oracle model. Furthermore, within our proof, 
the hash oracle and the signing oracle are constructed in an innovative manner in order to 
accommodate the bilinear map.  

Our scheme is very efficient in terms of the total number of time periods, T, and all of our 
parameters have a complexity no larger than (log )O T . Therefore, when compared with other 
forward secure signature schemes [5, 1, 24], our scheme is especially useful in scenarios 
where frequent key updates or long operational system times, are required.  The signing and 
key update operations in our scheme are very simple, and only require one addition and one 
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multiplication on the additive group 1G  – on average for key update. Verification only 
requires (log )O T  mapping operations and multiplications. Because our scheme is based on 
bilinear maps that can be constructed from Weil and Tate pairings on an elliptic curve, we are 
able to work on a much smaller finite field and hence achieve both smaller key sizes and 
signature sizes, when T  is relatively small. Since complexity is related to logT , increases in 
size are very slow as T  increases. 

1.4 Outline of the Paper 
Our approach is first to provide precise definitions for the key-evolving signature scheme and 
its forward security. Then some mathematical background in bilinear maps is provided. In 
section 3, a detailed description of the scheme and its security analysis is given. Some 
features of the scheme are given in section 4. Finally, the appendix provides a detailed 
security proof.  
 

2 Definitions  
In this section, we define the key-evolving signature scheme and the formal notion of forward 
security in the random oracle model. All these definitions closely follow those given in [1], 
which, in turn, are based on the first formal definition of forward-secure signature proposed 
by Bellare and Miner [5]. We also present the definition of the Computational Diffie-Hellman 
assumption and review the preliminaries of bilinear maps, since our scheme is based on them. 

2.1 The Forward-secure Digital Signature Scheme 
The approach employed by forward-secure digital signature schemes involves updating the 
secret key periodically. Therefore, a forward-secure signature scheme is, first, a key-evolving 
signature scheme. The operational time of a forward-secure signature scheme is divided into 
time-periods. As in standard signature schemes, it consists of a key generation algorithm, a 
signing algorithm and a verification algorithm. In addition, a key update algorithm is needed 
to update the secret key from one time-period to another, based on the secret key used in the 
current time-period. Forward security results from the fact that the update algorithm is a one-
way function and it is very difficult for an adversary to recover previous secret keys even if 
the secret key in the current time-period is known 4. 

The signing algorithm signs a message with the secret key for that specific time-period. 
However, the public key remains constant for all time-periods. The verification algorithm 
verifies not only the validity of the signature but also the time-period in which the message is 
signed.  

 
Definition 2.1 [Key-evolving Signature Scheme]. A key-evolving digital signature scheme 
is an algorithm with the quadruple, KE - SIG = (Gen, Upd, Sig, Ver) , such that:  

1. Gen , the key generation algorithm, is a probabilistic algorithm that inputs a security 
parameter k N∈  (given in unary as 1k ) and the total number of time-periods T , and 
returns a public key PK  and the initial secret key 0SK . 

2. Upd , the secret key update algorithm, accepts as input the secret key iSK  for the 
current time-period, and returns the new secret key 1iSK +  for the next time-period. 

                                                            
4Obviously, it is important for the signer, i.e. key owner, to properly destroy the “old" secret key. 

Otherwise, an adversary who obtains the “old" secret key can easily forge the signature for previous 
time-periods. As pointed out by Itkis and Reyzin [24], secure deletion of the secret key is not a trivial 
task, and it is not unreasonable to insist that the signer guarantee the deletion operation rather then 
guaranteeing their placement  in some “safe" place.  
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This algorithm is usually deterministic.  
3. Sig , the signing algorithm, accepts as input the secret key iSK  in the current time-

period and a message M .  It returns a pair  i sign〈 , 〉 , that represents the signature of 
M  and time-period index i . This algorithm may be probabilistic. 

4. Ver , the verification algorithm, accepts as input the public key PK , a message M  
and a candidate signature  i sign〈 , 〉 , and returns 1 if the signature of M  is valid or 0, 
otherwise. This algorithm is typically deterministic. 

The verification algorithm is required to verify that a signature of M , generated via 
( )

iSK MSig , is valid for period i . For convenience, it is also assumed that the secret key iSK  
for time-period {0 1}i … T∈ , , − , always contains both the value i  and the total number of 
periods T . For the last time period 1T − , ( )1TSK −Upd  returns the empty string TSK . 

Since we work in the random oracle model, all algorithms in KE - SIG  will also have 
oracle access to a public hash function H , which is assumed random in our security analysis. 
The reason for this stipulation will now be addressed. 

 
SECURITY ANALYSIS USING THE RANDOM ORACLE MODEL. Our work is performed in the 
random oracle (RO) model, which is widely used and was explicitly formulated by Bellare 
and Rogaway [6]. It assumes that all parties, including adversaries, have oracle access to a 
truly random function. In implementing an ideal system, the random oracle must be replaced 
with some “cryptographic hash function”, e.g., MD5 or SHA, since a truly random function 
does not exist in the real world. The RO model, i.e. its methodology, provides a practical and 
efficient way to design cryptographic protocols and schemes. 

The security of the signature scheme should guarantee that it is computationally infeasible 
for any adversary to forge a signature message pair without knowledge of the secret key for 
that time-period. The possibility of key exposure, caused by adversarial break-in, must also be 
considered. Since we consider the time period starting at zero, we need modify slightly the 
security model suggested by Abdalla and Reyzin [1] to suit the needs.5 

In this model, an adversary knows the public key PK , the total number of time-periods T  
and the current time-period. For the key-evolving signature scheme KE-SIG = (Gen, Upd, 
Sig, Ver), the adversary F  is functioning in three stages: the chosen-message attack (cma) 
phase, the break-in (breakin) phase, and the forgery (forge) phase. In the cma phase, F  has 
access to the signing oracle, and can obtain the signature of any message it selects under the 
current secret key. The breakin phase is used to model the possible key exposure caused by an 
adversary F  break-in. In such a case, F  is given the current secret key iSK . In the final 
forge phase, F  outputs its forgery, i.e. a signature message pair. The adversary F  is said to 
be successful if it forges the signature of some “new” message for some time-period prior to 
the break-in. Here, the term “new” message is used to indicate some message that has never 
been queried for the signature by the adversary. We use the following experiment to evaluate 
the success probability of breaking the forward-security of the signature scheme. The use of 
k T, ,  indicates that the arguments of the key generation algorithm could be more than just 
k  and T . 

 

Experiment F-Forge-RO( - , )FKE SIG   

Select {0 1} {0 1}lH ∗: , → ,  at random  

0(  ) (  , )
R

HPK SK k T, ← ,Gen  
0i ←   

Repeat  
                                                            
5The security model in [1] was modified using the security model by Bellare and Miner in [5] to work 
in the random oracle model. 
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( ),
1(  );  ( )  1

H
SKiH H

i id F PK SK SK i i•
+← , ← ; ← + ;Sig cma Upd  

Until ( )d = breakin  or ( )i T=   
If d ≠ breakin and i T=  then 1i T← +   

1i i← −   
(   ) ( ,  )H

iM b sign F SK, 〈 , 〉 ← forge  
If (   ) 1H

PK M b sign, 〈 , 〉 =Ver  and 0 b i≤ <  and M  was not queried of ( )
b

H
SK •Sig in 

period b   
Then return 1 else return 0  

 
In this formulation, it is understood that the state of F  is preserved across its various 
invocations once we first pick and fix coin for it [5]. In this foregoing experiment, a random 
oracle H , i.e.the public hash function which is assumed to be random, is selected first; and 
then the key generation algorithm (Gen), with access to H-oracle6, will generate both the 
public key and the secret key for time-period 0. In the chosen-message attack phase ( cma ), 
F  queries the signing oracle ( ( )

i

H
SK •Sig ) and the H -oracle as many times as it wants, and 

then outputs some value d  to indicate it is finished. As long as d  is not breakin , it proceeds 
to the next time-period. At some time i, F  decides to break-in; it is then given the current 
secret key iSK . If F  does not break-in by the last time-period, it is given TSK , which by 
definition is the empty string. F will then try to forge a signature for some new message M  
in time-period b i< . Depending upon the signature verification results, the experiment will 
return a 1 or 0 to indicate the success or failure of the adversary F . 
 
Definition 2.2 [Forward-security in the Random Oracle Model]. Let KE-SIG = (Gen, 
Upd, Sig, Ver) be a key-evolving signature scheme, H  a random oracle and F  an adversary 
as described earlier. Let ( - [  ]  )fwsig k T F, , ,Succ KE SIG  denote the probability that the 
experiment F-Forge-RO ( KE-SIG[  ]  )k T F, , ,  returns 1. Then the insecurity of KE-SIG is 
the function   

( - [  ]    ) max { ( - [  ]  )}fwsig fwsig
sig hash F

k T t q q k T F, , ; , , = , , ,Insec SuccKE SIG KE SIG , 

where the maximum is taken over all adversaries F  for which the following condition holds: 
the execution time for the above experiment is at most t ; F  makes at most sigq  signing 

queries to the signing oracle and hashq  hash queries to the -oracleH .  

2.2 Cryptographic Preliminaries and Assumptions 
Let q  be some large prime, and let g  be a generator of some cyclic group G  with prime 
order q . The security of our signature scheme is based upon the difficulties encountered in 
solving the CDH problem.  
 
Definition 2.3 [CDH Assumption].  A probabilistic algorithm A  is said to be (  )t ε, -break 
CDH in a cyclic group G  if A  runs at most time t , computes the Diffie-Hellman function 

(  )a b ab
g qDH g g g, , =  with input (  )g q,  and (  )a bg g,  with a probability of at least ε , where 

the probability is over the coins of A  and ( )a b,  is chosen uniformly from q q×Z Z . The 
group G  is a (  )t ε, -CDH group if no algorithm (  )t ε, -breaks CDH in this group.  
 
BILINEAR MAPS. Our signature scheme is constructed using the bilinear map suggested by 
Boneh and Franklin [9]. Definitions of the terms employed in the use of bilinear maps are 
                                                            
6 We adopt the convention to denote the access of the hash oracle and signing oracle as the superscript 
in expressions. 
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briefly outlined as follows. Let 1G  and 2G  be two groups of order q  for some large prime 
q . A bilinear map 1 1 2ê : × →G G G  is a one-way mapping between these two groups that has 
following properties: 
1. The map is bilinear; that is, for all 1,  P Q∈G  and all  qa b, ∈Z , there is (  )ê aP bQ,  

(  )abê P Q= , .  
2. The map is non-degenerate, i.e. the map does not send all pairs in 1 1×G G  to the identity 

in 2G . In particular, because 1G  and 2G  are in prime order q , if P  is a generator of 1G  
then (  )ê P P,  is a generator of 2G .  

3. There is an efficient algorithm to compute the map (  )ê P Q,  for any 1 P Q, ∈G .  
A parameter generator IG  is defined as a randomized algorithm that takes a security 
parameter k N∈  (denoted as unary 1k ), runs in polynomial time k , and outputs the 
description of the two groups 1G  and 2G  (of prime order q ) and the bilinear maps ê , having 
the above properties. The description of 1G , 2G  contains the polynomial time (in k ) 
algorithm for computing the group operation. k  is used to determine the bit length of q .  

To simplify the efficiency analysis with input security parameter k , we assume the 
computation for IG  is a ( )nO k  bit operation, a group operation on 1G  is at most a 1( )nO k  
bit operation, a group operation on 2G  is at most a 2( )nO k  bit operation and one mapping 
operation is a ( )eO k  bit operation. In this case, 1 2,  ,  ,  n n n e N∈  are orders of the polynomial 
time algorithm and are determined by the constructing of the bilinear map. 

Note that the parameter generator, that generates 1 2and G G , which are (  )t ε, -CDH 
groups, can be constructed from Weil and Tate pairings on elliptic curves or abelian varieties 
[9, 18, 26, 29, 32]. However, our scheme is independent of any specific construction.  
 

3 The Proposed Forward-secure Signature Scheme 

3.1 Scheme Overview 
Our scheme employs the binary tree structure, which has been widely used by many 

researchers in cryptographic design. In [5], Bellare and Miner first suggested the possibility of 
using such a structure to form a forward secure signature scheme. It was also adopted in [20, 
12, 17].  

Following the approach in [12, 17], we define the total number of time-periods T  to be a 
power of 2 ( 2lT = ). Therefore, each time-period (0 2 1)li i≤ < −  can be represented using a 
binary representation in l  bits, that is, 1 2 3 li i i i i〈 〉 = . We construct a full binary tree of height 
l  to cover all time-periods. The root of the tree is called node ε . Each leaf of the tree is 
labeled with its binary representation i〈 〉  and denotes the time-period i . The time-period 
evolves from the leftmost leaf to the rightmost leaf with the first leaf representing time-period 
0, the second leaf representing time-period 1, and so forth, culminating in the last time-period 
2 1l − . All other internal nodes , i..e. a node that is not a root or leaf of the tree, are labeled 
with the binary representation of its position in j  bits, where j  is the depth of the node 
(1 j l≤ < ). We denote each of these internal nodes as ζ  in short representation and 

1 2 jζ ζ ζ ζ=  in binary representation.  

The root node ε  contains the “root secret” sε  and a “root verification point” Q . For each 
internal node ζ , we denote its left and right child node as 0ζ  and 1ζ  individually. Each of 
the nodes ζ  also contain a “node secret” sζ , a “local secret” 1Sζ ∈G , and a “verification 
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point” Qζ . The “local secret key” for node ζ  is ( )sk Sζ ζ ζ= ,Q , where 

1 1 2 1 2 1
(   )

j
Q Q Qζ ζ ζ ζ ζ ζ ζ −

= , , ,Q . Each leaf contains a “leaf secret” is〈 〉 , a “local secret” 

1iS〈 〉 ∈G  and a “verification point” 1iQ〈 〉 ∈G . The “local secret key” for a leaf is then 
(  )i i isk S〈 〉 〈 〉 〈 〉= , Q , where 

1 1 2 1 2 1
(   ,  )

li i i i i i i iQ Q Q Q
−〈 〉 〈 〉= , , ,Q . Note that iQ〈 〉  is also included in 

i〈 〉Q . All those “verification points” are necessary to verify the signature and are included in 
the signature when the user signs a message. However, they are not really “secrets” and can 
be revealed to the public. The  secret keys have the following properties:  
 

1. To sign a message during time-period i , one needs only is〈 〉  and isk〈 〉 .  
2. Given skζ , secrets 0skζ  and 1skζ  can be efficiently derived.  

3. If one has no knowledge of skζ  for any prefixes ζ  of i〈 〉 , then given PK  
and time-period i , it is infeasible to derive isk〈 〉 .  

 
The “global secret key” iSK  for time-period i  consists of (1) is〈 〉 ,  (2) isk〈 〉 , and  (3) 

{
0 1 2 11ji i i isk

−
}, for each 0ji = , 1 j l≤ ≤ .  The first two parts are the “leaf secret” and the “local 

secret key” for the leaf. Given the binary representation 0 1 li i i i〈 〉 =  (where 0i  is the root), 
for each index j  (1 j l≤ ≤ ) that provides 0ji = , node 0 1 20 ji i i iζ =  has a right sibling node 

0 1 2 11 1ji i i iζ −= . These right sibling nodes are important for key updates. Thus, the last part 

of iSK  is a set of “local secret keys” for all right sibling nodes for time period i . ( )iψ  is used 
to denote all these right sibling nodes for time period i .  

To reduce the storage requirement, we utilize the same simplification techniques outlined 
in [17] and eliminate some redundant storage of “verification points” in isk〈 〉  and 
{

0 1 2 11ji i i isk
−

}. We decompose isk〈 〉 , {
0 1 2 11ji i i isk

−
} and represent iSK  as {    }i i i is S〈 〉 〈 〉 〈 〉 〈 〉, , ,S Q . 

Here iS〈 〉  and i〈 〉Q  are decomposed from isk〈 〉 ; { | ( )}i S iζ ζ ψ〈 〉 = ∈S  represents all the “local 
secrets” of those right sibling nodes for time period i . Other redundant storage of ζQ  is 
eliminated. Note that the “node secret” (including root node) sζ  (or sε ) is randomly selected 

and will be deleted as soon as the derivation of 0 1S Sζ ζ,  and Qζ  (or 0 1S S,  and Q ) is 
performed. Therefore, sζ  is not a part of iSK . 

We can see from the foregoing description that it is easy to derive "isk〈 〉  for a later time-
period "i i>  given the “global secret key” iSK . However, by properly destroying the “old 
secrets”, we can make the derivation of the previous secret key difficult for everyone, even 
the signer. In our scheme, i〈 〉S  is stored for key update purposes only. Given i〈 〉S , it is easy to 
update the current iS〈 〉  to 1iS〈 + 〉 . Update of i〈 〉Q  and i〈 〉S  (to 1i〈 + 〉Q  and 1i〈 + 〉S ) accompanies the 
update of iS〈 〉  (to 1iS〈 + 〉 ) naturally, where 1is〈 + 〉  is selected at random. The forward security of 
our signature scheme is based on the intractability of iS〈 〉  after time-period i . Assuming the 
safe deletion of iS〈 〉  at the end of time-period i , the one-way property of the key update 
algorithm guarantees the forward security of our scheme. Figure 1 shows the overall structure 
of the binary tree and an example for time period 5i = . Detailed algorithms will be presented 
in the following section.  
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Figure 1. The overall structure of the binary tree and an example for time period 5i = . The binary 
representation is 0101i〈 〉 = . Nodes in dark gray are right sibling nodes that are important for key 
update purposes. Other nodes in light gray are irrelevant at time period i . 

3.2 Scheme Details 
Our construction is based on the HIDS (hierarchical identity-based signature) in [20] and the 
ke -PKE  in [12]. We emphasize that there is no security proof for HIDS in [20] and the 
proof in [12] does not fit our context directly, because our scheme is a signature, rather than 
an encryption, scheme.  

We assume the hash function 1{0  1}H ∗: , →G  is defined either by Gen or other 
specifications of the scheme. H  is public to all parties and assumed to be random. We use φ  
to denote an empty string and 0 j  to denote j  zeros. The details of our scheme are:  

 
algorithm (1  2 )k lT, =Gen   

run (1 )kIG  to generate 1 2,G G (of prime order q ) and ê   

select a random generator 1P ←G ; 
R

qsε ←Z ; set Q s Pε=   
public key 1 2{     }PK ê P Q= , , , ,G G   

0 1(0)  (1)S s H S s Hε ε= , = ; set 0 0(  )sk S φ= , , 1 1(  )sk S φ= , , 10
{ }l S=S  

For 1j =  to 1l −   
let 0 jζ = ;  ( 0 1,  sk skζ ζ ) = Extract( ,  skζ ζ ) 
parse 0 0 0{  }sk Sζ ζ ζ= , Q , 1 1 1{  }sk Sζ ζ ζ= , Q , 10 0

{ }l l Sζ= ∪S S  

select 
0l

R

qs ←Z ; set 
0 0l lQ s P= ; set 0 0 00 0 0

{    { }}l l lSK s S Qζ ζ= , , , ∪S Q  ( 10lζ −= ) 
delete all other intermediate values 

return 0(  )PK SK,  
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Subroutine Extract( ,  skζ ζ ) 

parse 1 2 jζ ζ ζ ζ= , where jζ = ; parse {  }sk Sζ ζ ζ= , Q  

 
R

qs Q s Pζ ζ ζ← , =Z  

0 1 2( 0)jS S s Hζ ζ ζ ζ ζ ζ= + , 1 1 2( 1)jS S s Hζ ζ ζ ζ ζ ζ= +   
set 0 0 0 1 1 1{  }  {  }sk S sk Sζ ζ ζ ζ ζ ζ= , , = ,Q Q , where 0 1 { }Qζ ζ ζ ζ= = ∪Q Q Q  

return ( 0 1,  sk skζ ζ ) 
 
The subroutine Extract is used to derive the “local secret key” for child nodes. Given the 
input skζ  and the node ζ , it returns the “local secret key” 0 1,  sk skζ ζ . The Upd algorithm 
also uses this subroutine. 
 
algorithm ( )iSKUpd   

If 1i T= −   
1iSK φ+ = ; delete iSK   

else 
let 0 1 2 li i i i i〈 〉 =  where 0i ε=  for convenience, parse iSK  as {    }i i i is S〈 〉 〈 〉 〈 〉 〈 〉, , ,S Q   
If 0li =  

get 1iS〈 + 〉  from i〈 〉S ; set 1 1{ }i i iS〈 + 〉 〈 〉 〈 + 〉= −S S  (remove 1iS〈 + 〉  from i〈 〉S ) 

select 1

R

i qs〈 + 〉 ←Z ; set 1 1i iQ s P〈 + 〉 〈 + 〉= ; set 1 1( { }) { }i i i iQ Q〈 + 〉 〈 〉 〈 〉 〈 + 〉= − ∪Q Q  
set 1 1 1 1 1{    }i i i i iSK s S+ 〈 + 〉 〈 + 〉 〈 + 〉 〈 + 〉= , , ,S Q ; delete iSK  

else  
find the largest j  (1 j l≤ < ) that gives 0ji =  

let 0 1 2 11ji i i iη −=  where 0i ε=  for convenience, we have 1 0l ji η −〈 + 〉 =  
get Sη  from i〈 〉S ; set 1 { }i i Sη〈 + 〉 〈 〉= −S S  (remove Sη  from i〈 〉S ) 
For 1m =  to l j−   

let 10mζ η −= , ( 0 1,  sk skζ ζ ) =Extract( ,  skζ ζ ),  
parse 0 0 0{  }sk Sζ ζ ζ= , Q , 1 1 1{  }sk Sζ ζ ζ= , Q ; 1 1 1{ }i i Sζ〈 + 〉 〈 + 〉= ∪S S  

select 1

R

i qs〈 + 〉 ←Z ; set 1 1i iQ s P〈 + 〉 〈 + 〉=   

set 1 1 0 1 0 1{    { }}i i i iSK s S Qζ ζ+ 〈 + 〉 〈 + 〉 〈 + 〉= , , , ∪S Q  ( 10l jζ η − −= ); delete iSK  
delete all other intermediate values 

return 1iSK +  
 
Depending on the input time period, the key update algorithm returns empty string (for the 
last time period) or proceed to calculate the secret key for the next time period. The 
calculation algorithm has two cases. If the -thl bit of i〈 〉  equals zero, it simply randomly 
selects 1is〈 + 〉 , gets the local secret 1iS〈 + 〉  from i〈 〉S , deletes 1iS〈 + 〉  from i〈 〉S  to avoid 
redundant storage and updates i〈 〉Q  to 1i〈 + 〉Q  by replacing the “verification point” for the 
leaf. If the -thl bit of i〈 〉  is not equal to zero, it finds the largest index j  that produces 

0ji = , the corresponding right sibling node η , and derives 1iS〈 + 〉  from Sη . The update of 

i〈 〉S and i〈 〉Q  follows the derivation of 1iS〈 + 〉 , and 1is〈 + 〉  is selected at random. 
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algorithm ( )
iSK MSig   

parse 1 2 li i i i〈 〉 = , {    }i i i i iSK s S〈 〉 〈 〉 〈 〉 〈 〉= , , ,S Q   
let 1 2( )i i lV S s H i i i M〈 〉 〈 〉= + and { ,  }isign V 〈 〉= Q   
return  i sign〈 , 〉   

 
 
algorithm (  ,  )PK M i sign, 〈 〉Ver   

parse 1 2 li i i i〈 〉 = , { ,  }isign V 〈 〉= Q  and 
1 1 2 1 2 1

{   ,  }
li i i i i i i iQ Q Q Q
−〈 〉 〈 〉= , , ,Q   

let  

1 2 1 1 2
2

( )

( ( ))
j

l

i i i j
j

ê P VX
ê Q H i i i

−
=

,
=

, ...∏
;  1 1 2( ( )) ( ( ))i lY ê Q H i ê Q H i i i M〈 〉= , ⋅ ,  

 
If X Y=  then return 1 (true) 
else return 0  (false) 

 
 
The following analysis shows how to verify if sign  is a valid signature for time-period i  and 
message M . If the signature is valid, we have  

1 1 2 1 212 12

12 1
1 2 1 212 12 2

( ( ) ( ) ( ))
( )

( ( )) ( ( ))

l
i i i j i ljj

sl l i i i j
i i i j jjj j

ê P s H i s H i i i s H i i i M
ê P V

ê Q H i i i ê P H i i i
X

ε 〈 〉−=

−
−= =

, + +
,

, ... ,

∑
= =
∏ ∏

  

1 1 2 1 212 12

12 1
1 2

2

( ( )) ( ( )) ( ( ))

(  ( ))

l
i i i j i ljj

sl i i i j
j

j

ê P s H i ê P s H i i i ê P s H i i i M

ê P H i i i

ε 〈 〉−=

−

=

, ⋅ , ⋅ ,

,

∏
=

∏
  

12 1
1 1 2 1 2

2

12 1
1 2

2

( ( )) ( ( )) ( ( ))

( ( ))

sl i i i j
j i l

j
sl i i i j

j
j

ê P s H i ê P H i i i ê P s H i i i M

ê P H i i i

ε
−

〈 〉
=

−

=

, ⋅ , ⋅ ,

,

∏
=

∏
  

1 1 2 1 1 2( ( )) ( ( )) ( ( )) ( ( ))i l i lê P s H i ê P s H i i i M ê Q H i ê Q H i i i M Yε 〈 〉 〈 〉= , ⋅ , = , ⋅ , =  
 
Thus, the verification succeeds (algorithm (  ,  )PK M i sign, 〈 〉Ver  returns 1).  

3.3 Efficiency Analysis 
SIGNING AND VERIFYING. The signing operation in our scheme requires only one 
multiplication and addition on 1G , which uses 1( )nO k  bit operations. The total signing 
computation is independent of the total number of the time periods, T . The verification 
requires more computation because it involves the pairing computation. To verify a signature 
one must do (log )O T  pairing operations and (log )O T  multiplications or division on 2G . 
Therefore, the total computation for verification is 2( log log )neO k T k T+  bit operations, and 
the complexity is (log )O T  solely in terms of T . 
 
KEY GENERATION. The key generation only requires operations on 1G . It requires 1 
multiplication to generate Q  in the public key ( 1( )nO k  bit operations), 2log T  multiplications 
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and 2log 1T −  additions to generate 
0lS  ( 1( log )nO k T  bit operations), another 2log T  

multiplications and 2log 1T −  additions to generate 
0lS  ( 1( log )nO k T  bit operations), and an 

additional 2log T  multiplications to generate 
0lQ  ( 1( log )nO k T  bit operations). In addition, 

the parameter generator IG  runs in polynomial time in ( )nO k . Therefore, the total 
computation is 1 1( log )n n nO k k T k+ +  bit operations. The total computation complexity in 
terms of T  is (log )O T . 
 
KEY UPDATE.  Key generation only requires operations on 1G . In the worst case, the key 
update takes up to 2log T  multiplications to generate 1i〈 + 〉Q , 2log 1T −  multiplications and 

2log 1T −  additions to generate 1iS〈 + 〉 , another 2log 1T −  multiplications and 2log 1T −  

additions to generate 1i〈 + 〉S . The computation is 1( log )nO k T  bit operations. Considering all 
time periods, the average computation is reduced to 1( )nO k  and the complexity, in terms of 
T , is reduced to (1)O . 
 
SIZES. Assuming an element in either the public or private key, with the exception of the 
description for groups and the map ê , is represented in ( )O k  bits, the public key size is 
then ( )O k . The complexity in terms of T is then (1)O . The private key contains a ( )O k  bits 

is〈 〉 , a ( )O k  bits iS〈 〉 , a 2( ) logO k T  bits i〈 〉Q , and an average 2( ) log 2O k T  bits of i〈 〉S . 
Therefore, it has the size of ( log )O k T k+ , which is (log )O T  in terms of T . The signature 
contains a ( )O k  bits V  and all the Qζ . The size is ( log )O k T k+ , which is (log )O T  in 
terms of T .  
 
Table 3-1 summarizes our results. 
 

Key generation time 1 1( log )n n nO k k T k+ +  (log )O T  
Signing time 1( )nO k  (1)O  
Verification time 2( log log )neO k T k T+   (log )O T  
Key update time 1( )nO k  (1)O  
Public key size ( )O k  (1)O  
Private key size ( log )O k T k+  (log )O T  
Signature size ( log )O k T k+  (log )O T  

Table 3-1 A Complexity Summary of our signature scheme. 

3.4 Security Analysis 
The following theorem provides an upper bound on the insecurity of our signature scheme. 
Since the security of our scheme is based on a different cryptographic assumption, i.e. the 
CDH assumption, than previous works, we have a unique method for proving security in the 
random oracle model. Both the hash oracle and the signing oracle are constructed in an 
innovative manner, and the technique employed in the proof uses ideas from [1, 5, 12].  
 
Theorem 3.1. If there exists a forger F  that runs in time at most t , asking at most hashq hash 
queries and sigq signing queries, such that ( [  ] )fwsig k T F ε, , , >Succ KE - SIG  then there 

exists a adversary A  that ( '  ')t ε, -break CDH in group 1G  where 
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1 2' ( log )nt t O k k T= + +  
' 1 1 ( 1)hash sigT q qε ε= ⋅ + + ⋅  

 
Proof idea: To break CDH in the additive group 1G  with the order of q , A  is given P  (a 
random generator of 1G ), 'P aP=  and 'Q bP= , where ,  qa b∈Z  is randomly chosen and 
remains unknown to A . The target of A  is to derive 'S abP=  with the help of the forger F . 
To derive 'S , A  runs F  as the subroutine. A  provides F  the public key and answers its 
hash queries, signing queries and breakin query. Note that F  has no other means of 
obtaining answers to these queries and cannot verify that the hash answers are the same as 
those given by the public hash function H . A  appears to be the real signer to F , as long as 
the signatures and the secret key, answered by A , are verifiable using the related hash 
answers from A . A  embeds the CDH problem into the public key and then answers the 
foregoing queries. After F  forges a signature successfully, A  is able to derive the answer to 
the CDH problem using the forged signature. 

The procedure for A  is briefly described as follows. First of all, A  guesses a random 
index i  ( 0 i T≤ < ), hoping the forger F  will ask for the breakin query in time period i . A  
then generates public key 1 2{     }PK ê P Q= , , , ,G G  with 'Q Q= . A  gives the public key to 
F  and runs from the time period 0  to 1T −  (as in the Experiment 
F-Forge-RO( - , )FKE SIG ). A  can easily answer the hash queries and signing queries from 
F  because A  completely controls the hash oracle. A  embeds 'P  into some hash entries and 
provides them to F  in its queries.  During the execution, A  must make a second guess of the 
random index 'g , hoping the final forgery is based on the 'g -th hash query. A  sets this hash 
entry specifically. Suppose all the guessing is correct and forger F  finally outputs a signature 
on message 'gM  for some time period 'i i< . A  is then able to derive 'S abP=  from this 
signature utilizing the non-degenerate property of the bilinear map ê , the “verification 
points” in time period 'i  and related hash entries. The lower bound probability to solve the 
CDH problem is derived from the lower bound probability of a successful forgery. 

Due to space limitations, a detailed proof is included in Appendix A.  
 
Theorem 3.2  Let [ , ]k TKE-SIG  represent our key evolving signature scheme with modulus 
size k  and number of time periods T . Then for any t , sigq and hashq , 
 

( - [  ]    ) ( 1) ( ,  ')cdhfwsig
sig hash hash sigk T t q q T q q k t, ; , , ≤ + + InsecInsec KE SIG  

where 1 2' ( log )nt t O k k T= + + . 
 
Proof: The insecurity function is computed simply by solving for the function in Theorem 3.1 
and then represent ε  as 'ε  

' 1 1 ( 1)hash sigT q qε ε= ⋅ + + ⋅ ⇒  

( 1) 'hash sigT q q ε ε+ + =  

Theorem 3.2 follows. 

4 Discussions 
The scheme proposed in this paper can be readily incorporated with PKI. The system 
parameters 1 2,  , , ê PG G  can be published, and Q  is bound to the signer by a certificate. In 
comparison to previous forward secure signature schemes [5, 1, 24], our scheme has the 
advantage that no parameter has a complexity value of more than logT , where T  is the total 
number of time periods. In [5, 1], the signing and verification times are both linear in T . For 
the scheme in [24], the signing and verification are fast and independent of T , but their key 
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generation and key update times are still linear in T . This advantage ensures that our scheme 
is particularly useful for systems requiring frequent key updates or a long operating time. 
Furthermore, in some cases, the signature size of our scheme can even be reduced to ( )O k . 
For example, for some verifier who has previously received a signature for the same time 
period, the transmission of “verification points” Q  can be neglected, and the verifier can 
simply use those “verification points” stored for the previous signature.  

The efficiency of our scheme is balanced across all its aspects. The efficient signing and 
verification (in terms of T ) comes at the cost of signature and private key sizes. All these 
sizes are not independent to T (has a logT  complexity). However, a distinct feature of our 
scheme is that it is based on bilinear maps that can be constructed from Weil or Tate pairings 
on an elliptic curve. Our scheme can work on a smaller finite field and, as a result, achieves a 
shorter signature size than other known forward secure signature schemes [5, 1, 24] when the 
total number of time period is small (e.g. 64T ≤ ).  These other schemes, which are based on 
the integer factoring problem or a strong RSA assumption, normally have a 1024-bit group 
size. Using the same bilinear map construction in the BLS signature scheme [11], we can 
achieve a 171 bit signature with 1024-bits security in RSA based approach, when T=1. 
Furthermore, the logT  complexity also guarantees that a size increase is very slow when T  
increases.  

The signing and key update operations in our scheme require only one addition and one 
multiplication (on average), which is very efficient when compared with previous schemes. 
The efficiency of our signing and key update operations is comparable to a signing operation 
in the BLS signature scheme [11] if the bilinear map is constructed in the same manner. The 
BLS signing operation requires only one multiplication on the elliptic curve. However, an 
addition operation on the elliptic curve is much faster than a multiplication operation and can 
be neglected in this approximation. From the implementation results in [4], we find that a 
BLS signature generation is faster than a RSA signature generation. Therefore, we can be 
assured that our scheme is able to achieve more efficient signing and key updates when 
compared with other known forward secure signature schemes [5, 1, 24], whose signature 
generation or key update requires more computation than that involved in one RSA signature 
generation.  

Signature verification in our scheme is still limited by the efficient computation involved 
in pairing operations. However, the results shown in [4, 19] have demonstrated a lot of 
progress in this area. From [4], the computation time for a Tate pairing with the prime field 
size of 512 bits (with preprocessing) is now comparable to one RSA signing operation with a 
1024 bits modular and a 1007 bits exponent. We believe our scheme has a great potential and 
should aid the progress of research in this field.  

With its inherent features, our scheme is applicable in a number of areas. For example, for 
mobile device authentication, the signature verification is done at the server side, which has 
more computation power to do the pairing operations. Signature generation can be done 
efficiently on the mobile device. The forward secure nature of the scheme provides a stronger 
security guarantee and the LogT complexity also enables frequent key updates or longer 
system reset times in scenarios where they are needed. 

5 Conclusions 
In this paper, we have proposed the first forward secure signature scheme based on bilinear 
maps. Our scheme is efficiently constructed with a complexity of no more than (log )O T , 
with flexibility based on the underlying bilinear map. We also provide a detailed performance 
analysis based on the complexity assumptions of the underlying construction. The security of 
our scheme is based on the Computational Diffie-Hellman assumption and is unique in 
comparison to other approaches. We provide the formal definitions and the security proofs for 
our scheme in the random oracle model, in which the hash oracle and signing oracle are 
constructed in an innovative manner that accommodates the bilinear map. Our scheme offers 
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an efficient signing and key update operation when compared to previous schemes. Although 
signature verification is still limited by the efficiency of the paring operations, our signature 
scheme is useful in many applications due to its enhanced scalability from the standpoint of 
time periods, efficient signing and key updates. 

References 

1. M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme”, Advance in 
Cryptology – ASIACRYPT 2000, Vol. 1976 of Lecture Notes in Computer Science, T. Okamoto 
ed., pp. 116–129, Springer-Verlag, 2000.  

2. M. Abdalla, S. Miner, and C. Namprempre, “Forward-secure threshold signature schemes”, 
Topics in Cryptology – CT-RSA 2001, Vol. 2020 of Lecture Notes in Computer Science, D. 
Naccache ed., pp. 441–456, Springer-Verlag, 2001.  

3. R. Anderson, “Two remarks on public-key cryptology”, Invited lecture, CCCS’97, Available at 
http://www.cl.cam.ac.uk/users/rja14/. 

4. P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms for pairing-based 
cryptosystems”, Advance in Cryptology – CRYPTO 02, Vol. 2442 of Lecture Notes in Computer 
Science, pp. 354–368, Springer-Verlag, 2002. 

5. M. Bellare and S. Miner, “A forward-secure digital signature scheme”, Advance in Cryptology – 
CRYPTO 99 proceedings, Vol. 1666 of Lecture Notes in Computer Science, M. Wiener ed., pp. 
431–448. Springer-Verlag, 15-19 August 1999.  

6. M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm in designing efficient 
protocols”, In First Annual Conference on Computer and Communications Security, ACM, pp. 
62–73, 1993. 

7. M. Bellare and B. Yee, “Forward-security in private-key cryptography”, Topics in Cryptology – 
CT-RSA 2003, vol. 2612 of Lecture Notes in Computer Science, M. Joye ed, pp. 1–18, Springer-
Verlag, 2003.  

8. G. R. Blakley, “Safeguarding cryptographic keys”, Proceedings of AFIPS 1979 National 
Computer Conference, Vol. 48, pp. 313–317, 1979.  

9. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, SIAM Journal on 
Computing, Vol. 32, No. 3, pp. 586-615, 2003. 

10. D. Boneh, “The decision Diffie-Hellman problem”, Proceedings of the Third Algorithmic 
Number Theory Symposium, Vol. 1423 of Lecture Notes in Computer Science, Joe P. Buhler ed., 
pp 48–63, Springer Verlag, 1998.  

11. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”, In Advances in 
Cryptology - ASIACRYPT 2001, LNCS Vol. 2248, pp. 514-532, Springer-Verlag, 2001. 

12. R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption scheme”, To appear 
in Advances in Cryptology – Eurocrypt ’03, At http://eprint.icar.org/2003/083/. 

13. Y. Desmedt and Y. Frankel, “Threshold cryptosystems”, Advances in Cryptology – CRYPTO 89 
proceedings, Vol. 435 of Lecture Notes in Computer Science, G. Brassard ed., pp. 307–315, 
Springer-Verlag, 1989.  

14. W. Diffie, P. van Oorschot, and M. Wiener, “Authentication and authenticated key exchange”, 
Designs, Code, and Cryptography, Vol. 2, pp. 107–125, 1992.  

15. W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions on 
Information Theory, 22(6), pp. 644–654, November 1976.  

16. Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated public key cryptosystems”, Advances in 
Cryptology – Eurocrypt 2002, Vol. 2332 of Lecture Notes in Computer Science, L. Knudsen ed., 
pp. 65–82, Springer Verlag, 2002.  

17. Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung, “Intrusion resilient public-key 
encryption”, Topics in Cryptology – CT-RSA 2003, Vol. 2612 of Lecture Notes in Computer 
Science, M. Joye ed, pp. 19–32, Springer-Verlag, 2003.  

18. S. Galbraith, “Supersingular curves in cryptography”, Advances in Cryptology – Asiacrypt 2001, 
Vol. 2248 of Lecture Notes in Computer Science, pp. 495–513, Springer-Verlag, 2001. 

19. S. Galbraith, K. Harrison and D. Soldera, “Implementing the tate pairing”, Algorithm Number 
Theory Symposium – ANTS V, Vol 2369 of Lecture Notes in Computer Science, pp 324–337, 
Springer-Verlag, 2003. 

20. C. Gentry and A. Silverberg, “Hierarchical ID-Based Cryptography”, Advances in Cryptology – 
Asiacrypt 2002, Vol. 2501 of Lecture Notes in Computer Science, Y. Zheng ed., pp. 548–566, 
Springer-Verlag, 2002.  



 15

21. C. Günther, “An identity-based key-exchange protocol”, Advances in Cryptology – 
Eurocrypt’89, Vol. 434 of Lecture Notes in Computer Science, J-J. Quisquater and J. Vandewille 
ed., pp. 29–37, Springer Verlag, 1989.  

22. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing or how to cope 
with perpetual leakage,” Advances in Cryptology - CRYPTO ’95 Vol. 963 of Lecture Notes in 
Computer Science, D. Coppersmith ed., pp. 339–352, Springer, 1995.  

23. A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive public key and 
signature scheme”, Proceedings of the 4th ACM Conference on Computer and Communications 
Security, pp. 100–110, ACM press, 1997.  

24. G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and verifying”, 
Advances in Cryptology-CRYPTO 2001, Vol. 2139 of Lecture Notes in Computer Science, J. 
Kilian, ed., pp. 332–354, Springer-Verlag, 2001.  

25. G. Itkis and L. Reyzin, “SiBIR: Signer-base intrusion-resilient signatures”, Advances in 
Cryptology – CRYPTO 2002, Vol. 2442 of Lecture Notes in Computer Science, M. Yung ed., pp 
499–514, Springer-Verlag, 2002.  

26. A. Joux, “The Weil and Tate pairing as building blocks for public key cryptosystems”, in 
Proceeding of Fifth Algorithmic Number Theory Symposium, Vol. 2369 of Lecture Notes in 
Computer Science, pp. 22–32, Springer-Verlag, 2002. 

27. H. Krawczyk, “Simple forward-secure signatures for any signature scheme”, Proceedings of the 
7th ACM Conference on Computer and Communications Security, pp. 108–115, ACM Press 
2000. 

28. T. Maklin, D. Micciancio and S. Miner, “Efficient generic forward-secure signatures with an 
unbounded number of time periods”, Advances in Cryptology – Eurocrypt 2002, Vol. 2332 of 
Lecture Notes in Computer Science, L. Knudsen ed., pp. 400–417, Springer-Verlag, 2002.  

29. K. Rubin, A. Silverberg, “Supersingular abelian varieties in cryptography”, Advances in 
cryptology – crypto 2002, Vol. 2442 of Lecture Notes in Computer Science, pp. 336–353, 
Springer-Verlag, 2002. 

30. A. Shamir, “How to share a secret”, Communications of ACM, 22(11), pp. 612–613, 1979.  
31. W. Tzeng and Z. Tzeng, “Robust forward-secure digital signature with proactive security”, 

Public Key Cryptography – Proceedings of PKC’01, Vol. 1992 of Lecture Notes in Computer 
Science, K. Kim ed., pp. 264 –276, Springer-Verlag, 2001.  

32. E. Verheul, “Evidence that XTR is more secure than supersingular elliptic curve cryptosystems”, 
Advances in cryptology – Eurocrypt 2001, Vol. 2045 of Lecture Notes in Computer Science, pp. 
195–210, Springer-Verlag, 2001. 

 

A. Appendix --Proof of Theorem 3.1 

Our proof technique is a combination of those given in [5, 1, 12]. However, some details can 
be simplified because we are working from a different context. The structure of the proof is 
very similar to those contained in [1], but the method is different because this scheme is based 
on different mathematical assumptions. Although the results in [20, 12] help illustrate how the 
tree-based scheme works, they do not result in our proofs because they concentrate on 
encryption schemes. The detailed proof to our forward secure signature scheme proceeds as 
follows.  

As discussed in [1], we first assume that if F  outputs a forgery ,  j sign〈 〉  for message 
'M  and time period j, then the hash oracle has been queried on 1 2( ')lj j j M , where 

1 2 lj j j  is the binary representation of j. This assumption is reasonable because any forger 
can be modified to do so. In addition, this may increase the number of hash queries to 

1hashq + , because this hash query may not be part of the hashq  hash queries performed earlier 
by F . We further assume that if F  asks for the signing query for some message M  in some 
time period j, then the hash query 1 2( )lj j j M  must also be requested simultaneously. 
Similar to our first assumption, any forger can be modified to do so and this may further 
increase the number of hash queries up to 1hash sigq q+ + . We also assume that F  maintains 
all necessary bookkeeping and does not ask for the same hash query twice. 

First of all, A  has to guess the time period i at which F  will ask for the breakin query. It 
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randomly selects i , 0 i T< ≤ , hoping that the breakin query will occur at this time period. A  
then generates the public key 1 2{     }PK ê P Q= , , , ,G G  in a manner similar to a real signer, 
but A  sets 'Q Q bP= =  directly. Note, that in this case, s bε =  is unknown to both A  and F . 
A  gives the public key to forger F , and runs from time period 0  to 1T −  while maintaining 
all the “node secrets”.  

To answer the hash query and the signing query of F , A  maintains two tables, a hash 
query table and a signing query table. 

Hash queries are answered at random. Each entry in the hash table is a tuple ( ,  ,  ,  )x yΙ ∆ , 
in which Ι  is the input value, (representing a node index when the number of bits of Ι  is less 
than l), x  is the random “exponent” for P , y  is a partial “node/leave secret” (if necessary) 
and ∆  is the output value. We use Ι∆  to denote the output value corresponding to the input I 
and ( )H∆ = Ι  to denote the relationship between the input and output of the hash table. 

The hash table is initiated from time period i . A  first randomly selects 

1 2 1 2 3 1 2
,  , ,  

li i i i i i i i qx x x ∈Z , and 
1 2 1li i i qy

−

∗∈Z  for time period i , and sets hash entry 

1( ,  ,  ,  ')i Pφ φ , 
1 2 1 21 2( ,  ,  ,  )i i i ii i x x Pφ , 

1 2 3 1 2 31 2 3( ,  ,  ,  )i i i i i ii i i x x Pφ …, 
1 2 1 1 2 11 2 1( ,  ,  ,  )

l ll i i i i i ii i i x x Pφ
− −−  

and 
1 2 1 2 1 1 2 1 2 1

1
1 2( ,  ,  ,  ')

l l l ll i i i i i i i i i i i ii i i x y x P y P
− −

−− , where 'P aP=  i.e. a part of the CDH 
problem that was given to A. Then, A  finds all indexes j  (1 j l≤ ≤ ) such that 0ji = , sets 

entry 1 1(1,  ,  ,  )x x Pφ  if 1 0i = , and sets other hash entries (when 2 j l≤ ≤  and 0ji = ) as 

1 2 1 1 2 1 1 2 1 1 2 1

1
1 2 1 1 1( 1,  ,  ,  ')

j j j jj i i i i i i i i i i i ii i i x y x P y P
− − − −

−
− − . 

1 2 11ji i i qx
−
∈Z , and 

1 2 1ji i i qy
−

∗∈Z  are 

selected at random.  Finally, in case of 1 1i = , A  sets entry 0 0(0,  ,  ,  ')x x Pφ  with *
0 qx ∈Z  

selected at random. Note that all possible hash queries for 1iΙ = , 1i =0 and 1, are defined as 

0 1 and ∆ ∆  in the hash table. 
After the hash table is initiated, A answers hash queries according to the input. To answer 

a hash query with an input of k  (1 )k l≤ ≤  bits, let 1 2 kw w w  be the binary representation of 
input w, A  first checks to see if w is within the hash table. If the entry already exists, A  
outputs the corresponding O . If not, A  randomly selects 

1 2 kw w w qx ∈Z , stores the entry 

1 2 1 21 2( ,  ,  , )
k kk w w w w w ww w w x x Pφ  and outputs 

1 2 kw w wx P . To answer a hash query with an 

input of l  bits or more, input w is parsed as 1 2 l gw w w M , where gM  could be a chosen 
message by F. Let 1 2 lv w w w〈 〉 =  ( 0 v T≤ < ) represent the first l bits of w, gM  summarizes 
the remaining bits. The index g  (1 1hash sigg q q≤ ≤ + + ) denotes the g-th hash query with an 
input longer than l  bits. A  checks to see if the entry exists in the hash table. If not, A  
answers the query depending on the value of v. For v i< , A  randomly selects 

1 2 l gw w w M qx ∈Z , v qy ∗
〈 〉 ∈Z  (if vy〈 〉  was not define before), stores the entry 

1 2 1 2 1

1
1 2( ,  ,  ,  )

l g l gl g w w w M v w w w M v ww w w M x y x P y−
〈 〉 〈 〉− ∆  and outputs the ∆  value 

( 1 2( )l gH w w w M∆ = ); for v i≥ , A  randomly selects 
1 2 l gw w w M qx ∈Z , stores the entry 

1 2 1 21 2( ,  ,  ,  )
l g l gl g w w w M w w w Mw w w M x x Pφ  and outputs the ∆  value. During execution, A  

must guess a random index 'g  (1 ' 1hash sigg q q≤ ≤ + + ), hoping the forgery is based on the 

'g -th hash query; set the entry to 
1 2 ' 1 2 '1 2 '( ,  ,  ,  )

l g l gl g w w w M w w w Mw w w M x x Pφ  if the input is 

more than l bits, and return the ∆  value. In the case that the input of this hash query is less 
than l bits, A fails and aborts. 

The signing query is answered at random with two cases. For time period 'i i< , A  
chooses “node secret” 

1 2 1' ' ' ji i i qs
−
∈Z  ( 2 j l≤ ≤ ) at random and sets the “verification point” 

for leaf ' 'i iQ y Q〈 〉 〈 〉=  with 'i qy ∗
〈 〉 ∈Z  chosen at random. Here, “leaf secret” ' 'i is y sε〈 〉 〈 〉= ⋅  
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although sε  is unknown to A. Let 1 2' ' ' 'li i i i〈 〉 = .  Then A  returns '{ , }isign V 〈 〉= Q , where 

1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' '
2

j j l g

l

i i i i i i i i i M i
j

V s x P x y Q
− 〈 〉

=

= +∑  and 'i〈 〉Q  consisting of 
1 2 1' ' ' ji i is P

−
 ( 2 j l≤ ≤ ) and 

'iQ〈 〉 . To answer a signing query in time period i , let 1 2 li i i i〈 〉 = .  Then A  chooses 

1 2 1ji i i qy
−

∗∈Z  (for 2 1j l≤ ≤ − , and 0ji ≠ ) and “leaf secret” i qs〈 〉 ∈Z  at random, sets 

1 2 1 1 2 1l li i i i i iQ y Q
− −
=  (

1 2 1li i iy
−

 was selected during the initiation of hash table), and returns 

'{ ,  }isign V 〈 〉= Q , where 
1 2 1 2 1

1

2
j j

l

i i i i i i
j

V x y Q
−

−

=

=∑  
1 2 1 2 1 1 2( )

l li i i i i i i l gx y Q s H i i i M
− 〈 〉+ +  and 'i〈 〉Q  

consists of 
1 2 1ji i iy Q

−
 ( 2 1j l≤ ≤ − ), 

1 2 1li i iQ
−

, and is P〈 〉 . In summary, the two cases described 

above are now listed to illustrate that the above equations are correct.  
 
1. For time period 'i i< , let ' 'i iy s sε〈 〉 〈 〉= , 

1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' '
2

j j l g

l

i i i i i i i i i M i
j

V s x P x y Q
− 〈 〉

=

= +∑

1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' ' 1 1
2

( ' ) ( ' )
j j l g

l

i i i i i i i i i M i
j

s x P x y s P s H i s H iε ε ε− 〈 〉
=

= + − +∑

1 2 1 1 2

1
1 ' ' ' 1 2 ' ' ' ' ' 1

2
( ' ) ( ' ' ' ) ( ( ' ))

j l g

l

i i i j i i i i M i
j

s H i s H i i i y s x P y H iε ε−

−
〈 〉 〈 〉

=

= + + −∑

1 2 11 ' ' ' 1 2 ' 1 2
2

( ' ) ( ' ' ' ) ( ' ' ' )
j

l

i i i j i l g
j

s H i s H i i i y s H i i i Mε ε− 〈 〉
=

= + +∑

1 2 11 ' ' ' 1 2 ' 1 2
2

( ' ) ( ' ' ' ) ( ' ' ' )
j

l

i i i j i l g
j

s H i s H i i i s H i i i Mε − 〈 〉
=

= + +∑  

and we have 
1 1 2 1 2 1' ' ' ' ' ' ' '{ , , , , }

li i i i i i i is P s P s P Q
−〈 〉 〈 〉=Q , where 

' ' ' 'i i i iQ s P y s P y Qε〈 〉 〈 〉 〈 〉 〈 〉= = = .  
 

2. For time period i , let 
1 2 1 1 2 1j ji i i i i iy s sε− −

= , 

1 2 1 2 1 1 2 1 2 1

1

1 2
2

( )
j j l l

l

i i i i i i i i i i i i i l g
j

V x y Q x y Q s H i i i M
− −

−

〈 〉
=

= + +∑

1 2 1 1 2 1 2 1 2 1

1

1 2
2

( ) ' '
j j l l

l

i i i i i i i i i i i i i l g
j

y s x P x y Q s H i i i M s P s Pε ε ε− −

−

〈 〉
=

= + + + −∑

1 2 1 1 2 1 2 1

1

1 2 1 2
2

' ( ) ' ( )
j l l

l

i i i j i i i i i i i l g
j

s P s H i i i x y s P s P s H i i i Mε ε ε− −

−

〈 〉
=

= + + − +∑

1 2 1 1 2 1 1 2 1 2 1

1
1

1 1 2 1 2
2

( ) ( ) ( ') ( )
j l l l

l

i i i j i i i i i i i i i i l g
j

s H i s H i i i y s x P y P s H i i i Mε ε− − −

−
−

〈 〉
=

= + + − +∑

1 2 1 1 2 1

1

1 1 2 1 2 1 2
2

( ) ( ) ( ) ( )
j l

l

i i i j i i i l i l g
j

s H i s H i i i y s H i i i s H i i i Mε ε− −

−

〈 〉
=

= + + +∑

1 2 1 1 2 1

1

1 1 2 1 2 1 2
2

( ) ( ) ( ) ( )
j l

l

i i i j i i i l i l g
j

s H i s H i i i s H i i i s H i i i Mε − −

−

〈 〉
=

= + + +∑  

and we have 
1 1 2 1 2 1' { , , , , }

li i i i i i i iy Q y Q y Q s P
−〈 〉 〈 〉=Q , where 

1 2 1 1 2 1 1 2 1 1 2 1j j j ji i i i i i i i i i i iQ s P y s P y Qε− − − −
= = =  ( 2 j l≤ ≤ ). 

 
If the breakin query occurs in time period i , A  simply outputs the current secret key 
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{    }i i i i iSK s S〈 〉 〈 〉 〈 〉 〈 〉 〈 〉= , , ,S Q . Already known are is〈 〉 , 
1 2 1 2 1 1 2 1 2 1

1

2
j j l l

l

i i i i i i i i i i i i i
j

S x y Q x y Q
− −

−

〈 〉
=

= +∑  

and 
1 1 2 1 2 1

{ ,  , ,  ,  }
li i i i i i i iy Q y Q y Q s P
−〈 〉 〈 〉=Q . For elements in i〈 〉S , A  calculates 

1 2 1 1 2 1 2 1 1 2 1 1 2 1

1

1 1
2

 
j m m j j

j

i i i i i i i i i i i i i i i
m

S x y Q x y Q
− − − −

−

=

= +∑  for all indexes j  ( 2 j l≤ ≤ ) such that 0ji = . 

The validity of this equation is illustrated as follows: 

1 2 1 1 2 1 2 1 1 2 1 1 2 1

1

1 1
2

' '
j m m j j

j

i i i i i i i i i i i i i i i
m

S x y Q x y Q s P s Pε ε− − − −

−

=

= + + −∑

1 2 1 1 2 1 1 2 1 1 2 1

1
1

1 1 2 1
2

( ) ( ) ( ')
m j j j

j

i i i m i i i i i i i i i
m

s H i s H i i i y s x P y Pε ε− − − −

−
−

=

= + + −∑

1 2 1 1 2 1

1

1 1 2 1 2 1
2

( ) ( ) ( 1)
m j

j

i i i m i i i j
m

s H i s H i i i s H i i iε − −

−

−
=

= + +∑  

 
In the case where 1 0i = , A  sets 1 1 1 1( )S s H i s x P x Qε ε= = = . Forger F  can then derive the 
secret key ''iSK  for "i i> . A  aborts if the breakin query is not in time period i . 

Suppose that the guess for the break-in time and the index of hash for the signature 
forgery are correct, and forger F  finally outputs a signature '  i sign〈 , 〉  on message 'gM  for 

time period 'i i<  and 1 1'i i= . If the verification condition holds, A  can derive 'S abP=  
utilizing the properties of the bilinear map ê : 

1 2

1 2 1

(1)

1 ' ' ' 1 2 '

' ' ' 1 2
2

( ) ( ( ' )) ( ( ' ' ' ))    
( ( ' ' ' ))

j

j

i i i l gl

i i i j
j

ê P V ê Q H i ê Q H i i i M
ê Q H i i i

−

...

=

,
= , ⋅ , ⇒

, ...∏

1 2 1 2 1

(2)

1

' ' ' 1 2 ' ' ' ' 1 2
2

( ) ( ( ' ))     
( ( ' ' ' )) ( ( ' ' ' ))

l j

l

i i i l g i i i j
j

ê P V ê Q H i
ê Q H i i i M ê Q H i i i

−...
=

,
= , ⇒

, ⋅ , ...∏

1 2 1 1 2

(3)

' ' ' 1 2 ' ' ' 1 2 ' 1
2

( ( ' ' ' ) ( ' ' ' )) ( ,  ( ' ))    
j l

l

i i i j i i i l g
j

ê P V s H i i i s H i i i M ê P s H iε−
=

, − ... − = ⇒∑

1 2 1 1 2

(4)

' ' ' 1 2 ' ' ' 1 2 ' 1
2

( ' ' ' ) ( ' ' ' ) ( ' )    
j l

l

i i i j i i i l g
j

V s H i i i s H i i i M s H iε−
=

− ... − = ⇒∑

1 2 1 2 1 1 2 1 2

(5)

' ' ' ' ' ' ' ' ' ' ' '
2

   
j j l g l

l

i i i i i i i i i M i i i
j

V x Q x Q abP
−... ... ...

=

− − = ⇒∑

1 2 1 2 1 1 2 1 2' ' ' ' ' ' ' ' ' ' ' '
2

'
j j l g l

l

i i i i i i i i i M i i i
j

S abP V x Q x Q
−... ... ...

=

= = − −∑  

Similarly, A  can derive 
1 2 1 2 1 1 2 1 2

1
0 ' ' ' ' ' ' ' ' ' ' ' '

2
' ( ) 

j j l g l

l

i i i i i i i i i M i i i
j

S abP x V x Q x Q
−

−
... ... ...

=

= = ⋅ − −∑  when 

1 1'  i i≠ .  For 'i i<  and 1 1'  i i≠ , the only possible case is the one in which 1 1' 0,  1i i= = , and 
hence 1 0( ' )s H i x abPε = . The above derivations utilized the non-degenerate property of the 
bilinear map in step (3). Note that 1G  and 2G  are in prime order q , which implies that if P  
is a generator of 1G , then ( ,  )ê P P  is a generator of 2G . It also means that there does not 
exist 1 2 1,  P P ∈G  ( 1 2P P≠ ) that yields 1 2( ,  ) ( ,  )ê P P ê P P= . Therefore, 1P  must be the same as 

2P . 
 
RUNNING TIME ANALYSIS.  A  runs F  from time period 0  to 1T − . To answer the hash 
query, ignoring the table look up time, requires some multiplications and additions on 1G , i.e. 
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1( )nO k  bit operations. It also requires some inverse operations on q
∗Z  – 2( log )O k T  bit 

operations for time period i . To answer a signing query, A  may require some additional 
multiplications on q

∗Z  ( 2( log )O k T ) and one less multiplication on 1G  ( 1( )nO k ) than the real 
user.  To compute the final 'S abP= , it takes some multiplication and addition operations on 

1G  ( 1( )nO k  bit operations).  Therefore, A  exceeds the running time of F  by 
1 2( log )nO k k T+ . 

 
PROBABILITY ANALYSIS.  We first compare A ’s answer to the signing oracle with that of the 
real signer. From F ’s point of view, A  always acts like a real signer, except in one case, i.e. 
when A  answers the signing query for some time period 'i i< , and the hash entry that A  
wants to use has already been defined to 

1 2 1 21 2( ,  ,  ,  )
l g l gl g w w w M w w w Mw w w M x x Pφ  by the 

previous hash query of F .  This is the only case in which A  fails to answer the signing query 
and the reason cause this is A’s wrong guessing of the hash index 'g . In other words, A  
always acts like a real signer, as long as the guessing of 'g  is correct. 

There are totally two guesses performed by A . The probability to guess the correct time 
period F  sends the breakin query is exactly 1 T  and the probability to guess the correct hash 
query on which the forgery is based is Pr 1 ( 1)hash sigq q≥ + + . Therefore, the probability of 
A ’s success in deriving 'S abP=  is at least  

' 1 1 ( 1)hash sigT q qε ε= ⋅ + + ⋅  
where ε  is the minimum probability for F to successfully forge a signature. Theorem 3.1 
follows. 


