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Abstract. KASUMI is a block cipher which has been adopted as a standard of 3GPP.
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e the four round version is pseudorandom and

e the six round version is super-pseudorandom.

Key words: Cryptography, block cipher, KASUMI, pseudorandomness, provable security.

*A preliminary version of this paper appears in The FEighth Australasian Conference on Information Security
and Privacy, ACISP 2003 [5].



Contents

1 Introduction
1.1 Pseudorandomness . . . . . . . . . ... e e
1.2 KASUMI . . . . e
1.3 Previous work (Non-adaptive) . . . . . . . . ... .. ...
1.4 Our contribution (Adaptive) . . . . . . . . .. ...
1.5 Flaw of the previous work . . . . . . . . . . ...

2 Preliminaries
2.1 Notation . . . . . . .. e
2.2 KASUMI type permutation [2] . . . . . . . . . ... ...
2.3 Pseudorandom and super-pseudorandom permutations [8] . . . .. .. ... ...

3 A four round KASUMI type permutation is pseudorandom

4 Proofs of Lemma 3.1and Lemma 3.2
4.1 Proof of Lemma 3.1 . . . . . . . . s
4.2 Proof of Lemma 3.2 . . . . . ...

5 A six round KASUMI type permutation is super-pseudorandom
6 Proof of Lemma 5.1

7 Conclusion

References

A Flaws in the proof of [6]
A.1 Flaws on Theorem 1 . . . . . . . . . . .
A2 Flaws on Theorem 3 . . . . . . . . . . . e

14

15

19

20



1 Introduction

1.1 Pseudorandomness

Let R be a randomly chosen permutation and ¥ be a block cipher such that a key is randomly
chosen. We then say that

e U is pseudorandom if ¥ and R are indistinguishable and
e VU is super-pseudorandom if (¥, ¥~1) and (R, R™!) are indistinguishable.

Luby and Rackoff studied the pseudorandomness of idealized Feistel permutations, where each
round function is an independent (pseudo)random function. They proved that

e the three round version is pseudorandom and
e the four round version is super-pseudorandom

for adaptive adversaries [8].

1.2 KASUMI

KASUMI is a block cipher which has been adopted as a standard of 3GPP [2], where 3GPP is
the body standardizing the next generation of mobile telephony. The structure of KASUMI is
illustrated in Fig. 1. (See [1] for details.)

e The overall structure of KASUMI is a Feistel permutation.
e Each round function consists of two functions, FL function and FO function.

e Each FO function consists of a three round MISTY type permutation, where each round
function is called an FI function.

e Each FI function consists of a four round MISTY type permutation.

The initial security evaluation of KASUMI can be found in [3]. Blunden and Escott showed
related key attacks on five round and six round KASUMI [4].

1.3 Previous work (Non-adaptive)
We idealize KASUMI as follows.

e Each FL function is ignored. (In [7], the authors stated that the security of KASUMI is
mainly based on FO functions.)

e Each FI function is idealized by an independent (pseudo)random permutation.

We call such an idealized KASUMI a “KASUMI type permutation.”

However, we do not assume that each FO function is a random permutation. This implies
that we can not apply the result of Luby and Rackoff to KASUMI type permutations. (Indeed,
Sakurai and Zheng showed that a three round MISTY type permutation is not pseudorandom
[11].)

Kang et al. then showed that
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e the four round version is pseudorandom

for non-adaptive adversaries [7].

1.4 Our contribution (Adaptive)

e the three round version is not pseudorandom and

e the four round version is pseudorandom and

e the six round version is super-pseudorandom.
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In this paper, we study the pseudorandomness of KASUMI type permutations for adaptive
adversaries. We prove that

See the following table, where x comes from [7], O! comes from [7] and (O? is proved in this



Table 1. Summary of the previous results and our contributions.

Number of rounds Three | Four | Five | Six
Pseudorandomness (non-adaptive) X O | O OF
Pseudorandomness X O | O | O?
Super-pseudorandomness X ? ? 0O?

(We cannot idealize MISTY1 [9, 10] like KASUMI type permutations because each FI func-
tion of MISTY1 is a three round MISTY type permutation and three round MISTY type
permutation is not pseudorandom [11].)

1.5 Flaw of the previous work

Kang et al. claimed that the four round KASUMI type permutation is pseudorandom for
adaptive adversaries [6]. However, we show that their proof is wrong in Appendix A.

2 Preliminaries

2.1 Notation

For a bit string z € {0,1}?", we denote the first (left) n bits of # by z;, and the last (right) n
bits of = by xg. Similarly, for a bit string z € {0,1}*", we denote the first (left) n bits of by
xrr, the next n bits of by xpg, the third n bits of = by zrr, and the last (right) n bits of x
by rr. That is, * = (vrr, 2R, TRL, TRR). For a set of I-bit strings {2 | 2() € {0, 1} }1<i<y,
we say {x(i)}lgigq are distinct to mean 29 £ 20) for 1 < Vi < Vj < q.

If S is a set, then s £ S denotes the process of picking an element from .S uniformly at
random.

Denote by P, the set of all permutations over {0, 1}", which consists of (2")! permutations
in total. For functions f and g, g o f denotes the function z — g(f(x)).

2.2 KASUMI type permutation [2]
We define KASUMI type permutations as follows.

Definition 2.1 (The basic KASUMI type permutation) Let x € {0,1}4". For any per-
mutations pi1, p2, ps € Py, define the basic KASUMI type permutation Vp, py ps € Pin as

def
@Z)phpz,ps(l“) = Y,

where
def
YLL = TRL,

def

YLR = TRR,
def

yre = TR ® p1(TRR) © p2(TRL) ® p3(TRL ® P1(TRR)) ® TLL, and
def

Yrr = TRL ® p1(xRR) ® p2(2RL) ® TLR-
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Fig. 2. A six round KASUMI type permutation ¥ (p, ..., pig) (left) and a four round KASUMI
type permutation ¢ (p1,...,p15) (right).
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'P1,P2,P3 (y) = =, where

Note that it is a permutation since
rrL = yrL ®p1(yrr) © p2(yLr) © p3(yrL ® p1(yLr)) © YRL,
rrr =YL ® p1(yLr) ® p2(YrL) © YRR,

TRL = YLL, and
TRR = YLR-

Definition 2.2 (The r round KASUMI type permutation) Letr > 1 be an integer, and
D1, D2, - - -, P3r € Py be permutations.
Define the r round KASUMI type permutation ¥ (p1,p2,-..,p3r) € Pin as

def

= Ypar_2.p3r 1,030 © Vpsr_s,psr_a,par_s ©

w(p17p27"-7p37”) "'o¢p1,p27p3 .

See Fig. 2 for illustrations. For simplicity, swaps are omitted.

2.3 Pseudorandom and super-pseudorandom permutations [8]

Our adaptive adversary A is modeled as a Turing machine that has black-box access to an
oracle (or oracles). The computational power of A is unlimited, but the total number of oracle
calls is limited to a parameter ¢g. After making at most ¢ queries to the oracle(s) adaptively, A
outputs a bit.

The pseudorandomness of a block cipher ¥ over {0, 1}4” captures its computational indis-
tinguishability from Pj,, where the adversary is given access to the forward direction of the



permutation. In other words, it measures security of a block cipher against adaptive chosen
plaintext attack.

Definition 2.3 (Advantage, prp) Let a block cipher W be a family of permutations over {0, 1}*".
Let A be an adversary. Then A’s advantage is defined by

AdvIP(A)

Pr(¢£w:,4¢:1)—Pr(R£P4n:AR:1)‘

The notation AV indicates A with an oracle which, in response to a query x, returns y «— U(z).
The notation AT indicates A with an oracle which, in response to a query x, returns y «+ R(x).

The super-pseudorandomness of a block cipher ¥ over {0, 1}4” captures its computational
indistinguishability from Pjy,, where the adversary is given access to both directions of the
permutation. In other words, it measures security of a block cipher against adaptive chosen
plaintext and chosen ciphertext attacks.

Definition 2.4 (Advantage, sprp) Let a block cipher ¥ be a family of permutations over
{0,1}4". Let A be an adversary. Then A’s advantage is defined by

AdvSPP(A)

Pr(y &£ v AP = 1) = Pr(R & Py, ARET 1)

The notation AY*"" indicates A with an oracle which, in response to a query (+,x), returns
y — (x), and in response to a query (—,y), returns x «— ¥ (y). The notation AR
indicates A with an oracle which, in response to a query (+,z), returns y «— R(x), and in
response to a query (—,y), returns r «— R~ (y).

3 A four round KASUMI type permutation is pseudorandom

Theorem 3.1 For 1 <i <12, let p; € P, be a random permutation. Let 1p = ¥ (p1,...,p12)

be a four round KASUMI type permutation, R € Py, be a random permutation, and ¥ def {¢]
¢ = ¢(p1) oo 7p12)api € Pn fOT’ 1<:< 12}

Then for any adversary A that makes at most q queries in total,

15 q(¢g—1)
AdVPP(A) < — . L4
o (A) S 5 5

Proof. Let O be either R or . The adversary A has oracle access to O. A can make a query x
and the oracle returns y = O(z). For the i-th query A makes to O, define the query-answer pair
(@, y®) € {0,1}*" x {0,1}*", where A’s query was () and the answer it got was y(*). Define
view v of A as v = ((zM),yM), ... (29, y@)). We say that v = ((z1),yM), ... (2@, y@)) is
a possible view if there exists some permutation p € Py, such that p(z(") = y® for 1 <Vi < ¢
(or, equivalently, v = ((z™),yM), ... (2@ y(@)) is a possible view if {x(i)}lgigq are distinct
and {y"};<;<, are distinct).

Since A is computationally unbounded, we may without loss of generality assume that A
is deterministic. This implies that for every 1 < i < ¢ the i-th query z( is fully determined



by the first i — 1 query-answer pairs, and the final output of .4 (0 or 1) depends only on v.
Therefore, there exists a function C4(-) such that

Ca(x®,yM 20D =Dy = 5 for 1 <i < g and
Ca(v) = A’s final output.
Let vone def {v|C4(v) =1} and Nype def F#HVone. Further, we let vy404 be a set of all possible
view v = (D, yM) ... (2D, y(9))) which satisfies the following four conditions:

o Cav) =1,
° {y(Li)thigq are distinct,

) {yg;{hgigq are distinct, and

° {UU(LZ)L ® x(LZB'{ Y y(ﬁ ) y(ﬁghgigq are distinct.

We also let Nyooq def #Yg00d-

Evaluation of pg. We first evaluate pgr def Pr(R pil Py, : A% = 1). We have pp =

—;1—#{?2‘41];!:1}. For each v € v,pe, the number of R such that

R(zW) =y for 1 <Vi<gq (1)
#{R|R satisfying (1)}

VEVone (24n)!

odn — N, - (24 —g)!

— q)!. Therefore, we have pp = > N

is exactly (

Evaluation of p,. We evaluate py, def Pr(y E g gt = 1). Note that “i & g

9

is equivalent to “p; <= P, for 1 < i < 12 and then let v « ¥(p1,...,p12).
#{(plv--wp12)‘Aw’w71:1}
{2M)2 .

We have the following lemma. A proof of this lemma is given in Section 4.1.

We have p, =

Lemma 3.1 (Main Lemma for ¥ (p1,...,p12)) For any fizved possible view
v={(W,yM),... (@, y))

such that {y(Li)L}lgigq are distinct, {yg%}lgigq are distinct, and {.%‘(Ll)L ® :cg% ® y%}l ® y(ﬁ{}lgigq

are distinct, the number of (p1,...,p12) which satisfies
Y(a) =y for1<Vvi<q (2)
is at least (1 - SH=L) - {21} {(2" — )1},

Then from Lemma 3.1, we have

#{(p1,....p12) | (p1,...,p12) satisfying (2)}
ez 2 e

D =

> =1 ) @)y

Now we have the following lemma. See Section 4.2 for a proof.

VEVgo0d
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From Lemma 3.2, we have

— 4an . n_ N4
S (et SR CHO L B (1 ~ 6alg 1>) {2 =Y
2 2n—-1 (24" q)! o _ 1 {(2n)|}4
— (er-5-5 (a-1) 1Dy (1% Go(g — 1) 1y, (@ =gy {my
2 (e {2 g}
Now it is easy to see that {@r—q)}t {2} 1 (this can be shown easily by an induction

{(2n)|}4 {(24n )
on q). Then py, > (PR -3 qQ(f{*ll)) (1 — 6‘1 —1)

to 1—py and 1 —pp yields that 1 —py > 1—pgr

q(q 1) ca(g=1)
2n—1 on_q *
Q.E.D.

}
) > pr—3 q R 1) . Applying the same argument
_ 15,

2

and we have |py —pp| < 22

From Theorem 3.1, it is straightforward to show that 1) = ¥(p1,...,p12) is pseudorandom
even if each p; is a pseudorandom permutation by using a standard hybrid argument. For
example, see [8].

4 Proofs of Lemma 3.1 and Lemma 3.2
4.1 Proof of Lemma 3.1

First, we need the following lemma.

Lemma 4.1 For 1 < i < ¢, let X = (X(Li),Xg)) € {0,1}?" be fized bit strings such
that {Xg)}lgigq are distinct and {Xg)}lgigq are distinct. Similarly, for 1 < i < q, let
Yy = (Ylgi),Ylg)) € {0,1}" be fized bit strings such that {YI@ @ Ylg)}lgigq are distinct. Let
Py, Py, P3 € P, be permutations. Then the number of (Py, P2, P3) such that

o Pl(X(Li)) @ Xl(%i) ® PQ(Xg)) = ngf) for 1 <Vi<gq, and
o (AXNaxNaP XN exWaerxW)=v" for1<Vi<q
is at least (1 - %) (20 {27 — @)},
See Fig. 3 for an illustration.
xi) —{r@

i [Py
X5 1224

()
U Yy

]

%

(4)
Y

Fig. 3. Illustration of the conditions in Lemma 4.1.



Proof . First observe that the number of P; such that

AxXNYexWev =pxMeoxPW ey for1<3i<3j<yq (3)

is at most (%) - {éin)l}, since X() + Xg) for 1 <Vi<Vj<gq.

Next we see that the number of P; such that

PxXMex? —pxPexy for1<3i<3j<gqg (4)
is at most (§) - {EU, since X[V # X[ for 1 <vi<Vj <q.
We now fix any P; which does not satisfy either (3) or (4). We have at least (2”)!-(1 — —‘12(2:11))

choice of such P;. This implies that P; is fixed in such a way that {P; (Xg)) @ XI(;) ® ngi)}léiéq
(which are the outputs of P») are distinct, and {P; (Xg)) @ X}({i)}lgigq (which are the inputs to
P3) are distinct.

We know from our condition that {Xg)}lgigq (which are the inputs of P») are distinct,
and {Y(i DY, i)}1<l<q (which are the outputs of P3) are distinct. Therefore, we have exactly
(2" — q)! choice of P, and (2" — ¢)! choice of P3 for any such fixed P;.

Q.E.D.

Now for 1 <i<qgand 1 < j <12, let I](-i) denote the input to p; when the input to ¢ is

2@ and the output is y(?. Similarly, let Oj(.i) denote the output of p; when the input to ¢ is 29
and the output is y®.

We next have the following lemma.

Lemma 4.2 For any fized possible viewv = ((zV),yM), ... (2D y(@)), the number of (p1, p2,p3, ps)
such that ' ' ' ' '
0 =10 or 1) @2\, = 19 @ 2), for 1 <3 <3 <gq (5)

is at most 2%(7?__11) M.

Proof . First, we fix ¢ and j such that 1 <i < j < ¢, and consider the condition
[ =19 or 1) @ 2, = 1Y) @ 20 (6)

in the following four cases:

Case mg}% #* x%}z. First, consider the condition

)85 = o o828k o

The number of p; which satisfies (7) is at most 2(,2;1)1 since ! R R *x R%%v and thus we have

n 4
H{(pr, - p2) | (p1,- .. pa) satisfies both (6) and (7)} < {2(3 _)'i . (8)

Next, consider any p; which does not satisfy (7), that is,

pr(ai) @2l @2l £ pi (@) @ al) @al) 9)



For this p;, we consider the condition

Pa(aipy) & pr(aigy) & wf), ® 2l = pa(f)) © pi(efp) © 2 Sl | (10)
which is equivalent to I, @ g Lij ). Since (9) holds, the number of py which satisfies (10) is at
most 2(n )1, and thus we have

#{(p1,...,p4) | (p1,-..,p4) satisfies (6), (9) and (10)} < {an_)!? ]

(11)

Next, consider any p; which satisfies (9), and any py which does not satisfy (10). That is,

pa($)) @ p1(a') @ 2V @ 2 # pa(a)) @ pr(ali)) @ al) @ 2Y) | (12)

which is equivalent to I ii) #*1 i‘j ). For these p1,p2 and any ps3, the number of ps which satisfies

() e 1§ = p (1) @ 17 (13)
which is equivalent to Iéi) = Iéj ), is at most 2(,1”)1, and the number of ps which satisfies
(1)) © 1§ 0 2 = pu(1?) 0 1P @ 2, | (14)
which is equivalent to Iél) <) :c(l) = Ié 2 g}i, is at most (2 ) . Therefore
#rwp1) | ... pa) satisis (6), (9) and (12)) < ZLEVT )

Thus, from (8), (11) and (15), we have

Ly

2n — 1 (16)

#{(p1,-.-,p4) | (p1,-..,p4) satisfies (6)} <

Case .T}%)L #* Jrg)L and x%}_—i = xg})%. For any pj, the number of py which satisfies (10) is at
most 2(,2;1)1 since x%)L #* x(fﬁ, and thus we have

4 {(p1s-pa) | (D1, pa) satisfies (6) and (10)} < {2(7%”_)%4 .

(17)

Next, for any p;, any pe which satisfies (12), and any ps, the number of py which satisfies
(13) is at most 2(,21)1 Note that (13) is equivalent to (14) in this case. Therefore we have

n\2" 4
#{(p1,--.,p4) | (p1,...,ps) satisfies (6) and (12)} < % . (18)
Thus, from (17) and (18), we have
. n\114
) | o) satistes (0)) < 220 (19)



Case :ULR =+ ILR, xg%)L = x(fﬁ, and x%}% = x%}z. For any p; and any py, (12) is satisfied.

Therefore, for any p;, any pe, and any ps, the number of py which satisfies (13) (which is
(2!

on—7- Lherefore we have

equivalent to (14)) is at most

(T 0

#{(p1,p2,p3:04) | (P1,P2,P3,p4) satisfies (6)} < 1

Case xLL #* :zLL, x(L}% l‘(L]}%, xg%)L = :cg)L, and x%}% = :1:%3%. There exists no p1, p2, p3, and

pa that satisfies (6). Therefore we have

#{(p17p27p37p4) ‘ (p17p27p37p4) SatiSﬁeS (6)} =0 . (21)

Completing the proof. By taking the maximum of (16), (19), (20) and (21),

#{(p1,-.-,p4) | (p1,-..,p4) satisfies (6)} < 51

for any case.
From (22) and since we have (%) choice of i and j the lemma follows.
QED.

Next we show the following lemma.

Lemma 4.3 For any fived possible view v = (M, M), ... (29,4 D)) which satisfies the
condition of Lemma 3.1, the number of (p1,p2, ps,pa) such that
o) =0 for1<3i <3 <q (23)

is at most % - % {(2mn4.

Proof . First, we fix ¢ and j such that 1 <14 < j < ¢, and consider O(i) = Oggj ). Now observe
that for any p; and po, Og(,l) O(] ) is equivalent to the following condition:

paI) e xfp ey eajpeyip=pd) e ey ool . (29

Then the number of ps which satisfies (24) is at most ("1 since J:(LZ)L S y(LZ)L @ x(ﬁ% @ y(Li},z #

am_q1
71 vy © 2 Oyl

Therefore, we have

{(2”)'}4

#{(p1,-..,p4) | (p1,...,ps) satisfies (6)} < 1

and since we have (%) choice of 7 and j the lemma follows.
Q.ED.

We now prove Lemma 3.1.

Proof of Lemma 8.1. Initially, 2V, ..., 2@ y® . 4@ are fixed. See Fig. 4.

10
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Fig. 4. 2 and y® are fixed.

Number of (p1,...,ps). From Lemma 4.2 and 4.3, the number of (pi,...,ps) such that:
o 1) £ 1D 11D @20 £ 10 @2l and Of) # 0F for 1 < Vi < Vj < g,

is at least {(20)}4 — L. 4= yomynda _ 20—l f9n)114. Fix any (py,...,ps) which satisfy
these three conditions. See Fig. 5.

Number of ps.  For any fixed ¢ and j such that 1 <17 < j < ¢, the number of p5 such that

p5(IE()i)) olg’ @ R ( ) p5(I5(j)) EBIé 2 @x%})%, which is equivalent to I( Q. I( 7 , is at most w
since Iéi) D :c 75 I6 D :c(j) Then the number of ps such that
o I £ 1V for 1 < Vi< Vj<gq

is at least (2")! — 1 - % - (2™)!. Fix any such ps. See Fig. 6.

Number of pe.  For any ﬁxed ¢ and j such that 1 <4 < j < ¢, the number of pe which
satisfies pG(Iél))EBI(Z)@O(Z)@x%)L = pd[é”)@[é”@Oé”@xg)L, which is equivalent to Ié’) = Iéj),

is at most 2(n )1, since 16Z #* Iéj .

Similarly, the number of pg which satisfies pG(Iéi)) @ I6i) & O(l) D :1:( ) 7@ I§l) sy y( ) %}% =
D6 (I( ')) ® I(j) ® Oéj) ® :p%)L ® Iéj) ® ygz ® yg})%, which is equivalent to 0512) = 052), is at most
ézn)l, since I( ) # Iéj).

Then, the number of pg which satisfies:

o IV £ 1 and 0) £ 0Y) for 1 <Vi < Vj <q,

is at least (2")! — % - (2™)!. Fix any pg which satisfy the above two conditions. See Fig. 7.

11
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Fig. 6. ps is fixed.
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Fig. 7. pg is fixed.

Number of (p7,...,p12). Now pi,...,pg are fixed in such a way that i 1<i<g are distinct,
7 S1<i<q
1<i<q are distinct 1<i<q are distinct an 1<i<g are distinct. e know from
{15 h1<i<q ave distinct, {0 }1<i<, are distinet and {O}3}1<i<, are distinct. We know f
our condition that {Iﬁ))}lgigq are distinct and {Iﬁ)}lgigq are distinct.

Then we have at least (1 — %) ~(2M)! - {(2" — ¢)!}? choice of (p7,ps,pe) by applying
Lemma 4.1. That is, X\”, X'V, v/ @ v\, P,, P, and Ps in Lemma 4.1 correspond to I\,
Iél), OS(,Z), p7, ps and pg respectively.

Similarly, from Lemma 4.1 we have at least (1 - %) (2™ {(2" — ¢)!}? choice of
P10, P11, P12)- Note that ' , : , ' @ ' , P1, P» and P53 in Lemma 4.1 correspond to '

Note that X\, X\ v ¢ v P, Pyand Py in L 4.1 dto I(})
Iﬁ), O&), P10, p11 and pis respectively.

Completing the proof. To summarize, we have:

e at least (1 -3 q2(g:11)) ~{(2")1}* choice of py,. .., pa,

e at least (27)! — 1. g(zj) - (2™)! choice of ps when py, ..., ps are fixed,

e at least (2")! — % - (2™)! choice of pg when py,...,ps are fixed, and

2
e at least (1 — QQ(Z:II)) A (2MN2 - {(2" — ¢)!}* choice of pr...,p12 when py, ..., pg are fixed.

Then, the number of (pi,...,p12) which satisfy (2) is at least

(1-3-420) (1 -4 420) (1 %E0) (et e - o
> (1 - M=) gm0 - gt

This concludes the proof of the lemma. Q.E.D.
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4.2 Proof of Lemma 3.2

For any fixed ¢ and j such that 1 < i < j < ¢, the number of {y(i)}lgigq such that y%}z = gl), is

3n_ 24n)| 3n_ 24nYy| . .
at most 243_(]&1) . (2(4n_)q)! < 243_(1;1) . (2(471_)61)!, since we ‘have: (24")(24" —1)--- (2" —(j-2))
choice of y™,...,yU~Y which uniquely determines y(ng = %}ﬂ at most 23" — 1 choice of

Yk yi) yihs and (24 — )(2%" — j — 1)+ (2% — (¢ — 1)) choice of ¥V, ... y().
Similarly, for any fixed 7 and j such that 1 < ¢ < j < ¢, the number of {y(l)}lgigq such that

) 1) . 3n_ 24n))|
y(L% = yg}% 18 at most 2472_@;) . (2(4717)(1)!.

Next, for any fixed i and j such that 1 < i < j < ¢, the number of {yV};<;<, such that

i i i i j j j i) . 3n 24n)| 3n 24ny|
T O YL By = x]SRy} By s ab most gy gy < g @i

since we have: (247)(2%" —1) ... (2*" — (j —2)) choice of V), ..., y=1); 2" choice of y(le){, which
uniquely determines y(ng = x(LZ)L @ Jr(ﬁ;{ @ ygz S5 y(ﬁ{ S) x(L]z @ x(g]){ S) yg});{; at most 22" choice of
yg%, ygl)%; and (24" — j)(2* —j —1)--- (2** — (¢ — 1)) choice of yU+D . . 4@,

Therefore, the number of y™), ..., y(@ such that

oy%%:y%2f0r1§31<3j§q,

¢ vl = o for 13 <3 < g on
+ oot o= el oathortlou) o1 <3 <3 <o

n 4n . . _ 4n
is at most (g) : 237;2_:)’(q:21) : {({2(4271—2)}!}7 which is at most % . q2(3_11) . {({2(4271—2)}!}' Q.E.D.

5 A six round KASUMI type permutation is super-pseudorandom

Theorem 5.1 For 1 <i <18, let p; € P, be a random permutation. Let ) =¥ (p1,...,p1s) be

a six round KASUMI type permutation, R € Py, be a random permutation, and ¥ def {|v=

Y(p1,...,ps8),pi € Py for 1 <i <18}
Then for any adversary A that makes at most q queries in total,

9(q—1)
Advy™(A) < =

Proof. Let O be either R or . The adversary A has oracle access to O and O~ 1.

There are two types of queries A can make: either (+,z) or (—,y). For the i-th query A
makes to O or O, define the query-answer pair (z(®,y®) € {0,1}** x {0,1}*", where either
A’s query was (+,2®) and the answer it got was y( = O(z") or A’s query was (—,y®) and
the answer it got was () = O~1(y®). Define view v of A as v = ((zM, M), ... (2(®,4@)),

Since A has unbounded computational power, A can be assumed to be deterministic. This
implies that there exists a function C4 such that

CA(x(l),y(l), e 733(1‘_1),3;("_1)) = either (—f—,:c(i)) or (—,y(i)) for 1 <i < gqand
Ca(v) = A’s final output.

def def
Let vone = {v | C4(v) =1} and Nype = #Vone.

14



Evaluation of pg. We first evaluate pgr def Pr(R & Py, : ABRT = 1). We have pg =

None * (2(422;)(1!)! as was done in the proof of Theorem 3.1

Evaluation of p,. We evaluate py, def Pr(y E g gt = 1). Note that “i & g

9

is equivalent to “p; & P, for 1 < ¢ < 18 and then let ¢ — ¢ (py,...,pis).
#{(ph--wms)\Awﬂw*l:l}.

2n)1118

We have p, =

We have the following lemma. A proof of this lemma is given in Section 6.
Lemma 5.1 (Main Lemma for ¥ (p1,...,p1s8)) For any fized possible view
v= (M, yW), .. (2@, yD))
the number of (p1,...,p1s) such that
W)=y for1<vi<q (25)
2n—1

is at least (1 240 ) - {231 {(2" = )}

Then from Lemma 5.1, we have

Py = Z # {(pla v 7p18) | (pla v 7p18) Sa’tiSfying (25)}

VEVone {(2n)l}18
99(¢ — 1)\ {2"-9Y}*

-2 (1-"5=) @y
99(¢ — 1)\ {@2"—9}}*

> N (1= 5) - S

0 9ala—D\ {@ -l {@™Yy
oo (1 ) @ =gy
(CA ) R (0 S

Since @ Temogy = b Py = PR- (1 - M) > pp — 24=D  Applying the same

2n—1 2n—1
argument to 1—py, and 1—pp yields that 1—p, > l—pR—% and we have |py—pp| < %.
QED.

From Theorem 5.1, it is straightforward to show that ¢» = ¥ (p1,. .., p1s) is super-pseudorandom
even if each p; is a pseudorandom permutation. Note that we do not need the super-pseudorandomness
of p; to derive this result, since KASUMI type permutation does not use p; L'in both encryption
and decryption. That is, we can “simulate” both v and ¥~ without using D; L

6 Proof of Lemma 5.1

For1 <i<gand 1< j <18, let Ij(»i) denote the input to p; when the input to ¢ is z® and
the output is (). Similarly, let Oj(»i) denote the output of p; when the input to ¢ is (Y and the
output is y@.

Initially, 2, ..., 2@ ¢y . y@ are fixed. See Fig. 8.
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Fig. 8. z(Y and y® are fixed.

Number of (p1,...,ps). From Lemma 4.2, the number of (p1,...,ps) such that:
o IV 410 and I @ 2\, £ 19 @ 2), for 1 <Vi< Vj <gq

is at least {(2"7)!}* — % -{(2")1*. Note that Lemma 4.2 holds for any possible view, and it

is irrelevant from the condition on 3 in Lemma 3.1. Fix (py,...,ps) which satisfy these two
conditions arbitrarily.

Number of (p13,p16,p17,p18).  From Lemma 4.2, the number of (pi13, p16, P17, p18) such that:
o 1V 210 and 1Y @ ¢\ £ 19 @ V) for 1 <Vi<Vj<q

is at least {(27)!}*— M-{(Q”)!}‘l. We have used the symmetry of KASUMI type permutation.

27 —1
That is, m(LZ)L, x(ﬁ%, x%)L, x%}%, P1, P2, P3, P4 and Iél) in Lemma 4.2 corresponds to yg)L, yg}%,

y(Ll)L, y(ﬁ{, P16, P17, P18, P13 and If? respectively. Fix (pis, p16, P17, p1s) which satisfy these two
conditions arbitrarily. See Fig. 9.

Number of ps.  For any fixed ¢ and j such that 1 < i < j < g, the number of p5 such that
p5(IE()Z)) EBIéZ) @x%}% = p5(Iéj)) & Ié]) @x(é})%, which is equivalent to Iy) = Iéj), is at most %

2n_
since Iél) D :cg;z_-i =+ Iéj) D :cg}i. Then the number of ps such that

o I 21V for1<Vi<Vj<gq

is at least (2")! — % - % - (2™)!. Fix any ps which satisfy the above condition.
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Fig' 9. pb1,-..,D4,P13,P16,P17,P18 are fixed.

Number of pj4.  Similar to the case ps, for any fixed ¢ and j such that 1 < i < j < ¢, the

number of p14 such that p14(.7&)) ® Ifi) (L% = p14(1&)) ® I%) ® yg});{, which is equivalent to

Ifo) = I{é), is at most {(2n) } since I{5) ® yLR # 115 ® y%})% Then the number of pi4 such that

o I 21V for1<Vi<Vj<gq

is at least (2")! — 1 - qézj) - (2™)!. Fix any p14 which satisfy the above condition. See Fig. 10.

Number of pg. For any fixed ¢ and j such that 1 < i < j < ¢, the number of pg which
satisfies pg(I(i))eBI(i)@O(i)@x(i)L = pg(Iéj))@Iéj)@O(])@xg%, which is equivalent to Is(gj) = Is(gj),
is at most 2(n )1, since I(Z #* Iéj .

Similarly, the number of pg which satisfies pg(Ié )) @ Ié ) O( ) & xg%)L ® I£4) @ I( ) & I( -
D6 (I( )) ® I(j) 69 O(j) @2 j); ® I(j) ® I§ ) & IfB), which is equivalent to OYQ) = O%Q), is at most
5721—)17 since I6 =+ IGJ).

Then, the number of pg which satisfies

o 1" £ 19 and 01) £ 0% for 1 <Vi<Vj<gq

is at least (2")! — % - (2M)!. Fix any pg which satisfy the above condition.
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Fig. 10. p5 and p14 are fixed.

Number of pi5. For any fixed ¢ and j such that 1 < ¢ < j < ¢, the number of p;5 which

satisfies p15(1£?) ® I%) ® O§4) ® y(L)L = p15(1£‘7)) (]) ® Oﬁ) ® ygg, which is equivalent to

Ifl) én )1 ’

Similarly, the number of pi5 which satisfies p15(I£?) ® If D O(l) (l) eIy ) g I(l) ® I5i) =
p15(1g)) ® I(j) ® O§4) ® y(l) ® Lij) ® I(j) @ 1Y which is equivalent to O(l) OE(, ), is at most
53)1, since I15 # 1'15

Then, the number of p;5 which satisfies

Ifjl), is at most since 115 # 115

o 1V £ 19 and 0f) # 0§ for 1 < Vi < Vj < q

is at least (2")! — % - (2™)!. Fix any pi5 which satisfy the above condition. See Fig. 11.
Number of (p7,...,p12). Nowpi,...,ps,p13,---,p15 are fixed in such a way that {Iéi)}lgigq

are distinct, {Iéi)}lgigq are diStiIlCt, {Oéi)}lgigq are diStiIlCt, {I&))}lgigq are diStiIlCt, {Iﬁ)}lgigq

are distinct and {O%)}lgigq are distinct. Then, by applying Lemma 4.1 twice, we have at least
—1)\2 .
(1= %=2)" {02 - {(2" = @)!}* choice of (pr,...,p1o).

Completing the proof. To summarize, we have:

2
e at least (1 - %) -{(2™)!}® choice of py,...,ps, P13, P16, P17 and pis,
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Fig. 11. pg and pi5 are fixed.

n\2 1 a@=D\? ;.
e at least {(2")!}*- (1 — 5 Ba—y ) choice of (ps,p14) when p1,...,p4, p13, P16, P17 and pig
are fixed,

SN2
e at least {(27)1}2 - (1 — %) choice of (pg, p15) when p1,...,ps, P13, P14, P16, P17 and
p1g are fixed,

2
e at least (1 — %) A(2M)1}2-{(2"—q)!}* choice of p7 ..., p12 when p, ..., pg, P13, - - - » P18
are fixed.

Then the number of (py,-- -, p1g) which satisfy (2) is at least
1)\ 2 1\ 2 4
(1-22) " (-3 =) (- ) (et @ - oy
> (1- 2Dy (@ -

This concludes the proof of the lemma. Q.E.D.

7 Conclusion

In this paper, we showed that a four round KASUMI type permutation is pseudorandom (The-

orem 3.1). We proved that the advantage is at most % . %. We also showed that a six
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round KASUMI type permutation is super-pseudorandom (Theorem 5.1). We proved that the

advantage is at most

9q(¢g—1)
n—1 -
It is an important open question to prove (or disprove) the super-pseudorandomness of the

five round KASUMI type permutation. We conjecture that it is super-pseudorandom.
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A Flaws in the proof of [6]

Kang et al. claimed that:

e the four round MISTY type permutation is pseudorandom for adaptive adversaries [6,
Theorem 1] and

e the four round KASUMI type permutation is pseudorandom for adaptive adversaries [6,
Theorem 3].

In this section, we show that both proofs are wrong. In what follows, we use the same
notation as in [6].

A.1 Flaws on Theorem 1
On advantage. In [6, Proof of Theorem 1, p.262], it is stated that
[Pr(Thny =0 | 0 € BAD(f1, f2)) = Pr(Tp,,,, = 0)| < npmg
and then
> Pr(o ¢ BAD(f1, f2))
" Pr(Ty,, =0 |0 ¢ BAD(fi ) ~ Pr(Tp,.., = )| < nm

where £y, g = {27727 = 1)(2" — 1)+ (2" — g+ 1)(2™ — g+ 1)} L.
However, we can only say that there are at most 1/ey, ,,, o such that o € ©. This implies
only that

> Pr(c ¢ BAD(f1, f2))

€O
and ADVp < 1. Hence it does not prove that ADVp is negligible.
On collision. In [6, Lemma 4, p.261], it is stated that

(2" —q)!

Pr(fy(Ly) =y @ By for 1< Vi < q) = S

where:
e f3 is a random permutation over {0, 1}",
. Lgi) is a fixed n-bit string such that Lg) =+ ng) for 1 <Vi<Vj<gq,
o yg) is a fixed n-bit string such that y(Li) =+ y(Lj) for 1 <Vi <Vj <gq, and
. Rg) is a fixed n-bit string such that R 75 R ) for 1 <Vi<Vj<q.

However eq. (26) does not hold because in general, yé) EBR 7é y EBR(] RY) does not hold even

if yL #* yL and R2 =+ R2 . For example, yé) = On,y(Lj) 107t Rg) 0", R(]) 1ont,
Exactly the same problem occurs in the analysis of f; in [6, Lemma 4, p. 261]
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A.2 Flaws on Theorem 3

In [6, p.266] it is stated that “Theorem 3 is proved straightforwardly by the similar process in
the proof of Theorem 1.” However, the proof of Theorem 1 is wrong as shown above. Therefore,
the proof of Theorem 3 is also wrong. (In addition, the proof of Lemma 6 is wrong similarly to

above.)
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