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1 Introduction

1.1 Pseudorandomness

Let R be a randomly chosen permutation and Ψ be a block cipher such that a key is randomly
chosen. We then say that

• Ψ is pseudorandom if Ψ and R are indistinguishable and

• Ψ is super-pseudorandom if (Ψ, Ψ−1) and (R,R−1) are indistinguishable.

Luby and Rackoff studied the pseudorandomness of idealized Feistel permutations, where each
round function is an independent (pseudo)random function. They proved that

• the three round version is pseudorandom and

• the four round version is super-pseudorandom

for adaptive adversaries [8].

1.2 KASUMI

KASUMI is a block cipher which has been adopted as a standard of 3GPP [2], where 3GPP is
the body standardizing the next generation of mobile telephony. The structure of KASUMI is
illustrated in Fig. 1. (See [1] for details.)

• The overall structure of KASUMI is a Feistel permutation.

• Each round function consists of two functions, FL function and FO function.

• Each FO function consists of a three round MISTY type permutation, where each round
function is called an FI function.

• Each FI function consists of a four round MISTY type permutation.

The initial security evaluation of KASUMI can be found in [3]. Blunden and Escott showed
related key attacks on five round and six round KASUMI [4].

1.3 Previous work (Non-adaptive)

We idealize KASUMI as follows.

• Each FL function is ignored. (In [7], the authors stated that the security of KASUMI is
mainly based on FO functions.)

• Each FI function is idealized by an independent (pseudo)random permutation.

We call such an idealized KASUMI a “KASUMI type permutation.”
However, we do not assume that each FO function is a random permutation. This implies

that we can not apply the result of Luby and Rackoff to KASUMI type permutations. (Indeed,
Sakurai and Zheng showed that a three round MISTY type permutation is not pseudorandom
[11].)

Kang et al. then showed that
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Fig. 1. KASUMI

• the three round version is not pseudorandom and

• the four round version is pseudorandom

for non-adaptive adversaries [7].

1.4 Our contribution (Adaptive)

In this paper, we study the pseudorandomness of KASUMI type permutations for adaptive
adversaries. We prove that

• the four round version is pseudorandom and

• the six round version is super-pseudorandom.

See the following table, where × comes from [7], ©1 comes from [7] and ©2 is proved in this
paper.
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Table 1. Summary of the previous results and our contributions.
Number of rounds Three Four Five Six
Pseudorandomness (non-adaptive) × ©1 ©1 ©1

Pseudorandomness × ©2 ©2 ©2

Super-pseudorandomness × ? ? ©2

(We cannot idealize MISTY1 [9, 10] like KASUMI type permutations because each FI func-
tion of MISTY1 is a three round MISTY type permutation and three round MISTY type
permutation is not pseudorandom [11].)

1.5 Flaw of the previous work

Kang et al. claimed that the four round KASUMI type permutation is pseudorandom for
adaptive adversaries [6]. However, we show that their proof is wrong in Appendix A.

2 Preliminaries

2.1 Notation

For a bit string x ∈ {0, 1}2n, we denote the first (left) n bits of x by xL and the last (right) n
bits of x by xR. Similarly, for a bit string x ∈ {0, 1}4n, we denote the first (left) n bits of x by
xLL, the next n bits of x by xLR, the third n bits of x by xRL, and the last (right) n bits of x
by xRR. That is, x = (xLL, xLR, xRL, xRR). For a set of l-bit strings {x(i) | x(i) ∈ {0, 1}l}1≤i≤q,
we say {x(i)}1≤i≤q are distinct to mean x(i) �= x(j) for 1 ≤ ∀i < ∀j ≤ q.

If S is a set, then s
R← S denotes the process of picking an element from S uniformly at

random.
Denote by Pn the set of all permutations over {0, 1}n, which consists of (2n)! permutations

in total. For functions f and g, g ◦ f denotes the function x �→ g(f(x)).

2.2 KASUMI type permutation [2]

We define KASUMI type permutations as follows.

Definition 2.1 (The basic KASUMI type permutation) Let x ∈ {0, 1}4n. For any per-
mutations p1, p2, p3 ∈ Pn, define the basic KASUMI type permutation ψp1,p2,p3 ∈ P4n as

ψp1,p2,p3(x)
def= y ,

where 


yLL
def= xRL,

yLR
def= xRR,

yRL
def= xRL ⊕ p1(xRR)⊕ p2(xRL)⊕ p3(xRL ⊕ p1(xRR))⊕ xLL, and

yRR
def= xRL ⊕ p1(xRR)⊕ p2(xRL)⊕ xLR.
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Fig. 2. A six round KASUMI type permutation ψ(p1, . . . , p18) (left) and a four round KASUMI
type permutation ψ(p1, . . . , p15) (right).

Note that it is a permutation since ψ−1
p1,p2,p3(y) = x, where



xLL = yLL ⊕ p1(yLR)⊕ p2(yLL)⊕ p3(yLL ⊕ p1(yLR))⊕ yRL,
xLR = yLL ⊕ p1(yLR)⊕ p2(yLL)⊕ yRR,
xRL = yLL, and
xRR = yLR.

Definition 2.2 (The r round KASUMI type permutation) Let r ≥ 1 be an integer, and
p1, p2, . . . , p3r ∈ Pn be permutations.

Define the r round KASUMI type permutation ψ(p1, p2, . . . , p3r) ∈ P4n as

ψ(p1, p2, . . . , p3r)
def= ψp3r−2,p3r−1,p3r ◦ ψp3r−5,p3r−4,p3r−3 ◦ · · · ◦ ψp1,p2,p3 .

See Fig. 2 for illustrations. For simplicity, swaps are omitted.

2.3 Pseudorandom and super-pseudorandom permutations [8]

Our adaptive adversary A is modeled as a Turing machine that has black-box access to an
oracle (or oracles). The computational power of A is unlimited, but the total number of oracle
calls is limited to a parameter q. After making at most q queries to the oracle(s) adaptively, A
outputs a bit.

The pseudorandomness of a block cipher Ψ over {0, 1}4n captures its computational indis-
tinguishability from P4n, where the adversary is given access to the forward direction of the
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permutation. In other words, it measures security of a block cipher against adaptive chosen
plaintext attack.

Definition 2.3 (Advantage, prp) Let a block cipher Ψ be a family of permutations over {0, 1}4n.
Let A be an adversary. Then A’s advantage is defined by

Advprp
Ψ (A) def=

∣∣∣Pr(ψ R← Ψ : Aψ = 1)− Pr(R R← P4n : AR = 1)
∣∣∣ .

The notation Aψ indicates A with an oracle which, in response to a query x, returns y ← ψ(x).
The notation AR indicates A with an oracle which, in response to a query x, returns y ← R(x).

The super-pseudorandomness of a block cipher Ψ over {0, 1}4n captures its computational
indistinguishability from P4n, where the adversary is given access to both directions of the
permutation. In other words, it measures security of a block cipher against adaptive chosen
plaintext and chosen ciphertext attacks.

Definition 2.4 (Advantage, sprp) Let a block cipher Ψ be a family of permutations over
{0, 1}4n. Let A be an adversary. Then A’s advantage is defined by

Advsprp
Ψ (A) def=

∣∣∣Pr(ψ R← Ψ : Aψ,ψ−1
= 1)− Pr(R R← P4n : AR,R−1

= 1)
∣∣∣ .

The notation Aψ,ψ−1
indicates A with an oracle which, in response to a query (+, x), returns

y ← ψ(x), and in response to a query (−, y), returns x ← ψ−1(y). The notation AR,R−1

indicates A with an oracle which, in response to a query (+, x), returns y ← R(x), and in
response to a query (−, y), returns x← R−1(y).

3 A four round KASUMI type permutation is pseudorandom

Theorem 3.1 For 1 ≤ i ≤ 12, let pi ∈ Pn be a random permutation. Let ψ = ψ(p1, . . . , p12)
be a four round KASUMI type permutation, R ∈ P4n be a random permutation, and Ψ def= {ψ |
ψ = ψ(p1, . . . , p12), pi ∈ Pn for 1 ≤ i ≤ 12}.

Then for any adversary A that makes at most q queries in total,

Advprp
Ψ (A) ≤ 15

2
· q(q − 1)

2n − 1
.

Proof . Let O be either R or ψ. The adversary A has oracle access to O. A can make a query x
and the oracle returns y = O(x). For the i-th query A makes to O, define the query-answer pair
(x(i), y(i)) ∈ {0, 1}4n ×{0, 1}4n, where A’s query was x(i) and the answer it got was y(i). Define
view v of A as v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉. We say that v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉 is
a possible view if there exists some permutation p ∈ P4n such that p(x(i)) = y(i) for 1 ≤ ∀i ≤ q
(or, equivalently, v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉 is a possible view if {x(i)}1≤i≤q are distinct
and {y(i)}1≤i≤q are distinct).

Since A is computationally unbounded, we may without loss of generality assume that A
is deterministic. This implies that for every 1 ≤ i ≤ q the i-th query x(i) is fully determined
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by the first i − 1 query-answer pairs, and the final output of A (0 or 1) depends only on v.
Therefore, there exists a function CA(·) such that{

CA(x(1), y(1), . . . , x(i−1), y(i−1)) = x(i) for 1 ≤ i ≤ q and
CA(v) = A’s final output.

Let vone
def= {v | CA(v) = 1} and None

def= #vone. Further, we let vgood be a set of all possible
view v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉 which satisfies the following four conditions:

• CA(v) = 1,

• {y(i)
LL}1≤i≤q are distinct,

• {y(i)
LR}1≤i≤q are distinct, and

• {x(i)
LL ⊕ x(i)

LR ⊕ y(i)
LL ⊕ y(i)

LR}1≤i≤q are distinct.

We also let Ngood
def= #vgood.

Evaluation of pR. We first evaluate pR
def= Pr(R R← P4n : AR = 1). We have pR =

#{R|AR=1}
(24n)! . For each v ∈ vone, the number of R such that

R(x(i)) = y(i) for 1 ≤ ∀i ≤ q (1)

is exactly (24n − q)!. Therefore, we have pR =
∑
v∈�one

#{R|R satisfying (1)}
(24n)!

= None · (24n−q)!
(24n)!

.

Evaluation of pψ. We evaluate pψ
def= Pr(ψ R← Ψ : Aψ,ψ−1

= 1). Note that “ψ R← Ψ”

is equivalent to “pi
R← Pn for 1 ≤ i ≤ 12 and then let ψ ← ψ(p1, . . . , p12).” We have pψ =

#{(p1,...,p12)|Aψ,ψ−1
=1}

{(2n)!}12 .
We have the following lemma. A proof of this lemma is given in Section 4.1.

Lemma 3.1 (Main Lemma for ψ(p1, . . . , p12)) For any fixed possible view

v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉
such that {y(i)

LL}1≤i≤q are distinct, {y(i)
LR}1≤i≤q are distinct, and {x(i)

LL ⊕ x(i)
LR ⊕ y(i)

LL ⊕ y(i)
LR}1≤i≤q

are distinct, the number of (p1, . . . , p12) which satisfies

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ q (2)

is at least
(
1− 6q(q−1)

2n−1

)
· {(2n)!}8 · {(2n − q)!}4.

Then from Lemma 3.1, we have

pψ ≥
∑

v∈�good

# {(p1, . . . , p12) | (p1, . . . , p12) satisfying (2)}
{(2n)!}12

≥
∑

v∈�good

(
1− 6q(q − 1)

2n − 1

)
· {(2

n − q)!}4
{(2n)!}4 .

Now we have the following lemma. See Section 4.2 for a proof.
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Lemma 3.2 Ngood ≥ None − 3
2 · q(q−1)

2n−1 · (24n)!
(24n−q)! .

From Lemma 3.2, we have

pψ ≥
(
None − 3

2
· q(q − 1)

2n − 1
· (24n)!
(24n − q)!

)
·
(

1− 6q(q − 1)
2n − 1

)
· {(2

n − q)!}4
{(2n)!}4

=
(
pR − 3

2
· q(q − 1)

2n − 1

)
·
(

1− 6q(q − 1)
2n − 1

)
· {(2

n − q)!}4
{(2n)!}4 · {(2

4n)!}
{(24n − q)!} .

Now it is easy to see that {(2n−q)!}4

{(2n)!}4 · {(24n)!}
{(24n−q)!} ≥ 1 (this can be shown easily by an induction

on q). Then pψ ≥
(
pR − 3

2 · q(q−1)
2n−1

)
·
(
1− 6q(q−1)

2n−1

)
≥ pR− 15

2 · q(q−1)
2n−1 . Applying the same argument

to 1−pψ and 1−pR yields that 1−pψ ≥ 1−pR− 15
2 · q(q−1)

2n−1 , and we have |pψ−pR| ≤ 15
2 · q(q−1)

2n−1 .
Q.E.D.

From Theorem 3.1, it is straightforward to show that ψ = ψ(p1, . . . , p12) is pseudorandom
even if each pi is a pseudorandom permutation by using a standard hybrid argument. For
example, see [8].

4 Proofs of Lemma 3.1 and Lemma 3.2

4.1 Proof of Lemma 3.1

First, we need the following lemma.

Lemma 4.1 For 1 ≤ i ≤ q, let X(i) = (X(i)
L ,X

(i)
R ) ∈ {0, 1}2n be fixed bit strings such

that {X(i)
L }1≤i≤q are distinct and {X(i)

R }1≤i≤q are distinct. Similarly, for 1 ≤ i ≤ q, let
Y (i) = (Y (i)

L , Y
(i)
R ) ∈ {0, 1}2n be fixed bit strings such that {Y (i)

L ⊕ Y (i)
R }1≤i≤q are distinct. Let

P1, P2, P3 ∈ Pn be permutations. Then the number of (P1, P2, P3) such that

• P1(X
(i)
L )⊕X(i)

R ⊕ P2(X
(i)
R ) = Y

(i)
R for 1 ≤ ∀i ≤ q, and

• P3(P1(X
(i)
L )⊕X(i)

R )⊕ P1(X
(i)
L )⊕X(i)

R ⊕ P2(X
(i)
R ) = Y

(i)
L for 1 ≤ ∀i ≤ q

is at least
(
1− q(q−1)

2n−1

)
· (2n)! · {(2n − q)!}2.

See Fig. 3 for an illustration.

�P1� �+

�•
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P2�

�•
��+

P3�

�•
�
�+�X

(i)
L

X
(i)
R

Y
(i)

L

Y
(i)

R

Fig. 3. Illustration of the conditions in Lemma 4.1.
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Proof . First observe that the number of P1 such that

P1(X
(i)
L )⊕X(i)

R ⊕ Y (i)
R = P1(X

(j)
L )⊕X(j)

R ⊕ Y (j)
R for 1 ≤ ∃i < ∃j ≤ q (3)

is at most
(q
2

) · {(2n)!}
2n−1 , since X(i)

L �= X
(j)
L for 1 ≤ ∀i < ∀j ≤ q.

Next we see that the number of P1 such that

P1(X
(i)
L )⊕X(i)

R = P1(X
(j)
L )⊕X(j)

R for 1 ≤ ∃i < ∃j ≤ q (4)

is at most
(q
2

) · {(2n)!}
2n−1 , since X(i)

L �= X
(j)
L for 1 ≤ ∀i < ∀j ≤ q.

We now fix any P1 which does not satisfy either (3) or (4). We have at least (2n)!·
(
1− q(q−1)

2n−1

)
choice of such P1. This implies that P1 is fixed in such a way that {P1(X

(i)
L )⊕X(i)

R ⊕Y (i)
R }1≤i≤q

(which are the outputs of P2) are distinct, and {P1(X
(i)
L )⊕X(i)

R }1≤i≤q (which are the inputs to
P3) are distinct.

We know from our condition that {X(i)
R }1≤i≤q (which are the inputs of P2) are distinct,

and {Y (i)
L ⊕ Y (i)

R }1≤i≤q (which are the outputs of P3) are distinct. Therefore, we have exactly
(2n − q)! choice of P2 and (2n − q)! choice of P3 for any such fixed P1.

Q.E.D.

Now for 1 ≤ i ≤ q and 1 ≤ j ≤ 12, let I(i)
j denote the input to pi when the input to φ is

x(i) and the output is y(i). Similarly, let O(i)
j denote the output of pi when the input to φ is x(i)

and the output is y(i).
We next have the following lemma.

Lemma 4.2 For any fixed possible view v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉, the number of (p1, p2, p3, p4)
such that

I
(i)
6 = I

(j)
6 or I(i)

6 ⊕ x(i)
RR = I

(j)
6 ⊕ x(j)

RR, for 1 ≤ ∃i < ∃j ≤ q (5)

is at most 2q(q−1)
2n−1 · {(2n)!}4.

Proof . First, we fix i and j such that 1 ≤ i < j ≤ q, and consider the condition

I
(i)
6 = I

(j)
6 or I(i)

6 ⊕ x(i)
RR = I

(j)
6 ⊕ x(j)

RR (6)

in the following four cases:

Case x(i)
RR �= x

(j)
RR. First, consider the condition

p1(x
(i)
RR)⊕ x(i)

RL ⊕ x(i)
LR = p1(x

(j)
RR)⊕ x(j)

RL ⊕ x(j)
LR . (7)

The number of p1 which satisfies (7) is at most (2n)!
2n−1 since x(i)

RR �= x
(j)
RR, and thus we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies both (6) and (7)} ≤ {(2
n)!}4

2n − 1
. (8)

Next, consider any p1 which does not satisfy (7), that is,

p1(x
(i)
RR)⊕ x(i)

RL ⊕ x(i)
LR �= p1(x

(j)
RR)⊕ x(j)

RL ⊕ x(j)
LR . (9)
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For this p1, we consider the condition

p2(x
(i)
RL)⊕ p1(x

(i)
RR)⊕ x(i)

RL ⊕ x(i)
LR = p2(x

(j)
RL)⊕ p1(x

(j)
RR)⊕ x(j)

RL ⊕ x(j)
LR , (10)

which is equivalent to I(i)
4 = I

(j)
4 . Since (9) holds, the number of p2 which satisfies (10) is at

most (2n)!
2n−1 , and thus we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6), (9) and (10)} ≤ {(2
n)!}4

2n − 1
. (11)

Next, consider any p1 which satisfies (9), and any p2 which does not satisfy (10). That is,

p2(x
(i)
RL)⊕ p1(x

(i)
RR)⊕ x(i)

RL ⊕ x(i)
LR �= p2(x

(j)
RL)⊕ p1(x

(j)
RR)⊕ x(j)

RL ⊕ x(j)
LR , (12)

which is equivalent to I(i)
4 �= I

(j)
4 . For these p1, p2 and any p3, the number of p4 which satisfies

p4(I
(i)
4 )⊕ I(i)

5 = p4(I
(j)
4 )⊕ I(i)

5 , (13)

which is equivalent to I(i)
6 = I

(j)
6 , is at most (2n)!

2n−1 , and the number of p4 which satisfies

p4(I
(i)
4 )⊕ I(i)

5 ⊕ x(i)
RR = p4(I

(j)
4 )⊕ I(i)

5 ⊕ x(j)
RR , (14)

which is equivalent to I(i)
6 ⊕ x(i)

RR = I
(j)
6 ⊕ x(j)

RR, is at most (2n)!
2n−1 . Therefore

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6), (9) and (12)} ≤ 2 · {(2n)!}4
2n − 1

. (15)

Thus, from (8), (11) and (15), we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6)} ≤ 4 · {(2n)!}4
2n − 1

. (16)

Case x
(i)
RL �= x

(j)
RL and x

(i)
RR = x

(j)
RR. For any p1, the number of p2 which satisfies (10) is at

most (2n)!
2n−1 since x(i)

RL �= x
(j)
RL, and thus we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6) and (10)} ≤ {(2
n)!}4

2n − 1
. (17)

Next, for any p1, any p2 which satisfies (12), and any p3, the number of p4 which satisfies
(13) is at most (2n)!

2n−1 . Note that (13) is equivalent to (14) in this case. Therefore we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6) and (12)} ≤ {(2
n)2

n}4
2n

. (18)

Thus, from (17) and (18), we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6)} ≤ 2 · {(2n)!}4
2n − 1

. (19)
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Case x
(i)
LR �= x

(j)
LR, x(i)

RL = x
(j)
RL, and x

(i)
RR = x

(j)
RR. For any p1 and any p2, (12) is satisfied.

Therefore, for any p1, any p2, and any p3, the number of p4 which satisfies (13) (which is
equivalent to (14)) is at most (2n)!

2n−1 . Therefore we have

#{(p1, p2, p3, p4) | (p1, p2, p3, p4) satisfies (6)} ≤ {(2
n)!}4

2n − 1
. (20)

Case x(i)
LL �= x

(j)
LL, x

(i)
LR = x

(j)
LR, x(i)

RL = x
(j)
RL, and x

(i)
RR = x

(j)
RR. There exists no p1, p2, p3, and

p4 that satisfies (6). Therefore we have

#{(p1, p2, p3, p4) | (p1, p2, p3, p4) satisfies (6)} = 0 . (21)

Completing the proof. By taking the maximum of (16), (19), (20) and (21),

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6)} ≤ 4 · {(2n)!}4
2n − 1

. (22)

for any case.
From (22) and since we have

(q
2

)
choice of i and j the lemma follows.

Q.E.D.

Next we show the following lemma.

Lemma 4.3 For any fixed possible view v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉 which satisfies the
condition of Lemma 3.1, the number of (p1, p2, p3, p4) such that

O
(i)
9 = O

(j)
9 for 1 ≤ ∃i < ∃j ≤ q (23)

is at most 1
2 · q(q−1)

2n−1 · {(2n)!}4.

Proof . First, we fix i and j such that 1 ≤ i < j ≤ q, and consider O(i)
9 = O

(j)
9 . Now observe

that for any p1 and p2, O
(i)
9 = O

(j)
9 is equivalent to the following condition:

p3(I
(i)
3 )⊕ x(i)

LL ⊕ y(i)
LL ⊕ x(i)

LR ⊕ y(i)
LR = p3(I

(j)
3 )⊕ x(j)

LL ⊕ y(j)
LL ⊕ x(j)

LR ⊕ y(j)
LR . (24)

Then the number of p3 which satisfies (24) is at most (2n)!
2n−1 , since x(i)

LL ⊕ y(i)
LL ⊕ x(i)

LR ⊕ y(i)
LR �=

x
(j)
LL ⊕ y(j)

LL ⊕ x(j)
LR ⊕ y(j)

LR.
Therefore, we have

#{(p1, . . . , p4) | (p1, . . . , p4) satisfies (6)} ≤ {(2
n)!}4

2n − 1

and since we have
(q
2

)
choice of i and j the lemma follows.

Q.E.D.

We now prove Lemma 3.1.

Proof of Lemma 3.1 . Initially, x(1), . . . , x(q), y(1), . . . , y(q) are fixed. See Fig. 4.
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Fig. 4. x(i) and y(i) are fixed.

Number of (p1, . . . , p4). From Lemma 4.2 and 4.3, the number of (p1, . . . , p4) such that:

• I(i)
6 �= I

(j)
6 , I(i)

6 ⊕ x(i)
RR �= I

(j)
6 ⊕ x(j)

RR, and O(i)
9 �= O

(j)
9 for 1 ≤ ∀i < ∀j ≤ q,

is at least {(2n)!}4 − 1
2 · q(q−1)

2n−1 · {(2n)!}4 − 2q(q−1)
2n−1 · {(2n)!}4. Fix any (p1, . . . , p4) which satisfy

these three conditions. See Fig. 5.

Number of p5. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of p5 such that
p5(I

(i)
5 )⊕ I(i)

6 ⊕x(i)
RR = p5(I

(j)
5 )⊕ I(j)

6 ⊕x(j)
RR, which is equivalent to I(i)

7 = I
(j)
7 , is at most {(2n)!}4

2n−1

since I(i)
6 ⊕ x(i)

RR �= I
(j)
6 ⊕ x(j)

RR. Then the number of p5 such that

• I(i)
7 �= I

(j)
7 for 1 ≤ ∀i < ∀j ≤ q

is at least (2n)!− 1
2 · q(q−1)

2n−1 · (2n)!. Fix any such p5. See Fig. 6.

Number of p6. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of p6 which
satisfies p6(I

(i)
6 )⊕I(i)

6 ⊕O(i)
5 ⊕x(i)

RL = p6(I
(j)
6 )⊕I(j)

6 ⊕O(j)
5 ⊕x(j)

RL, which is equivalent to I(i)
8 = I

(j)
8 ,

is at most (2n)!
2n−1 , since I(i)

6 �= I
(j)
6 .

Similarly, the number of p6 which satisfies p6(I
(i)
6 )⊕ I(i)

6 ⊕O(i)
5 ⊕ x(i)

RL ⊕ I(i)
7 ⊕ y(i)

RL ⊕ y(i)
RR =

p6(I
(j)
6 ) ⊕ I(j)

6 ⊕ O(j)
5 ⊕ x(j)

RL ⊕ I(j)
7 ⊕ y(j)

RL ⊕ y(j)
RR, which is equivalent to O(i)

12 = O
(j)
12 , is at most

(2n)!
2n−1 , since I(i)

6 �= I
(j)
6 .

Then, the number of p6 which satisfies:

• I(i)
8 �= I

(j)
8 and O(i)

12 �= O
(j)
12 for 1 ≤ ∀i < ∀j ≤ q,

is at least (2n)!− q(q−1)
2n−1 · (2n)!. Fix any p6 which satisfy the above two conditions. See Fig. 7.

11



•�p1��+

•�•
�

p2�

�•
��+

p3�

�•
�
�+�

��+

��+ •�p1�

•�•
�

p2�

�•
�

p3�

�•
�

�

�

�

•� p4� �+

• �•
�

p5�

�•
��+

p6�

�•
�
�+�

��+

��+•� p4�

• �•
�

�•
� �

�

•�p7��+

•�•
�

p8�

�•
��+

p9�

�•
�
�+�

��+

��+ �

�•
�

�

�

�

•�p10� �+

• �•
�

p11�

�•
��+

p12�

�•
�
�+�

��+

��+•�

• �•
� �

�

�� ��

x
(i)
LLx

(i)
LR x

(i)
RLx

(i)
RR

y
(i)
LL y

(i)
LR y

(i)
RLy

(i)
RR

Fig. 5. p1, . . . , p4 are fixed.
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Fig. 6. p5 is fixed.
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Fig. 7. p6 is fixed.

Number of (p7, . . . , p12). Now p1, . . . , p6 are fixed in such a way that {I(i)
7 }1≤i≤q are distinct,

{I(i)
8 }1≤i≤q are distinct, {O(i)

9 }1≤i≤q are distinct and {O(i)
12 }1≤i≤q are distinct. We know from

our condition that {I(i)
10 }1≤i≤q are distinct and {I(i)

11 }1≤i≤q are distinct.
Then we have at least

(
1− q(q−1)

2n−1

)
· (2n)! · {(2n − q)!}2 choice of (p7, p8, p9) by applying

Lemma 4.1. That is, X(i)
L , X(i)

R , Y (i)
L ⊕ Y (i)

R , P1, P2 and P3 in Lemma 4.1 correspond to I(i)
7 ,

I
(i)
8 , O(i)

9 , p7, p8 and p9 respectively.
Similarly, from Lemma 4.1 we have at least

(
1− q(q−1)

2n−1

)
· (2n)! · {(2n − q)!}2 choice of

(p10, p11, p12). Note that X(i)
L , X(i)

R , Y (i)
L ⊕Y (i)

R , P1, P2 and P3 in Lemma 4.1 correspond to I(i)
10 ,

I
(i)
11 , O(i)

12 , p10, p11 and p12 respectively.

Completing the proof. To summarize, we have:

• at least
(
1− 5

2 · q(q−1)
2n−1

)
· {(2n)!}4 choice of p1, . . . , p4,

• at least (2n)!− 1
2 · q(q−1)

2n−1 · (2n)! choice of p5 when p1, . . . , p4 are fixed,

• at least (2n)!− q(q−1)
2n−1 · (2n)! choice of p6 when p1, . . . , p5 are fixed, and

• at least
(
1− q(q−1)

2n−1

)2 · {(2n)!}2 · {(2n− q)!}4 choice of p7 . . . , p12 when p1, . . . , p6 are fixed.

Then, the number of (p1, . . . , p12) which satisfy (2) is at least(
1− 5

2 · q(q−1)
2n−1

)
·
(
1− 1

2 · q(q−1)
2n−1

)
·
(
1− q(q−1)

2n−1

)3 · {(2n)!}8 · {(2n − q)!}4
≥
(
1− 6q(q−1)

2n−1

)
· {(2n)!}8 · {(2n − q)!}4 .

This concludes the proof of the lemma. Q.E.D.
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4.2 Proof of Lemma 3.2

For any fixed i and j such that 1 ≤ i < j ≤ q, the number of {y(i)}1≤i≤q such that y(i)
LL = y

(j)
LL is

at most 23n−1
24n−(j−1)

· (24n)!
(24n−q)! ≤ 23n−1

24n−(q−1)
· (24n)!

(24n−q)! , since we have: (24n)(24n− 1) · · · (24n− (j − 2))

choice of y(1), . . . , y(j−1), which uniquely determines y(j)
LL = y

(i)
LL; at most 23n − 1 choice of

y
(j)
LR, y

(j)
RL, y

(j)
RR; and (24n − j)(24n − j − 1) · · · (24n − (q − 1)) choice of y(j+1), . . . , y(q).

Similarly, for any fixed i and j such that 1 ≤ i < j ≤ q, the number of {y(i)}1≤i≤q such that
y

(i)
LR = y

(j)
LR is at most 23n−1

24n−(q−1)
· (24n)!

(24n−q)! .
Next, for any fixed i and j such that 1 ≤ i < j ≤ q, the number of {y(i)}1≤i≤q such that

x
(i)
LL⊕x(i)

LR⊕y(i)
LL⊕y(i)

LR = x
(j)
LL⊕x(j)

LR⊕y(j)
LL⊕y(j)

LR is at most 23n

24n−(j−1) · (24n)!
(24n−q)! ≤ 23n

24n−(q−1) · (24n)!
(24n−q)! ,

since we have: (24n)(24n−1) · · · (24n− (j−2)) choice of y(1), . . . , y(j−1); 2n choice of y(j)
LR, which

uniquely determines y(j)
LL = x

(i)
LL ⊕ x(i)

LR ⊕ y(i)
LL ⊕ y(i)

LR ⊕ x(j)
LL ⊕ x(j)

LR ⊕ y(j)
LR; at most 22n choice of

y
(j)
RL, y

(j)
RR; and (24n − j)(24n − j − 1) · · · (24n − (q − 1)) choice of y(j+1), . . . , y(q).

Therefore, the number of y(1), . . . , y(q) such that

• y(i)
LL = y

(j)
LL for 1 ≤ ∃i < ∃j ≤ q,

• y(i)
LR = y

(j)
LR for 1 ≤ ∃i < ∃j ≤ q, or

• x(i)
LL ⊕ x(i)

LR ⊕ y(i)
LL ⊕ y(i)

LR = x
(j)
LL ⊕ x(j)

LR ⊕ y(j)
LL ⊕ y(j)

LR for 1 ≤ ∃i < ∃j ≤ q
is at most

(q
2

) · 3·23n−2
24n−(q−1)

· {(24n)!}
{(24n−q)!} , which is at most 3

2 · q(q−1)
2n−1 · {(24n)!}

{(24n−q)!} . Q.E.D.

5 A six round KASUMI type permutation is super-pseudorandom

Theorem 5.1 For 1 ≤ i ≤ 18, let pi ∈ Pn be a random permutation. Let ψ = ψ(p1, . . . , p18) be
a six round KASUMI type permutation, R ∈ P4n be a random permutation, and Ψ def= {ψ | ψ =
ψ(p1, . . . , p18), pi ∈ Pn for 1 ≤ i ≤ 18}.

Then for any adversary A that makes at most q queries in total,

Advsprp
Ψ (A) ≤ 9q(q − 1)

2n − 1
.

Proof . Let O be either R or ψ. The adversary A has oracle access to O and O−1.
There are two types of queries A can make: either (+, x) or (−, y). For the i-th query A

makes to O or O−1, define the query-answer pair (x(i), y(i)) ∈ {0, 1}4n × {0, 1}4n, where either
A’s query was (+, x(i)) and the answer it got was y(i) = O(x(i)) or A’s query was (−, y(i)) and
the answer it got was x(i) = O−1(y(i)). Define view v of A as v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉.

Since A has unbounded computational power, A can be assumed to be deterministic. This
implies that there exists a function CA such that{

CA(x(1), y(1), . . . , x(i−1), y(i−1)) = either (+, x(i)) or (−, y(i)) for 1 ≤ i ≤ q and
CA(v) = A’s final output.

Let vone
def= {v | CA(v) = 1} and None

def= #vone.
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Evaluation of pR. We first evaluate pR
def= Pr(R R← P4n : AR,R−1

= 1). We have pR =
None · (24n−q)!

(24n)!
as was done in the proof of Theorem 3.1

Evaluation of pψ. We evaluate pψ
def= Pr(ψ R← Ψ : Aψ,ψ−1

= 1). Note that “ψ R← Ψ”

is equivalent to “pi
R← Pn for 1 ≤ i ≤ 18 and then let ψ ← ψ(p1, . . . , p18).” We have pψ =

#{(p1,...,p18)|Aψ,ψ−1
=1}

{(2n)!}18 .
We have the following lemma. A proof of this lemma is given in Section 6.

Lemma 5.1 (Main Lemma for ψ(p1, . . . , p18)) For any fixed possible view

v = 〈(x(1), y(1)), . . . , (x(q), y(q))〉 ,
the number of (p1, . . . , p18) such that

ψ(x(i)) = y(i) for 1 ≤ ∀i ≤ q (25)

is at least
(
1− 9q(q−1)

2n−1

)
· {(2n)!}14 · {(2n − q)!}4.

Then from Lemma 5.1, we have

pψ =
∑

v∈�one

# {(p1, . . . , p18) | (p1, . . . , p18) satisfying (25)}
{(2n)!}18

≥
∑

v∈�one

(
1− 9q(q − 1)

2n − 1

)
· {(2

n − q)!}4
{(2n)!}4

≥ None ·
(

1− 9q(q − 1)
2n − 1

)
· {(2

n − q)!}4
{(2n)!}4

= pR ·
(

1− 9q(q − 1)
2n − 1

)
· {(2

n − q)!}4
{(2n)!}4 · {(2

4n)!}
{(24n − q)!} .

Since {(2n−q)!}4

{(2n)!}4 · {(24n)!}
{(24n−q)!} ≥ 1, pψ ≥ pR ·

(
1− 9q(q−1)

2n−1

)
≥ pR − 9q(q−1)

2n−1 . Applying the same

argument to 1−pψ and 1−pR yields that 1−pψ ≥ 1−pR− 9q(q−1)
2n−1 and we have |pψ−pR| ≤ 9q(q−1)

2n−1 .
Q.E.D.

From Theorem 5.1, it is straightforward to show that ψ = ψ(p1, . . . , p18) is super-pseudorandom
even if each pi is a pseudorandom permutation. Note that we do not need the super-pseudorandomness
of pi to derive this result, since KASUMI type permutation does not use p−1

i in both encryption
and decryption. That is, we can “simulate” both ψ and ψ−1 without using p−1

i .

6 Proof of Lemma 5.1

For 1 ≤ i ≤ q and 1 ≤ j ≤ 18, let I(i)
j denote the input to pi when the input to φ is x(i) and

the output is y(i). Similarly, let O(i)
j denote the output of pi when the input to φ is x(i) and the

output is y(i).
Initially, x(1), . . . , x(q), y(1), . . . , y(q) are fixed. See Fig. 8.
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Fig. 8. x(i) and y(i) are fixed.

Number of (p1, . . . , p4). From Lemma 4.2, the number of (p1, . . . , p4) such that:

• I(i)
6 �= I

(j)
6 , and I(i)

6 ⊕ x(i)
RR �= I

(j)
6 ⊕ x(j)

RR for 1 ≤ ∀i < ∀j ≤ q
is at least {(2n)!}4− 2q(q−1)

2n−1 · {(2n)!}4. Note that Lemma 4.2 holds for any possible view, and it
is irrelevant from the condition on y(i) in Lemma 3.1. Fix (p1, . . . , p4) which satisfy these two
conditions arbitrarily.

Number of (p13, p16, p17, p18). From Lemma 4.2, the number of (p13, p16, p17, p18) such that:

• I(i)
15 �= I

(j)
15 , and I(i)

15 ⊕ y(i)
LR �= I

(j)
15 ⊕ y(j)

LR for 1 ≤ ∀i < ∀j ≤ q
is at least {(2n)!}4− 2q(q−1)

2n−1 ·{(2n)!}4. We have used the symmetry of KASUMI type permutation.

That is, x(i)
LL, x(i)

LR, x(i)
RL, x(i)

RR, p1, p2, p3, p4 and I
(i)
6 in Lemma 4.2 corresponds to y

(i)
RL, y(i)

RR,
y

(i)
LL, y(i)

LR, p16, p17, p18, p13 and I
(i)
15 respectively. Fix (p13, p16, p17, p18) which satisfy these two

conditions arbitrarily. See Fig. 9.

Number of p5. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of p5 such that
p5(I

(i)
5 )⊕ I(i)

6 ⊕x(i)
RR = p5(I

(j)
5 )⊕ I(j)

6 ⊕x(j)
RR, which is equivalent to I(i)

7 = I
(j)
7 , is at most {(2n)!}4

2n−1

since I(i)
6 ⊕ x(i)

RR �= I
(j)
6 ⊕ x(j)

RR. Then the number of p5 such that

• I(i)
7 �= I

(j)
7 for 1 ≤ ∀i < ∀j ≤ q

is at least (2n)!− 1
2 · q(q−1)

2n−1 · (2n)!. Fix any p5 which satisfy the above condition.
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Fig. 9. p1, . . . , p4, p13, p16, p17, p18 are fixed.

Number of p14. Similar to the case p5, for any fixed i and j such that 1 ≤ i < j ≤ q, the
number of p14 such that p14(I

(i)
14 ) ⊕ I(i)

15 ⊕ y(i)
LR = p14(I

(j)
14 ) ⊕ I(j)

15 ⊕ y(j)
LR, which is equivalent to

I
(i)
10 = I

(j)
10 , is at most {(2n)!}4

2n−1 since I(i)
15 ⊕ y(i)

LR �= I
(j)
15 ⊕ y(j)

LR. Then the number of p14 such that

• I(i)
10 �= I

(j)
10 for 1 ≤ ∀i < ∀j ≤ q

is at least (2n)!− 1
2 · q(q−1)

2n−1 · (2n)!. Fix any p14 which satisfy the above condition. See Fig. 10.

Number of p6. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of p6 which
satisfies p6(I

(i)
6 )⊕I(i)

6 ⊕O(i)
5 ⊕x(i)

RL = p6(I
(j)
6 )⊕I(j)

6 ⊕O(j)
5 ⊕x(j)

RL, which is equivalent to I(j)
8 = I

(j)
8 ,

is at most (2n)!
2n−1 , since I(i)

6 �= I
(j)
6 .

Similarly, the number of p6 which satisfies p6(I
(i)
6 ) ⊕ I(i)

6 ⊕ O(i)
5 ⊕ x(i)

RL ⊕ I(i)
14 ⊕ I(i)

7 ⊕ I(i)
13 =

p6(I
(j)
6 ) ⊕ I(j)

6 ⊕ O(j)
5 ⊕ x(j)

RL ⊕ I(j)
14 ⊕ I(j)

7 ⊕ I(j)
13 , which is equivalent to O(i)

12 = O
(j)
12 , is at most

(2n)!
2n−1 , since I(i)

6 �= I
(j)
6 .

Then, the number of p6 which satisfies

• I(i)
8 �= I

(j)
8 and O(i)

12 �= O
(j)
12 for 1 ≤ ∀i < ∀j ≤ q

is at least (2n)!− q(q−1)
2n−1 · (2n)!. Fix any p6 which satisfy the above condition.
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Fig. 10. p5 and p14 are fixed.

Number of p15. For any fixed i and j such that 1 ≤ i < j ≤ q, the number of p15 which
satisfies p15(I

(i)
15 ) ⊕ I

(i)
15 ⊕ O

(i)
14 ⊕ y

(i)
LL = p15(I

(j)
15 ) ⊕ I

(j)
15 ⊕ O

(j)
14 ⊕ y

(j)
LL, which is equivalent to

I
(i)
11 = I

(j)
11 , is at most (2n)!

2n−1 , since I(i)
15 �= I

(j)
15 .

Similarly, the number of p15 which satisfies p15(I
(i)
15 )⊕ I(i)

15 ⊕O(i)
14 ⊕ y(i)

LL ⊕ I(i)
4 ⊕ I(i)

10 ⊕ I(i)
5 =

p15(I
(j)
15 ) ⊕ I(j)

15 ⊕ O(j)
14 ⊕ y(i)

LL ⊕ I(j)
4 ⊕ I(j)

10 ⊕ I(j)
5 , which is equivalent to O(i)

9 = O
(j)
9 , is at most

(2n)!
2n−1 , since I(i)

15 �= I
(j)
15 .

Then, the number of p15 which satisfies

• I(i)
11 �= I

(j)
11 and O(i)

9 �= O
(j)
9 for 1 ≤ ∀i < ∀j ≤ q

is at least (2n)!− q(q−1)
2n−1 · (2n)!. Fix any p15 which satisfy the above condition. See Fig. 11.

Number of (p7, . . . , p12). Now p1, . . . , p6, p13, . . . , p15 are fixed in such a way that {I(i)
7 }1≤i≤q

are distinct, {I(i)
8 }1≤i≤q are distinct, {O(i)

9 }1≤i≤q are distinct, {I(i)
10 }1≤i≤q are distinct, {I(i)

11 }1≤i≤q
are distinct and {O(i)

12 }1≤i≤q are distinct. Then, by applying Lemma 4.1 twice, we have at least(
1− q(q−1)

2n−1

)2 · {(2n)!}2 · {(2n − q)!}4 choice of (p7, . . . , p12).

Completing the proof. To summarize, we have:

• at least
(
1− 2q(q−1)

2n−1

)2 · {(2n)!}8 choice of p1, . . . , p4, p13, p16, p17 and p18,
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Fig. 11. p6 and p15 are fixed.

• at least {(2n)!}2 ·
(
1− 1

2 · q(q−1)
2n−1

)2
choice of (p5, p14) when p1, . . . , p4, p13, p16, p17 and p18

are fixed,

• at least {(2n)!}2 ·
(
1− q(q−1)

2n−1

)2
choice of (p6, p15) when p1, . . . , p5, p13, p14, p16, p17 and

p18 are fixed,

• at least
(
1− q(q−1)

2n−1

)2·{(2n)!}2 ·{(2n−q)!}4 choice of p7 . . . , p12 when p1, . . . , p6, p13, . . . , p18

are fixed.

Then the number of (p1, · · · , p18) which satisfy (2) is at least

(
1− 2q(q−1)

2n−1

)2 ·
(
1− 1

2 · q(q−1)
2n−1

)2 ·
(
1− q(q−1)

2n−1

)4 · {(2n)!}14 · {(2n − q)!}4
≥
(
1− 9q(q−1)

2n−1

)
· {(2n)!}8 · {(2n − q)!}4 .

This concludes the proof of the lemma. Q.E.D.

7 Conclusion

In this paper, we showed that a four round KASUMI type permutation is pseudorandom (The-
orem 3.1). We proved that the advantage is at most 15

2 · q(q−1)
2n−1 . We also showed that a six
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round KASUMI type permutation is super-pseudorandom (Theorem 5.1). We proved that the
advantage is at most 9q(q−1)

2n−1 .
It is an important open question to prove (or disprove) the super-pseudorandomness of the

five round KASUMI type permutation. We conjecture that it is super-pseudorandom.
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A Flaws in the proof of [6]

Kang et al. claimed that:

• the four round MISTY type permutation is pseudorandom for adaptive adversaries [6,
Theorem 1] and

• the four round KASUMI type permutation is pseudorandom for adaptive adversaries [6,
Theorem 3].

In this section, we show that both proofs are wrong. In what follows, we use the same
notation as in [6].

A.1 Flaws on Theorem 1

On advantage. In [6, Proof of Theorem 1, p.262], it is stated that∣∣Pr(TΛn+m = σ | σ �∈ BAD(f1, f2))− Pr(TPn+m = σ)
∣∣ ≤ εn,m,q ,

and then ∑
σ∈Θ

Pr(σ �∈ BAD(f1, f2))

· ∣∣Pr(TΛn+m = σ | σ �∈ BAD(f1, f2))− Pr(TPn+m = σ)
∣∣ ≤ εn,m,q ,

where εn,m,q = {2n+m(2n − 1)(2m − 1) · · · (2n − q + 1)(2m − q + 1)}−1.
However, we can only say that there are at most 1/εn,m,q σ such that σ ∈ Θ. This implies

only that ∑
σ∈Θ

Pr(σ �∈ BAD(f1, f2))

· ∣∣Pr(TΛn+m = σ | σ �∈ BAD(f1, f2))− Pr(TPn+m = σ)
∣∣ ≤ 1

and ADVD < 1. Hence it does not prove that ADVD is negligible.

On collision. In [6, Lemma 4, p.261], it is stated that

Pr(f3(L
(i)
2 ) = y

(i)
L ⊕R(i)

2 for 1 ≤ ∀i ≤ q) =
(2n − q)!

(2n)!
, (26)

where:

• f3 is a random permutation over {0, 1}n,

• L(i)
2 is a fixed n-bit string such that L(i)

2 �= L
(j)
2 for 1 ≤ ∀i < ∀j ≤ q,

• y(i)
L is a fixed n-bit string such that y(i)

L �= y
(j)
L for 1 ≤ ∀i < ∀j ≤ q, and

• R(i)
2 is a fixed n-bit string such that R(i)

2 �= R
(j)
2 for 1 ≤ ∀i < ∀j ≤ q.

However eq.(26) does not hold because in general, y(i)L ⊕R(i)
2 �= y

(j)
L ⊕R(j)

2 does not hold even

if y(i)
L �= y

(j)
L and R(i)

2 �= R
(j)
2 . For example, y(i)

L = 0n, y(j)
L = 10n−1, R

(i)
2 = 0n, R(j)

2 = 10n−1.
Exactly the same problem occurs in the analysis of f4 in [6, Lemma 4, p.261].
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A.2 Flaws on Theorem 3

In [6, p.266] it is stated that “Theorem 3 is proved straightforwardly by the similar process in
the proof of Theorem 1.” However, the proof of Theorem 1 is wrong as shown above. Therefore,
the proof of Theorem 3 is also wrong. (In addition, the proof of Lemma 6 is wrong similarly to
above.)
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