On the Pseudorandomness of KASUMI Type Permutations *

Tetsu Iwata[†] Tohru Yagi[‡] Kaoru Kurosawa[†]

[†] Department of Computer and Information Sciences, Ibaraki University
4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan E-mail: {iwata, kurosawa}@cis.ibaraki.ac.jp

[‡]Department of Communications and Integrated Systems, Tokyo Institute of Technology 2–12–1 O-okayama, Meguro, Tokyo 152-8552, Japan

July 3, 2003.

Abstract. KASUMI is a block cipher which has been adopted as a standard of 3GPP. In this paper, we study the pseudorandomness of idealized KASUMI type permutations for adaptive adversaries. We show that

- the four round version is pseudorandom and
- the six round version is super-pseudorandom.

Key words: Cryptography, block cipher, KASUMI, pseudorandomness, provable security.

^{*}A preliminary version of this paper appears in The Eighth Australasian Conference on Information Security and Privacy, ACISP 2003 [5].

Contents

1	Introduction	1				
	1.1 Pseudorandomness	1				
	1.2 KASUMI	1				
	1.3 Previous work (Non-adaptive)	1				
	1.4 Our contribution (Adaptive).	2				
	1.5 Flaw of the previous work	3				
2	Preliminaries	3				
	2.1 Notation	3				
	2.2 KASUMI type permutation [2]	3				
	2.3 Pseudorandom and super-pseudorandom permutations [8]	4				
3	A four round KASUMI type permutation is pseudorandom					
4	Proofs of Lemma 3.1and Lemma 3.2	7				
	4.1 Proof of Lemma 3.1	7 14				
5	A six round KASUMI type permutation is super-pseudorandom					
6	Proof of Lemma 5.1	15				
7	Conclusion	19				
R	eferences	20				
\mathbf{A}	Flaws in the proof of [6]	21				
	A.1 Flaws on Theorem 1	21				
	A.2 Flaws on Theorem 3	22				

1 Introduction

1.1 Pseudorandomness

Let R be a randomly chosen permutation and \varPsi be a block cipher such that a key is randomly chosen. We then say that

- Ψ is pseudorandom if Ψ and R are indistinguishable and
- Ψ is super-pseudorandom if (Ψ, Ψ^{-1}) and (R, R^{-1}) are indistinguishable.

Luby and Rackoff studied the pseudorandomness of idealized Feistel permutations, where each round function is an independent (pseudo)random function. They proved that

- the three round version is pseudorandom and
- the four round version is super-pseudorandom

for adaptive adversaries [8].

1.2 KASUMI

KASUMI is a block cipher which has been adopted as a standard of 3GPP [2], where 3GPP is the body standardizing the next generation of mobile telephony. The structure of KASUMI is illustrated in Fig. 1. (See [1] for details.)

- The overall structure of KASUMI is a Feistel permutation.
- Each round function consists of two functions, FL function and FO function.
- Each FO function consists of a three round MISTY type permutation, where each round function is called an FI function.
- Each FI function consists of a four round MISTY type permutation.

The initial security evaluation of KASUMI can be found in [3]. Blunden and Escott showed related key attacks on five round and six round KASUMI [4].

1.3 Previous work (Non-adaptive)

We idealize KASUMI as follows.

- Each FL function is ignored. (In [7], the authors stated that the security of KASUMI is mainly based on FO functions.)
- Each FI function is idealized by an independent (pseudo)random permutation.

We call such an idealized KASUMI a "KASUMI type permutation."

However, we do not assume that each FO function is a random permutation. This implies that we can not apply the result of Luby and Rackoff to KASUMI type permutations. (Indeed, Sakurai and Zheng showed that a three round MISTY type permutation is not pseudorandom [11].)

Kang et al. then showed that

Fig. 1. KASUMI

- the three round version is not pseudorandom and
- the four round version is pseudorandom

for non-adaptive adversaries [7].

1.4 Our contribution (Adaptive)

In this paper, we study the pseudorandomness of KASUMI type permutations for adaptive adversaries. We prove that

- the four round version is pseudorandom and
- the six round version is super-pseudorandom.

See the following table, where \times comes from [7], \bigcirc^1 comes from [7] and \bigcirc^2 is proved in this paper.

Number of rounds	Three	Four	Five	Six
Pseudorandomness (non-adaptive)	×	\bigcirc^1	\bigcirc^1	\bigcirc^1
Pseudorandomness	×	\bigcirc^2	\bigcirc^2	\bigcirc^2
Super-pseudorandomness	×	?	?	\bigcirc^2

Table 1. Summary of the previous results and our contributions.

(We cannot idealize MISTY1 [9, 10] like KASUMI type permutations because each FI function of MISTY1 is a three round MISTY type permutation and three round MISTY type permutation is not pseudorandom [11].)

1.5 Flaw of the previous work

Kang et al. claimed that the four round KASUMI type permutation is pseudorandom for adaptive adversaries [6]. However, we show that their proof is wrong in Appendix A.

2 Preliminaries

2.1 Notation

For a bit string $x \in \{0, 1\}^{2n}$, we denote the first (left) n bits of x by x_L and the last (right) n bits of x by x_R . Similarly, for a bit string $x \in \{0, 1\}^{4n}$, we denote the first (left) n bits of x by x_{LL} , the next n bits of x by x_{LR} , the third n bits of x by x_{RL} , and the last (right) n bits of x by x_{RR} . That is, $x = (x_{LL}, x_{LR}, x_{RL}, x_{RR})$. For a set of l-bit strings $\{x^{(i)} \mid x^{(i)} \in \{0, 1\}^l\}_{1 \le i \le q}$, we say $\{x^{(i)}\}_{1 \le i \le q}$ are distinct to mean $x^{(i)} \ne x^{(j)}$ for $1 \le \forall i < \forall j \le q$.

If S is a set, then $s \stackrel{R}{\leftarrow} S$ denotes the process of picking an element from S uniformly at random.

Denote by P_n the set of all permutations over $\{0, 1\}^n$, which consists of $(2^n)!$ permutations in total. For functions f and g, $g \circ f$ denotes the function $x \mapsto g(f(x))$.

2.2 KASUMI type permutation [2]

We define KASUMI type permutations as follows.

Definition 2.1 (The basic KASUMI type permutation) Let $x \in \{0,1\}^{4n}$. For any permutations $p_1, p_2, p_3 \in P_n$, define the basic KASUMI type permutation $\psi_{p_1,p_2,p_3} \in P_{4n}$ as

$$\psi_{p_1,p_2,p_3}(x) \stackrel{\text{def}}{=} y \;\;,$$

where

$$y_{LL} \stackrel{\text{def}}{=} x_{RL},$$

$$y_{LR} \stackrel{\text{def}}{=} x_{RR},$$

$$y_{RL} \stackrel{\text{def}}{=} x_{RL} \oplus p_1(x_{RR}) \oplus p_2(x_{RL}) \oplus p_3(x_{RL} \oplus p_1(x_{RR})) \oplus x_{LL}, and$$

$$y_{RR} \stackrel{\text{def}}{=} x_{RL} \oplus p_1(x_{RR}) \oplus p_2(x_{RL}) \oplus x_{LR}.$$

Fig. 2. A six round KASUMI type permutation $\psi(p_1, \ldots, p_{18})$ (left) and a four round KASUMI type permutation $\psi(p_1, \ldots, p_{15})$ (right).

Note that it is a permutation since $\psi_{p_1,p_2,p_3}^{-1}(y) = x$, where

$$\begin{cases} x_{LL} = y_{LL} \oplus p_1(y_{LR}) \oplus p_2(y_{LL}) \oplus p_3(y_{LL} \oplus p_1(y_{LR})) \oplus y_{RL}, \\ x_{LR} = y_{LL} \oplus p_1(y_{LR}) \oplus p_2(y_{LL}) \oplus y_{RR}, \\ x_{RL} = y_{LL}, \text{ and} \\ x_{RR} = y_{LR}. \end{cases}$$

Definition 2.2 (The *r* **round KASUMI type permutation)** Let $r \ge 1$ be an integer, and $p_1, p_2, \ldots, p_{3r} \in P_n$ be permutations.

Define the r round KASUMI type permutation $\psi(p_1, p_2, \ldots, p_{3r}) \in P_{4n}$ as

$$\psi(p_1, p_2, \dots, p_{3r}) \stackrel{\text{def}}{=} \psi_{p_{3r-2}, p_{3r-1}, p_{3r}} \circ \psi_{p_{3r-5}, p_{3r-4}, p_{3r-3}} \circ \dots \circ \psi_{p_1, p_2, p_3} .$$

See Fig. 2 for illustrations. For simplicity, swaps are omitted.

2.3 Pseudorandom and super-pseudorandom permutations [8]

Our adaptive adversary \mathcal{A} is modeled as a Turing machine that has black-box access to an oracle (or oracles). The computational power of \mathcal{A} is unlimited, but the total number of oracle calls is limited to a parameter q. After making at most q queries to the oracle(s) adaptively, \mathcal{A} outputs a bit.

The pseudorandomness of a block cipher Ψ over $\{0,1\}^{4n}$ captures its computational indistinguishability from P_{4n} , where the adversary is given access to the forward direction of the permutation. In other words, it measures security of a block cipher against adaptive chosen plaintext attack.

Definition 2.3 (Advantage, prp) Let a block cipher Ψ be a family of permutations over $\{0,1\}^{4n}$. Let \mathcal{A} be an adversary. Then \mathcal{A} 's advantage is defined by

$$\operatorname{Adv}_{\Psi}^{\operatorname{prp}}(\mathcal{A}) \stackrel{\text{def}}{=} \left| \operatorname{Pr}(\psi \stackrel{R}{\leftarrow} \Psi : \mathcal{A}^{\psi} = 1) - \operatorname{Pr}(R \stackrel{R}{\leftarrow} P_{4n} : \mathcal{A}^{R} = 1) \right|$$

The notation \mathcal{A}^{ψ} indicates \mathcal{A} with an oracle which, in response to a query x, returns $y \leftarrow \psi(x)$. The notation \mathcal{A}^{R} indicates \mathcal{A} with an oracle which, in response to a query x, returns $y \leftarrow R(x)$.

The super-pseudorandomness of a block cipher Ψ over $\{0,1\}^{4n}$ captures its computational indistinguishability from P_{4n} , where the adversary is given access to both directions of the permutation. In other words, it measures security of a block cipher against adaptive chosen plaintext and chosen ciphertext attacks.

Definition 2.4 (Advantage, sprp) Let a block cipher Ψ be a family of permutations over $\{0,1\}^{4n}$. Let \mathcal{A} be an adversary. Then \mathcal{A} 's advantage is defined by

$$\operatorname{Adv}_{\Psi}^{\operatorname{sprp}}(\mathcal{A}) \stackrel{\operatorname{def}}{=} \left| \operatorname{Pr}(\psi \stackrel{R}{\leftarrow} \Psi : \mathcal{A}^{\psi,\psi^{-1}} = 1) - \operatorname{Pr}(R \stackrel{R}{\leftarrow} P_{4n} : \mathcal{A}^{R,R^{-1}} = 1) \right|$$

The notation $\mathcal{A}^{\psi,\psi^{-1}}$ indicates \mathcal{A} with an oracle which, in response to a query (+,x), returns $y \leftarrow \psi(x)$, and in response to a query (-,y), returns $x \leftarrow \psi^{-1}(y)$. The notation $\mathcal{A}^{R,R^{-1}}$ indicates \mathcal{A} with an oracle which, in response to a query (+,x), returns $y \leftarrow R(x)$, and in response to a query (-,y), returns $x \leftarrow R^{-1}(y)$.

3 A four round KASUMI type permutation is pseudorandom

Theorem 3.1 For $1 \leq i \leq 12$, let $p_i \in P_n$ be a random permutation. Let $\psi = \psi(p_1, \ldots, p_{12})$ be a four round KASUMI type permutation, $R \in P_{4n}$ be a random permutation, and $\Psi \stackrel{\text{def}}{=} \{\psi \mid \psi = \psi(p_1, \ldots, p_{12}), p_i \in P_n \text{ for } 1 \leq i \leq 12\}.$

Then for any adversary A that makes at most q queries in total,

$$\operatorname{Adv}_{\Psi}^{\operatorname{prp}}(\mathcal{A}) \leq rac{15}{2} \cdot rac{q(q-1)}{2^n - 1}$$

Proof. Let \mathcal{O} be either R or ψ . The adversary \mathcal{A} has oracle access to \mathcal{O} . \mathcal{A} can make a query x and the oracle returns $y = \mathcal{O}(x)$. For the *i*-th query \mathcal{A} makes to \mathcal{O} , define the query-answer pair $(x^{(i)}, y^{(i)}) \in \{0, 1\}^{4n} \times \{0, 1\}^{4n}$, where \mathcal{A} 's query was $x^{(i)}$ and the answer it got was $y^{(i)}$. Define view v of \mathcal{A} as $v = \langle (x^{(1)}, y^{(1)}), \ldots, (x^{(q)}, y^{(q)}) \rangle$. We say that $v = \langle (x^{(1)}, y^{(1)}), \ldots, (x^{(q)}, y^{(q)}) \rangle$ is a possible view if there exists some permutation $p \in P_{4n}$ such that $p(x^{(i)}) = y^{(i)}$ for $1 \leq \forall i \leq q$ (or, equivalently, $v = \langle (x^{(1)}, y^{(1)}), \ldots, (x^{(q)}, y^{(q)}) \rangle$ is a possible view if $\{x^{(i)}\}_{1 \leq i \leq q}$ are distinct and $\{y^{(i)}\}_{1 \leq i \leq q}$ are distinct).

Since \mathcal{A} is computationally unbounded, we may without loss of generality assume that \mathcal{A} is deterministic. This implies that for every $1 \leq i \leq q$ the *i*-th query $x^{(i)}$ is fully determined

by the first i-1 query-answer pairs, and the final output of \mathcal{A} (0 or 1) depends only on v. Therefore, there exists a function $\mathcal{C}_{\mathcal{A}}(\cdot)$ such that

$$\begin{cases} \mathcal{C}_{\mathcal{A}}(x^{(1)}, y^{(1)}, \dots, x^{(i-1)}, y^{(i-1)}) = x^{(i)} \text{ for } 1 \leq i \leq q \text{ and} \\ \mathcal{C}_{\mathcal{A}}(v) = \mathcal{A}' \text{s final output.} \end{cases}$$

Let $\boldsymbol{v}_{one} \stackrel{\text{def}}{=} \{ v \mid \mathcal{C}_{\mathcal{A}}(v) = 1 \}$ and $N_{one} \stackrel{\text{def}}{=} \# \boldsymbol{v}_{one}$. Further, we let \boldsymbol{v}_{good} be a set of all possible view $v = \langle (x^{(1)}, y^{(1)}), \dots, (x^{(q)}, y^{(q)}) \rangle$ which satisfies the following four conditions:

- $\mathcal{C}_{\mathcal{A}}(v) = 1$,
- $\{y_{LL}^{(i)}\}_{1 \le i \le q}$ are distinct,
- $\{y_{LR}^{(i)}\}_{1 \le i \le q}$ are distinct, and
- $\{x_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LL}^{(i)} \oplus y_{LR}^{(i)}\}_{1 \le i \le q}$ are distinct.

We also let $N_{aood} \stackrel{\text{def}}{=} \# \boldsymbol{v}_{aood}$.

Evaluation of p_R . We first evaluate $p_R \stackrel{\text{def}}{=} \Pr(R \stackrel{R}{\leftarrow} P_{4n} : \mathcal{A}^R = 1)$. We have $p_R =$ $\frac{\#\{R|\mathcal{A}^R=1\}}{(2^{4n})!}$. For each $v \in \boldsymbol{v}_{one}$, the number of R such that

$$R(x^{(i)}) = y^{(i)} \text{ for } 1 \le \forall i \le q$$

$$\tag{1}$$

is exactly $(2^{4n} - q)!$. Therefore, we have $p_R = \sum_{v \in v_{one}} \frac{\#\{R|R \text{ satisfying } (1)\}}{(2^{4n})!} = N_{one} \cdot \frac{(2^{4n} - q)!}{(2^{4n})!}$.

Evaluation of p_{ψ} . We evaluate $p_{\psi} \stackrel{\text{def}}{=} \Pr(\psi \stackrel{R}{\leftarrow} \Psi : \mathcal{A}^{\psi,\psi^{-1}} = 1)$. Note that " $\psi \stackrel{R}{\leftarrow} \Psi$ " is equivalent to " $p_i \stackrel{R}{\leftarrow} P_n$ for $1 \le i \le 12$ and then let $\psi \leftarrow \psi(p_1, \ldots, p_{12})$." We have $p_{\psi} =$ $\frac{\#\{(p_1,...,p_{12})|\mathcal{A}^{\psi,\psi^{-1}}=1\}}{\{(2^n)\}^{12}}.$ We have the following lemma. A proof of this lemma is given in Section 4.1.

Lemma 3.1 (Main Lemma for $\psi(p_1, \ldots, p_{12})$) For any fixed possible view

 $v = \langle (x^{(1)}, y^{(1)}), \dots, (x^{(q)}, y^{(q)}) \rangle$

such that $\{y_{LL}^{(i)}\}_{1 \leq i \leq q}$ are distinct, $\{y_{LR}^{(i)}\}_{1 \leq i \leq q}$ are distinct, and $\{x_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LL}^{(i)} \oplus y_{LR}^{(i)}\}_{1 \leq i \leq q}$ are distinct, the number of (p_1, \ldots, p_{12}) which satisfies

$$\psi(x^{(i)}) = y^{(i)} \text{ for } 1 \le \forall i \le q$$

$$\tag{2}$$

is at least $\left(1 - \frac{6q(q-1)}{2^n - 1}\right) \cdot \{(2^n)!\}^8 \cdot \{(2^n - q)!\}^4$.

Then from Lemma 3.1, we have

$$p_{\psi} \geq \sum_{v \in \mathbf{v}_{good}} \frac{\#\{(p_1, \dots, p_{12}) \mid (p_1, \dots, p_{12}) \text{ satisfying } (2)\}}{\{(2^n)!\}^{12}}$$
$$\geq \sum_{v \in \mathbf{v}_{good}} \left(1 - \frac{6q(q-1)}{2^n - 1}\right) \cdot \frac{\{(2^n - q)!\}^4}{\{(2^n)!\}^4} .$$

Now we have the following lemma. See Section 4.2 for a proof.

Lemma 3.2 $N_{good} \ge N_{one} - \frac{3}{2} \cdot \frac{q(q-1)}{2^n - 1} \cdot \frac{(2^{4n})!}{(2^{4n} - q)!}$

From Lemma 3.2, we have

$$p_{\psi} \geq \left(N_{one} - \frac{3}{2} \cdot \frac{q(q-1)}{2^n - 1} \cdot \frac{(2^{4n})!}{(2^{4n} - q)!} \right) \cdot \left(1 - \frac{6q(q-1)}{2^n - 1} \right) \cdot \frac{\{(2^n - q)!\}^4}{\{(2^n)!\}^4} \\ = \left(p_R - \frac{3}{2} \cdot \frac{q(q-1)}{2^n - 1} \right) \cdot \left(1 - \frac{6q(q-1)}{2^n - 1} \right) \cdot \frac{\{(2^n - q)!\}^4}{\{(2^n)!\}^4} \cdot \frac{\{(2^{4n})!\}}{\{(2^{4n} - q)!\}} \right)$$

Now it is easy to see that $\frac{\{(2^n-q)!\}^4}{\{(2^n)!\}^4} \cdot \frac{\{(2^{4n})!\}}{\{(2^{4n}-q)!\}} \ge 1$ (this can be shown easily by an induction on q). Then $p_{\psi} \ge \left(p_R - \frac{3}{2} \cdot \frac{q(q-1)}{2^n-1}\right) \cdot \left(1 - \frac{6q(q-1)}{2^n-1}\right) \ge p_R - \frac{15}{2} \cdot \frac{q(q-1)}{2^n-1}$. Applying the same argument to $1 - p_{\psi}$ and $1 - p_R$ yields that $1 - p_{\psi} \ge 1 - p_R - \frac{15}{2} \cdot \frac{q(q-1)}{2^n-1}$, and we have $|p_{\psi} - p_R| \le \frac{15}{2} \cdot \frac{q(q-1)}{2^n-1}$. Q.E.D.

From Theorem 3.1, it is straightforward to show that $\psi = \psi(p_1, \ldots, p_{12})$ is pseudorandom even if each p_i is a pseudorandom permutation by using a standard hybrid argument. For example, see [8].

4 Proofs of Lemma 3.1 and Lemma 3.2

4.1 Proof of Lemma 3.1

First, we need the following lemma.

Lemma 4.1 For $1 \leq i \leq q$, let $X^{(i)} = (X_L^{(i)}, X_R^{(i)}) \in \{0,1\}^{2n}$ be fixed bit strings such that $\{X_L^{(i)}\}_{1\leq i\leq q}$ are distinct and $\{X_R^{(i)}\}_{1\leq i\leq q}$ are distinct. Similarly, for $1 \leq i \leq q$, let $Y^{(i)} = (Y_L^{(i)}, Y_R^{(i)}) \in \{0,1\}^{2n}$ be fixed bit strings such that $\{Y_L^{(i)} \oplus Y_R^{(i)}\}_{1\leq i\leq q}$ are distinct. Let $P_1, P_2, P_3 \in P_n$ be permutations. Then the number of (P_1, P_2, P_3) such that

- $P_1(X_L^{(i)}) \oplus X_R^{(i)} \oplus P_2(X_R^{(i)}) = Y_R^{(i)} \text{ for } 1 \le \forall i \le q, \text{ and}$
- $P_3(P_1(X_L^{(i)}) \oplus X_R^{(i)}) \oplus P_1(X_L^{(i)}) \oplus X_R^{(i)} \oplus P_2(X_R^{(i)}) = Y_L^{(i)} \text{ for } 1 \le \forall i \le q$

is at least $\left(1 - \frac{q(q-1)}{2^n - 1}\right) \cdot (2^n)! \cdot \{(2^n - q)!\}^2$.

See Fig. 3 for an illustration.

Fig. 3. Illustration of the conditions in Lemma 4.1.

Proof. First observe that the number of P_1 such that

$$P_1(X_L^{(i)}) \oplus X_R^{(i)} \oplus Y_R^{(i)} = P_1(X_L^{(j)}) \oplus X_R^{(j)} \oplus Y_R^{(j)} \text{ for } 1 \le \exists i < \exists j \le q$$
(3)

is at most $\binom{q}{2} \cdot \frac{\{(2^n)!\}}{2^n-1}$, since $X_L^{(i)} \neq X_L^{(j)}$ for $1 \leq \forall i < \forall j \leq q$. Next we see that the number of P_1 such that

$$P_1(X_L^{(i)}) \oplus X_R^{(i)} = P_1(X_L^{(j)}) \oplus X_R^{(j)} \text{ for } 1 \le \exists i < \exists j \le q$$
(4)

is at most $\binom{q}{2} \cdot \frac{\{(2^n)!\}}{2^n-1}$, since $X_L^{(i)} \neq X_L^{(j)}$ for $1 \le \forall i < \forall j \le q$.

We now fix any P_1 which does *not* satisfy either (3) or (4). We have at least $(2^n)! \cdot \left(1 - \frac{q(q-1)}{2^n-1}\right)$ choice of such P_1 . This implies that P_1 is fixed in such a way that $\{P_1(X_L^{(i)}) \oplus X_R^{(i)} \oplus Y_R^{(i)}\}_{1 \le i \le q}$ (which are the outputs of P_2) are distinct, and $\{P_1(X_L^{(i)}) \oplus X_R^{(i)}\}_{1 \le i \le q}$ (which are the inputs to P_3) are distinct.

We know from our condition that $\{X_R^{(i)}\}_{1 \le i \le q}$ (which are the inputs of P_2) are distinct, and $\{Y_L^{(i)} \oplus Y_R^{(i)}\}_{1 \le i \le q}$ (which are the outputs of P_3) are distinct. Therefore, we have exactly $(2^n - q)!$ choice of P_2 and $(2^n - q)!$ choice of P_3 for any such fixed P_1 .

Q.E.D.

Now for $1 \leq i \leq q$ and $1 \leq j \leq 12$, let $I_j^{(i)}$ denote the input to p_i when the input to ϕ is $x^{(i)}$ and the output is $y^{(i)}$. Similarly, let $O_j^{(i)}$ denote the output of p_i when the input to ϕ is $x^{(i)}$ and the output is $y^{(i)}$.

We next have the following lemma.

Lemma 4.2 For any fixed possible view $v = \langle (x^{(1)}, y^{(1)}), \ldots, (x^{(q)}, y^{(q)}) \rangle$, the number of (p_1, p_2, p_3, p_4) such that

$$I_{6}^{(i)} = I_{6}^{(j)} \text{ or } I_{6}^{(i)} \oplus x_{RR}^{(i)} = I_{6}^{(j)} \oplus x_{RR}^{(j)}, \text{ for } 1 \le \exists i < \exists j \le q$$

$$(5)$$

is at most $\frac{2q(q-1)}{2^n-1} \cdot \{(2^n)!\}^4$.

Proof. First, we fix i and j such that $1 \le i < j \le q$, and consider the condition

$$I_6^{(i)} = I_6^{(j)} \text{ or } I_6^{(i)} \oplus x_{RR}^{(i)} = I_6^{(j)} \oplus x_{RR}^{(j)}$$
(6)

in the following four cases:

Case $x_{RR}^{(i)} \neq x_{RR}^{(j)}$. First, consider the condition

$$p_1(x_{RR}^{(i)}) \oplus x_{RL}^{(i)} \oplus x_{LR}^{(i)} = p_1(x_{RR}^{(j)}) \oplus x_{RL}^{(j)} \oplus x_{LR}^{(j)}$$
(7)

The number of p_1 which satisfies (7) is at most $\frac{(2^n)!}{2^n-1}$ since $x_{RR}^{(i)} \neq x_{RR}^{(j)}$, and thus we have

$$\#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies both (6) and (7)}\} \le \frac{\{(2^n)!\}^4}{2^n-1}$$
 (8)

Next, consider any p_1 which does not satisfy (7), that is,

$$p_1(x_{RR}^{(i)}) \oplus x_{RL}^{(i)} \oplus x_{LR}^{(i)} \neq p_1(x_{RR}^{(j)}) \oplus x_{RL}^{(j)} \oplus x_{LR}^{(j)} \quad .$$
(9)

For this p_1 , we consider the condition

$$p_2(x_{RL}^{(i)}) \oplus p_1(x_{RR}^{(i)}) \oplus x_{RL}^{(i)} \oplus x_{LR}^{(i)} = p_2(x_{RL}^{(j)}) \oplus p_1(x_{RR}^{(j)}) \oplus x_{RL}^{(j)} \oplus x_{LR}^{(j)} , \qquad (10)$$

which is equivalent to $I_4^{(i)} = I_4^{(j)}$. Since (9) holds, the number of p_2 which satisfies (10) is at most $\frac{(2^n)!}{2^n-1}$, and thus we have

$$\#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies } (6), (9) \text{ and } (10)\} \le \frac{\{(2^n)!\}^4}{2^n - 1}$$
 (11)

Next, consider any p_1 which satisfies (9), and any p_2 which does not satisfy (10). That is,

$$p_2(x_{RL}^{(i)}) \oplus p_1(x_{RR}^{(i)}) \oplus x_{RL}^{(i)} \oplus x_{LR}^{(i)} \neq p_2(x_{RL}^{(j)}) \oplus p_1(x_{RR}^{(j)}) \oplus x_{RL}^{(j)} \oplus x_{LR}^{(j)} , \qquad (12)$$

which is equivalent to $I_4^{(i)} \neq I_4^{(j)}$. For these p_1, p_2 and any p_3 , the number of p_4 which satisfies

$$p_4(I_4^{(i)}) \oplus I_5^{(i)} = p_4(I_4^{(j)}) \oplus I_5^{(i)}$$
, (13)

which is equivalent to $I_6^{(i)} = I_6^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$, and the number of p_4 which satisfies

$$p_4(I_4^{(i)}) \oplus I_5^{(i)} \oplus x_{RR}^{(i)} = p_4(I_4^{(j)}) \oplus I_5^{(i)} \oplus x_{RR}^{(j)} , \qquad (14)$$

which is equivalent to $I_6^{(i)} \oplus x_{RR}^{(i)} = I_6^{(j)} \oplus x_{RR}^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$. Therefore

$$\#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies } (6), (9) \text{ and } (12)\} \le \frac{2 \cdot \{(2^n)!\}^4}{2^n - 1}$$
 (15)

Thus, from (8), (11) and (15), we have

$$#\{(p_1, \dots, p_4) \mid (p_1, \dots, p_4) \text{ satisfies } (6)\} \le \frac{4 \cdot \{(2^n)!\}^4}{2^n - 1} .$$
(16)

Case $x_{RL}^{(i)} \neq x_{RL}^{(j)}$ and $x_{RR}^{(i)} = x_{RR}^{(j)}$. For any p_1 , the number of p_2 which satisfies (10) is at most $\frac{(2^n)!}{2^n-1}$ since $x_{RL}^{(i)} \neq x_{RL}^{(j)}$, and thus we have

$$\#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies (6) and } (10)\} \le \frac{\{(2^n)!\}^4}{2^n - 1}$$
 (17)

Next, for any p_1 , any p_2 which satisfies (12), and any p_3 , the number of p_4 which satisfies (13) is at most $\frac{(2^n)!}{2^n-1}$. Note that (13) is equivalent to (14) in this case. Therefore we have

$$\#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies (6) and (12)}\} \le \frac{\{(2^n)^{2^n}\}^4}{2^n}$$
 (18)

Thus, from (17) and (18), we have

$$#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies } (6)\} \le \frac{2 \cdot \{(2^n)!\}^4}{2^n - 1} .$$
(19)

Case $x_{LR}^{(i)} \neq x_{LR}^{(j)}$, $x_{RL}^{(i)} = x_{RL}^{(j)}$, and $x_{RR}^{(i)} = x_{RR}^{(j)}$. For any p_1 and any p_2 , (12) is satisfied. Therefore, for any p_1 , any p_2 , and any p_3 , the number of p_4 which satisfies (13) (which is equivalent to (14)) is at most $\frac{(2^n)!}{2^n-1}$. Therefore we have

$$\#\{(p_1, p_2, p_3, p_4) \mid (p_1, p_2, p_3, p_4) \text{ satisfies } (6)\} \le \frac{\{(2^n)!\}^4}{2^n - 1} .$$
(20)

Case $x_{LL}^{(i)} \neq x_{LL}^{(j)}$, $x_{LR}^{(i)} = x_{LR}^{(j)}$, $x_{RL}^{(i)} = x_{RL}^{(j)}$, and $x_{RR}^{(i)} = x_{RR}^{(j)}$. There exists no p_1 , p_2 , p_3 , and p_4 that satisfies (6). Therefore we have

$$#\{(p_1, p_2, p_3, p_4) \mid (p_1, p_2, p_3, p_4) \text{ satisfies } (6)\} = 0 .$$
(21)

Completing the proof. By taking the maximum of (16), (19), (20) and (21),

$$#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies } (6)\} \le \frac{4 \cdot \{(2^n)!\}^4}{2^n - 1} .$$
(22)

for any case.

From (22) and since we have $\binom{q}{2}$ choice of *i* and *j* the lemma follows.

Q.E.D.

Next we show the following lemma.

Lemma 4.3 For any fixed possible view $v = \langle (x^{(1)}, y^{(1)}), \ldots, (x^{(q)}, y^{(q)}) \rangle$ which satisfies the condition of Lemma 3.1, the number of (p_1, p_2, p_3, p_4) such that

$$O_9^{(i)} = O_9^{(j)} \text{ for } 1 \le \exists i < \exists j \le q$$
 (23)

is at most $\frac{1}{2} \cdot \frac{q(q-1)}{2^n-1} \cdot \{(2^n)!\}^4$.

Proof. First, we fix *i* and *j* such that $1 \le i < j \le q$, and consider $O_9^{(i)} = O_9^{(j)}$. Now observe that for any p_1 and p_2 , $O_9^{(i)} = O_9^{(j)}$ is equivalent to the following condition:

$$p_3(I_3^{(i)}) \oplus x_{LL}^{(i)} \oplus y_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LR}^{(i)} = p_3(I_3^{(j)}) \oplus x_{LL}^{(j)} \oplus y_{LL}^{(j)} \oplus x_{LR}^{(j)} \oplus y_{LR}^{(j)}$$

$$(24)$$

Then the number of p_3 which satisfies (24) is at most $\frac{(2^n)!}{2^n-1}$, since $x_{LL}^{(i)} \oplus y_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LR}^{(i)} \neq x_{LR}^{(j)} \oplus y_{LR}^{(j)} \oplus x_{LR}^{(j)} \oplus y_{LR}^{(j)}$. Therefore, we have

$$\#\{(p_1,\ldots,p_4) \mid (p_1,\ldots,p_4) \text{ satisfies } (6)\} \le \frac{\{(2^n)!\}^4}{2^n-1}$$

and since we have $\binom{q}{2}$ choice of *i* and *j* the lemma follows.

Q.E.D.

We now prove Lemma 3.1.

Proof of Lemma 3.1. Initially, $x^{(1)}, \ldots, x^{(q)}, y^{(1)}, \ldots, y^{(q)}$ are fixed. See Fig. 4.

Fig. 4. $x^{(i)}$ and $y^{(i)}$ are fixed.

From Lemma 4.2 and 4.3, the number of (p_1, \ldots, p_4) such that: Number of $(p_1, ..., p_4)$.

• $I_6^{(i)} \neq I_6^{(j)}, I_6^{(i)} \oplus x_{RR}^{(i)} \neq I_6^{(j)} \oplus x_{RR}^{(j)}$, and $O_9^{(i)} \neq O_9^{(j)}$ for $1 \le \forall i < \forall j \le q$,

is at least $\{(2^n)!\}^4 - \frac{1}{2} \cdot \frac{q(q-1)}{2^n-1} \cdot \{(2^n)!\}^4 - \frac{2q(q-1)}{2^n-1} \cdot \{(2^n)!\}^4$. Fix any (p_1, \ldots, p_4) which satisfy these three conditions. See Fig. 5.

Number of p_5 . For any fixed *i* and *j* such that $1 \le i < j \le q$, the number of p_5 such that $p_5(I_5^{(i)}) \oplus I_6^{(i)} \oplus x_{RR}^{(i)} = p_5(I_5^{(j)}) \oplus I_6^{(j)} \oplus x_{RR}^{(j)}$, which is equivalent to $I_7^{(i)} = I_7^{(j)}$, is at most $\frac{\{(2^n)!\}^4}{2^n - 1}$ since $I_6^{(i)} \oplus x_{RR}^{(i)} \neq I_6^{(j)} \oplus x_{RR}^{(j)}$. Then the number of p_5 such that

• $I_{7}^{(i)} \neq I_{7}^{(j)}$ for $1 \leq \forall i < \forall j \leq q$

is at least $(2^n)! - \frac{1}{2} \cdot \frac{q(q-1)}{2^n-1} \cdot (2^n)!$. Fix any such p_5 . See Fig. 6.

Number of p_6 . For any fixed i and j such that $1 \leq i < j \leq q$, the number of p_6 which satisfies $p_6(I_6^{(i)}) \oplus I_6^{(i)} \oplus O_5^{(i)} \oplus x_{RL}^{(i)} = p_6(I_6^{(j)}) \oplus I_6^{(j)} \oplus O_5^{(j)} \oplus x_{RL}^{(j)}$, which is equivalent to $I_8^{(i)} = I_8^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$, since $I_6^{(i)} \neq I_6^{(j)}$.

Similarly, the number of p_6 which satisfies $p_6(I_6^{(i)}) \oplus I_6^{(i)} \oplus O_5^{(i)} \oplus x_{RL}^{(i)} \oplus I_7^{(i)} \oplus y_{RL}^{(i)} \oplus y_{RR}^{(i)} = p_6(I_6^{(j)}) \oplus I_6^{(j)} \oplus O_5^{(j)} \oplus x_{RL}^{(j)} \oplus I_7^{(j)} \oplus y_{RL}^{(j)} \oplus y_{RR}^{(j)} \oplus y_{RR}^{(j)},$ which is equivalent to $O_{12}^{(i)} = O_{12}^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$, since $I_6^{(i)} \neq I_6^{(j)}$. Then, the number of p_6 which satisfies:

• $I_8^{(i)} \neq I_8^{(j)}$ and $O_{12}^{(i)} \neq O_{12}^{(j)}$ for $1 \le \forall i < \forall j \le q$,

is at least $(2^n)! - \frac{q(q-1)}{2^n-1} \cdot (2^n)!$. Fix any p_6 which satisfy the above two conditions. See Fig. 7.

Fig. 5. p_1, \ldots, p_4 are fixed.

Fig. 6. p_5 is fixed.

Fig. 7. p_6 is fixed.

Number of (p_7, \ldots, p_{12}) . Now p_1, \ldots, p_6 are fixed in such a way that $\{I_7^{(i)}\}_{1 \le i \le q}$ are distinct, $\{I_8^{(i)}\}_{1 \le i \le q}$ are distinct, $\{O_9^{(i)}\}_{1 \le i \le q}$ are distinct and $\{O_{12}^{(i)}\}_{1 \le i \le q}$ are distinct. We know from our condition that $\{I_{10}^{(i)}\}_{1 \le i \le q}$ are distinct and $\{I_{11}^{(i)}\}_{1 \le i \le q}$ are distinct. Then we have at least $\left(1 - \frac{q(q-1)}{2^n-1}\right) \cdot (2^n)! \cdot \{(2^n - q)!\}^2$ choice of (p_7, p_8, p_9) by applying

Then we have at least $\left(1 - \frac{q(q-1)}{2^n - 1}\right) \cdot (2^n)! \cdot \{(2^n - q)!\}^2$ choice of (p_7, p_8, p_9) by applying Lemma 4.1. That is, $X_L^{(i)}$, $X_R^{(i)}$, $Y_L^{(i)} \oplus Y_R^{(i)}$, P_1 , P_2 and P_3 in Lemma 4.1 correspond to $I_7^{(i)}$, $I_8^{(i)}$, $O_9^{(i)}$, p_7 , p_8 and p_9 respectively.

Similarly, from Lemma 4.1 we have at least $\left(1 - \frac{q(q-1)}{2^n-1}\right) \cdot (2^n)! \cdot \{(2^n - q)!\}^2$ choice of (p_{10}, p_{11}, p_{12}) . Note that $X_L^{(i)}, X_R^{(i)}, Y_L^{(i)} \oplus Y_R^{(i)}, P_1, P_2$ and P_3 in Lemma 4.1 correspond to $I_{10}^{(i)}, I_{11}^{(i)}, O_{12}^{(i)}, p_{10}, p_{11}$ and p_{12} respectively.

Completing the proof. To summarize, we have:

- at least $\left(1 \frac{5}{2} \cdot \frac{q(q-1)}{2^n 1}\right) \cdot \{(2^n)!\}^4$ choice of p_1, \ldots, p_4 ,
- at least $(2^n)! \frac{1}{2} \cdot \frac{q(q-1)}{2^n-1} \cdot (2^n)!$ choice of p_5 when p_1, \ldots, p_4 are fixed,
- at least $(2^n)! \frac{q(q-1)}{2^n-1} \cdot (2^n)!$ choice of p_6 when p_1, \ldots, p_5 are fixed, and
- at least $\left(1 \frac{q(q-1)}{2^n-1}\right)^2 \cdot \{(2^n)!\}^2 \cdot \{(2^n-q)!\}^4$ choice of $p_7 \dots, p_{12}$ when p_1, \dots, p_6 are fixed.

Then, the number of (p_1, \ldots, p_{12}) which satisfy (2) is at least

$$\left(1 - \frac{5}{2} \cdot \frac{q(q-1)}{2^n - 1}\right) \cdot \left(1 - \frac{1}{2} \cdot \frac{q(q-1)}{2^n - 1}\right) \cdot \left(1 - \frac{q(q-1)}{2^n - 1}\right)^3 \cdot \{(2^n)!\}^8 \cdot \{(2^n - q)!\}^4$$

$$\ge \left(1 - \frac{6q(q-1)}{2^n - 1}\right) \cdot \{(2^n)!\}^8 \cdot \{(2^n - q)!\}^4 .$$

Q.E.D.

This concludes the proof of the lemma.

13

4.2Proof of Lemma 3.2

For any fixed *i* and *j* such that $1 \le i < j \le q$, the number of $\{y^{(i)}\}_{1 \le i \le q}$ such that $y_{LL}^{(i)} = y_{LL}^{(j)}$ is at most $\frac{2^{3n}-1}{2^{4n}-(j-1)} \cdot \frac{(2^{4n})!}{(2^{4n}-q)!} \le \frac{2^{3n}-1}{2^{4n}-(q-1)} \cdot \frac{(2^{4n})!}{(2^{4n}-q)!}$, since we have: $(2^{4n})(2^{4n}-1) \cdots (2^{4n}-(j-2))$ choice of $y^{(1)}, \ldots, y^{(j-1)}$, which uniquely determines $y^{(j)}_{LL} = y^{(i)}_{LL}$; at most $2^{3n} - 1$ choice of $y^{(j)}_{LR}, y^{(j)}_{RR}; y^{(j)}_{RR};$ and $(2^{4n} - j)(2^{4n} - j - 1)\cdots(2^{4n} - (q - 1))$ choice of $y^{(j+1)}, \ldots, y^{(q)}$. Similarly, for any fixed *i* and *j* such that $1 \le i < j \le q$, the number of $\{y^{(i)}\}_{1 \le i \le q}$ such that $y^{(i)}_{LR} = y^{(j)}_{LR}$ is at most $\frac{2^{3n}-1}{2^{4n}-(q-1)} \cdot \frac{(2^{4n})!}{(2^{4n}-q)!}$.

 $\begin{array}{l} y_{LR}^{(j)} = y_{LR}^{(j)} \text{ is at most } 2^{4n} - (q-1)^{-(2^{4n}-q)!} \\ \text{Next, for any fixed } i \text{ and } j \text{ such that } 1 \leq i < j \leq q, \text{ the number of } \{y^{(i)}\}_{1 \leq i \leq q} \text{ such that } x_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LL}^{(i)} \oplus x_{LR}^{(j)} \oplus x_{LR}^{(j)} \oplus y_{LL}^{(j)} \oplus y_{LR}^{(j)} \text{ is at most } \frac{2^{3n}}{2^{4n} - (j-1)} \cdot \frac{(2^{4n})!}{(2^{4n} - q)!} \leq \frac{2^{3n}}{2^{4n} - (q-1)} \cdot \frac{(2^{4n})!}{(2^{4n} - q)!}, \\ \text{since we have: } (2^{4n})(2^{4n} - 1) \cdots (2^{4n} - (j-2)) \text{ choice of } y^{(1)}, \dots, y^{(j-1)}; 2^n \text{ choice of } y_{LR}^{(j)}, \text{ which uniquely determines } y_{LL}^{(j)} = x_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LL}^{(i)} \oplus y_{LR}^{(j)} \oplus x_{LL}^{(j)} \oplus x_{LR}^{(j)} \oplus y_{LR}^{(j)}; \text{ at most } 2^{2n} \text{ choice of } y_{RL}^{(j)}, y_{RR}^{(j)}; \text{ and } (2^{4n} - j)(2^{4n} - j - 1) \cdots (2^{4n} - (q - 1)) \text{ choice of } y^{(j+1)}, \dots, y^{(q)}. \\ \text{Therefore, the number of } y^{(1)}, \dots, y^{(q)} \text{ such that } \end{array}$

- $y_{LL}^{(i)} = y_{LL}^{(j)}$ for $1 \leq \exists i < \exists j \leq q$.
- $y_{IB}^{(i)} = y_{IB}^{(j)}$ for $1 \leq \exists i < \exists j \leq q$, or
- $x_{LL}^{(i)} \oplus x_{LR}^{(i)} \oplus y_{LL}^{(i)} \oplus y_{LR}^{(i)} = x_{LL}^{(j)} \oplus x_{LR}^{(j)} \oplus y_{LL}^{(j)} \oplus y_{LR}^{(j)}$ for $1 \le \exists i < \exists j \le q$

is at most $\binom{q}{2} \cdot \frac{3 \cdot 2^{3n} - 2}{2^{4n} - (q-1)} \cdot \frac{\{(2^{4n})!\}}{\{(2^{4n} - q)!\}}$, which is at most $\frac{3}{2} \cdot \frac{q(q-1)}{2^{n-1}} \cdot \frac{\{(2^{4n})!\}}{\{(2^{4n} - q)!\}}$. Q.E.D.

$\mathbf{5}$ A six round KASUMI type permutation is super-pseudorandom

Theorem 5.1 For $1 \le i \le 18$, let $p_i \in P_n$ be a random permutation. Let $\psi = \psi(p_1, \ldots, p_{18})$ be a six round KASUMI type permutation, $R \in P_{4n}$ be a random permutation, and $\Psi \stackrel{\text{def}}{=} \{\psi \mid \psi = \psi \}$ $\psi(p_1, \ldots, p_{18}), p_i \in P_n \text{ for } 1 \le i \le 18\}.$

Then for any adversary A that makes at most q queries in total,

$$\operatorname{Adv}_{\Psi}^{\operatorname{sprp}}(\mathcal{A}) \leq \frac{9q(q-1)}{2^n-1}$$

Proof. Let \mathcal{O} be either R or ψ . The adversary \mathcal{A} has oracle access to \mathcal{O} and \mathcal{O}^{-1} .

There are two types of queries \mathcal{A} can make: either (+, x) or (-, y). For the *i*-th query \mathcal{A} makes to \mathcal{O} or \mathcal{O}^{-1} , define the query-answer pair $(x^{(i)}, y^{(i)}) \in \{0, 1\}^{4n} \times \{0, 1\}^{4n}$, where either \mathcal{A} 's query was $(+, x^{(i)})$ and the answer it got was $y^{(i)} = \mathcal{O}(x^{(i)})$ or \mathcal{A} 's query was $(-, y^{(i)})$ and the answer it got was $x^{(i)} = \mathcal{O}^{-1}(y^{(i)})$. Define view v of \mathcal{A} as $v = \langle (x^{(1)}, y^{(1)}), \dots, (x^{(q)}, y^{(q)}) \rangle$.

Since \mathcal{A} has unbounded computational power, \mathcal{A} can be assumed to be deterministic. This implies that there exists a function $\mathcal{C}_{\mathcal{A}}$ such that

$$\begin{cases} \mathcal{C}_{\mathcal{A}}(x^{(1)}, y^{(1)}, \dots, x^{(i-1)}, y^{(i-1)}) = \text{either } (+, x^{(i)}) \text{ or } (-, y^{(i)}) \text{ for } 1 \leq i \leq q \text{ and} \\ \mathcal{C}_{\mathcal{A}}(v) = \mathcal{A}\text{'s final output.} \end{cases}$$

Let $\boldsymbol{v}_{one} \stackrel{\text{def}}{=} \{ v \mid \mathcal{C}_{\mathcal{A}}(v) = 1 \}$ and $N_{one} \stackrel{\text{def}}{=} \# \boldsymbol{v}_{one}.$

Evaluation of p_R . We first evaluate $p_R \stackrel{\text{def}}{=} \Pr(R \stackrel{R}{\leftarrow} P_{4n} : \mathcal{A}^{R,R^{-1}} = 1)$. We have $p_R = N_{one} \cdot \frac{(2^{4n}-q)!}{(2^{4n})!}$ as was done in the proof of Theorem 3.1

Evaluation of p_{ψ} . We evaluate $p_{\psi} \stackrel{\text{def}}{=} \Pr(\psi \stackrel{R}{\leftarrow} \Psi : \mathcal{A}^{\psi,\psi^{-1}} = 1)$. Note that " $\psi \stackrel{R}{\leftarrow} \Psi$ " is equivalent to " $p_i \stackrel{R}{\leftarrow} P_n$ for $1 \leq i \leq 18$ and then let $\psi \leftarrow \psi(p_1, \ldots, p_{18})$." We have $p_{\psi} = \frac{\#\{(p_1, \ldots, p_{18}) | \mathcal{A}^{\psi,\psi^{-1}} = 1\}}{\binom{\{(2^n)\}^{18}}{16}}$.

We have the following lemma. A proof of this lemma is given in Section 6.

Lemma 5.1 (Main Lemma for $\psi(p_1, \ldots, p_{18})$) For any fixed possible view

$$v = \langle (x^{(1)}, y^{(1)}), \dots, (x^{(q)}, y^{(q)}) \rangle$$

the number of (p_1, \ldots, p_{18}) such that

$$\psi(x^{(i)}) = y^{(i)} \text{ for } 1 \le \forall i \le q$$

$$\tag{25}$$

is at least $\left(1 - \frac{9q(q-1)}{2^n - 1}\right) \cdot \{(2^n)!\}^{14} \cdot \{(2^n - q)!\}^4$.

Then from Lemma 5.1, we have

$$\begin{split} p_{\psi} &= \sum_{v \in \textit{v}_{one}} \frac{\# \left\{ (p_1, \dots, p_{18}) \mid (p_1, \dots, p_{18}) \text{ satisfying } (25) \right\}}{\{(2^n)!\}^{18}} \\ &\geq \sum_{v \in \textit{v}_{one}} \left(1 - \frac{9q(q-1)}{2^n - 1} \right) \cdot \frac{\{(2^n - q)!\}^4}{\{(2^n)!\}^4} \\ &\geq N_{one} \cdot \left(1 - \frac{9q(q-1)}{2^n - 1} \right) \cdot \frac{\{(2^n - q)!\}^4}{\{(2^n)!\}^4} \\ &= p_R \cdot \left(1 - \frac{9q(q-1)}{2^n - 1} \right) \cdot \frac{\{(2^n - q)!\}^4}{\{(2^n)!\}^4} \cdot \frac{\{(2^{4n})!\}}{\{(2^{4n} - q)!\}} \; . \end{split}$$

Since $\frac{\{(2^n-q)!\}^4}{\{(2^n)!\}^4} \cdot \frac{\{(2^{4n})!\}}{\{(2^{4n}-q)!\}} \ge 1$, $p_{\psi} \ge p_R \cdot \left(1 - \frac{9q(q-1)}{2^n-1}\right) \ge p_R - \frac{9q(q-1)}{2^n-1}$. Applying the same argument to $1 - p_{\psi}$ and $1 - p_R$ yields that $1 - p_{\psi} \ge 1 - p_R - \frac{9q(q-1)}{2^n-1}$ and we have $|p_{\psi} - p_R| \le \frac{9q(q-1)}{2^n-1}$. Q.E.D.

From Theorem 5.1, it is straightforward to show that $\psi = \psi(p_1, \ldots, p_{18})$ is super-pseudorandom even if each p_i is a pseudorandom permutation. Note that we do *not* need the super-pseudorandomness of p_i to derive this result, since KASUMI type permutation does *not* use p_i^{-1} in both encryption and decryption. That is, we can "simulate" both ψ and ψ^{-1} without using p_i^{-1} .

6 Proof of Lemma 5.1

For $1 \leq i \leq q$ and $1 \leq j \leq 18$, let $I_j^{(i)}$ denote the input to p_i when the input to ϕ is $x^{(i)}$ and the output is $y^{(i)}$. Similarly, let $O_j^{(i)}$ denote the output of p_i when the input to ϕ is $x^{(i)}$ and the output is $y^{(i)}$.

Initially, $x^{(1)}, ..., x^{(q)}, y^{(1)}, ..., y^{(q)}$ are fixed. See Fig. 8.

Fig. 8. $x^{(i)}$ and $y^{(i)}$ are fixed.

Number of (p_1, \ldots, p_4) . From Lemma 4.2, the number of (p_1, \ldots, p_4) such that:

• $I_6^{(i)} \neq I_6^{(j)}$, and $I_6^{(i)} \oplus x_{RR}^{(i)} \neq I_6^{(j)} \oplus x_{RR}^{(j)}$ for $1 \le \forall i < \forall j \le q$

is at least $\{(2^n)!\}^4 - \frac{2q(q-1)}{2^n-1} \cdot \{(2^n)!\}^4$. Note that Lemma 4.2 holds for any possible view, and it is irrelevant from the condition on $y^{(i)}$ in Lemma 3.1. Fix (p_1, \ldots, p_4) which satisfy these two conditions arbitrarily.

Number of $(p_{13}, p_{16}, p_{17}, p_{18})$. From Lemma 4.2, the number of $(p_{13}, p_{16}, p_{17}, p_{18})$ such that: • $I_{15}^{(i)} \neq I_{15}^{(j)}$, and $I_{15}^{(i)} \oplus y_{LR}^{(i)} \neq I_{15}^{(j)} \oplus y_{LR}^{(j)}$ for $1 \le \forall i < \forall j \le q$

is at least $\{(2^n)!\}^4 - \frac{2q(q-1)}{2^n-1} \cdot \{(2^n)!\}^4$. We have used the symmetry of KASUMI type permutation. That is, $x_{LL}^{(i)}$, $x_{LR}^{(i)}$, $x_{RL}^{(i)}$, $x_{RR}^{(i)}$, p_1 , p_2 , p_3 , p_4 and $I_6^{(i)}$ in Lemma 4.2 corresponds to $y_{RL}^{(i)}$, $y_{RR}^{(i)}$, $y_{LL}^{(i)}$, $y_{LR}^{(i)}$, p_{16} , p_{17} , p_{18} , p_{13} and $I_{15}^{(i)}$ respectively. Fix $(p_{13}, p_{16}, p_{17}, p_{18})$ which satisfy these two conditions arbitrarily. See Fig. 9.

Number of p_5 . For any fixed i and j such that $1 \le i < j \le q$, the number of p_5 such that $p_5(I_5^{(i)}) \oplus I_6^{(i)} \oplus x_{RR}^{(i)} = p_5(I_5^{(j)}) \oplus I_6^{(j)} \oplus x_{RR}^{(j)}$, which is equivalent to $I_7^{(i)} = I_7^{(j)}$, is at most $\frac{\{(2^n)!\}^4}{2^n-1}$ since $I_6^{(i)} \oplus x_{RR}^{(i)} \neq I_6^{(j)} \oplus x_{RR}^{(j)}$. Then the number of p_5 such that

• $I_7^{(i)} \neq I_7^{(j)}$ for $1 \le \forall i < \forall j \le q$

is at least $(2^n)! - \frac{1}{2} \cdot \frac{q(q-1)}{2^n-1} \cdot (2^n)!$. Fix any p_5 which satisfy the above condition.

Fig. 9. $p_1, \ldots, p_4, p_{13}, p_{16}, p_{17}, p_{18}$ are fixed.

Number of p_{14} . Similar to the case p_5 , for any fixed i and j such that $1 \le i < j \le q$, the number of p_{14} such that $p_{14}(I_{14}^{(i)}) \oplus I_{15}^{(i)} \oplus y_{LR}^{(i)} = p_{14}(I_{14}^{(j)}) \oplus I_{15}^{(j)} \oplus y_{LR}^{(j)}$, which is equivalent to $I_{10}^{(i)} = I_{10}^{(j)}$, is at most $\frac{\{(2^n)!\}^4}{2^n - 1}$ since $I_{15}^{(i)} \oplus y_{LR}^{(j)} \neq I_{15}^{(j)} \oplus y_{LR}^{(j)}$. Then the number of p_{14} such that

• $I_{10}^{(i)} \neq I_{10}^{(j)}$ for $1 \leq \forall i < \forall j \leq q$

is at least $(2^n)! - \frac{1}{2} \cdot \frac{q(q-1)}{2^n-1} \cdot (2^n)!$. Fix any p_{14} which satisfy the above condition. See Fig. 10.

Number of p_6 . For any fixed i and j such that $1 \le i < j \le q$, the number of p_6 which satisfies $p_6(I_6^{(i)}) \oplus I_6^{(i)} \oplus O_5^{(i)} \oplus x_{RL}^{(i)} = p_6(I_6^{(j)}) \oplus I_6^{(j)} \oplus O_5^{(j)} \oplus x_{RL}^{(j)}$, which is equivalent to $I_8^{(j)} = I_8^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$, since $I_6^{(i)} \neq I_6^{(j)}$.

Similarly, the number of p_6 which satisfies $p_6(I_6^{(i)}) \oplus I_6^{(i)} \oplus O_5^{(i)} \oplus x_{RL}^{(i)} \oplus I_{14}^{(i)} \oplus I_{77}^{(i)} \oplus I_{13}^{(i)} = p_6(I_6^{(j)}) \oplus I_6^{(j)} \oplus O_5^{(j)} \oplus x_{RL}^{(j)} \oplus I_{14}^{(j)} \oplus I_{77}^{(j)} \oplus I_{13}^{(j)},$ which is equivalent to $O_{12}^{(i)} = O_{12}^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$, since $I_6^{(i)} \neq I_6^{(j)}$.

Then, the number of p_6 which satisfies

• $I_8^{(i)} \neq I_8^{(j)}$ and $O_{12}^{(i)} \neq O_{12}^{(j)}$ for $1 \le \forall i < \forall j \le q$

is at least $(2^n)! - \frac{q(q-1)}{2^n-1} \cdot (2^n)!$. Fix any p_6 which satisfy the above condition.

Fig. 10. p_5 and p_{14} are fixed.

Number of p_{15} . For any fixed *i* and *j* such that $1 \le i < j \le q$, the number of p_{15} which satisfies $p_{15}(I_{15}^{(i)}) \oplus I_{15}^{(i)} \oplus O_{14}^{(i)} \oplus y_{LL}^{(i)} = p_{15}(I_{15}^{(j)}) \oplus I_{15}^{(j)} \oplus O_{14}^{(j)} \oplus y_{LL}^{(j)}$, which is equivalent to $I_{11}^{(i)} = I_{11}^{(j)}$, is at most $\frac{(2^n)!}{2^n-1}$, since $I_{15}^{(i)} \ne I_{15}^{(j)}$.

Similarly, the number of p_{15} which satisfies $p_{15}(I_{15}^{(i)}) \oplus I_{15}^{(i)} \oplus O_{14}^{(i)} \oplus y_{LL}^{(i)} \oplus I_{4}^{(i)} \oplus I_{5}^{(i)} \oplus I_{5}^{(i)} = p_{15}(I_{15}^{(j)}) \oplus I_{15}^{(j)} \oplus O_{14}^{(j)} \oplus y_{LL}^{(i)} \oplus I_{4}^{(j)} \oplus I_{5}^{(j)} \oplus I_{5}^{(j)}$, which is equivalent to $O_{9}^{(i)} = O_{9}^{(j)}$, is at most $\frac{(2^{n})!}{2^{n}-1}$, since $I_{15}^{(i)} \neq I_{15}^{(j)}$.

Then, the number of p_{15} which satisfies

• $I_{11}^{(i)} \neq I_{11}^{(j)}$ and $O_9^{(i)} \neq O_9^{(j)}$ for $1 \le \forall i < \forall j \le q$

is at least $(2^n)! - \frac{q(q-1)}{2^n-1} \cdot (2^n)!$. Fix any p_{15} which satisfy the above condition. See Fig. 11.

Number of (p_7, \ldots, p_{12}) . Now $p_1, \ldots, p_6, p_{13}, \ldots, p_{15}$ are fixed in such a way that $\{I_7^{(i)}\}_{1 \le i \le q}$ are distinct, $\{I_8^{(i)}\}_{1 \le i \le q}$ are distinct, $\{O_9^{(i)}\}_{1 \le i \le q}$ are distinct, $\{I_{10}^{(i)}\}_{1 \le i \le q}$ are distinct $\{I_{11}^{(i)}\}_{1 \le i \le q}$ are distinct. Then, by applying Lemma 4.1 twice, we have at least $\left(1 - \frac{q(q-1)}{2^n-1}\right)^2 \cdot \{(2^n)!\}^2 \cdot \{(2^n-q)!\}^4$ choice of (p_7, \ldots, p_{12}) .

Completing the proof. To summarize, we have:

• at least $\left(1 - \frac{2q(q-1)}{2^n-1}\right)^2 \cdot \{(2^n)!\}^8$ choice of $p_1, \ldots, p_4, p_{13}, p_{16}, p_{17}$ and $p_{18}, p_{18}, p_$

Fig. 11. p_6 and p_{15} are fixed.

- at least $\{(2^n)!\}^2 \cdot \left(1 \frac{1}{2} \cdot \frac{q(q-1)}{2^n-1}\right)^2$ choice of (p_5, p_{14}) when $p_1, \ldots, p_4, p_{13}, p_{16}, p_{17}$ and p_{18} are fixed,
- at least $\{(2^n)!\}^2 \cdot \left(1 \frac{q(q-1)}{2^n 1}\right)^2$ choice of (p_6, p_{15}) when $p_1, \ldots, p_5, p_{13}, p_{14}, p_{16}, p_{17}$ and p_{18} are fixed,
- at least $\left(1 \frac{q(q-1)}{2^n 1}\right)^2 \cdot \{(2^n)!\}^2 \cdot \{(2^n q)!\}^4$ choice of $p_7 \dots, p_{12}$ when $p_1, \dots, p_6, p_{13}, \dots, p_{18}$ are fixed.

Then the number of (p_1, \dots, p_{18}) which satisfy (2) is at least

$$\left(1 - \frac{2q(q-1)}{2^n - 1}\right)^2 \cdot \left(1 - \frac{1}{2} \cdot \frac{q(q-1)}{2^n - 1}\right)^2 \cdot \left(1 - \frac{q(q-1)}{2^n - 1}\right)^4 \cdot \{(2^n)!\}^{14} \cdot \{(2^n - q)!\}^4 \\ \ge \left(1 - \frac{9q(q-1)}{2^n - 1}\right) \cdot \{(2^n)!\}^8 \cdot \{(2^n - q)!\}^4 .$$

This concludes the proof of the lemma.

7 Conclusion

In this paper, we showed that a four round KASUMI type permutation is pseudorandom (Theorem 3.1). We proved that the advantage is at most $\frac{15}{2} \cdot \frac{q(q-1)}{2^n-1}$. We also showed that a six

Q.E.D.

round KASUMI type permutation is super-pseudorandom (Theorem 5.1). We proved that the advantage is at most $\frac{9q(q-1)}{2^n-1}$.

It is an important open question to prove (or disprove) the super-pseudorandomness of the five round KASUMI type permutation. We conjecture that it *is* super-pseudorandom.

References

- [1] http://www.3gpp.org/.
- [2] 3GPP TS 35.202 v 3.1.1. Specification of the 3GPP confidentiality and integrity algorithms, Document 2: KASUMI specification. Available at http://www.3gpp.org/tb/other/algorithms.htm.
- [3] Evaluation report (version 2.0). Specification of the 3GPP confidentiality and integrity algorithms, Report on the evaluation of 3GPP confidentiality and integrity algorithms. Available at http://www.3gpp.org/tb/other/algorithms.htm.
- [4] M. Blunden and A. Escott. Related key attacks on reduced round KASUMI. Fast Software Encryption, FSE 2001, LNCS 2355, pp. 277–285, Springer-Verlag, 2002.
- [5] T. Iwata, T. Yagi, and K. Kurosawa. On the pseudorandomness of KASUMI type permutations. The Eighth Australasian Conference on Information Security and Privacy, ACISP 2003, LNCS, 2727, pp. 130–141, Springer-Verlag, 2003.
- [6] J. S. Kang, S. U. Shin, D. Hong, and O. Yi. Provable security of KASUMI and 3GPP encryption mode f8. Advances in Cryptology — ASIACRYPT 2001, LNCS 2248, pp. 255–271, Springer-Verlag, 2001.
- [7] J. S. Kang, O. Yi, D. Hong, and H. Cho. Pseudorandomness of MISTY-type transformations and the block cipher KASUMI. *Information Security and Privacy, The 6th Aus*tralasian Conference, ACISP 2001, LNCS 2119, pp. 60–73, Springer-Verlag, 2001.
- [8] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, April 1988.
- [9] M. Matsui. New structure of block ciphers with provable security against differential and linear cryptanalysis. *Fast Software Encryption*, *FSE '96, LNCS 1039*, pp. 206–218, Springer-Verlag.
- [10] M. Matsui. New block encryption algorithm MISTY. Fast Software Encryption, FSE '97, LNCS 1267, pp. 54–68, Springer-Verlag.
- [11] K. Sakurai and Y. Zheng. On non-pseudorandomness from block ciphers with provable immunity against linear cryptanalysis. *IEICE Trans. Fundamentals*, vol. E80-A, no. 1, pp. 19–24, April 1997.

A Flaws in the proof of [6]

Kang et al. claimed that:

- the four round MISTY type permutation is pseudorandom for adaptive adversaries [6, Theorem 1] and
- the four round KASUMI type permutation is pseudorandom for adaptive adversaries [6, Theorem 3].

In this section, we show that both proofs are wrong. In what follows, we use the same notation as in [6].

A.1 Flaws on Theorem 1

On advantage. In [6, Proof of Theorem 1, p.262], it is stated that

$$\left| \Pr(T_{\Lambda_{n+m}} = \sigma \mid \sigma \notin BAD(f_1, f_2)) - \Pr(T_{\mathcal{P}_{n+m}} = \sigma) \right| \leq \varepsilon_{n,m,q}$$
,

and then

$$\sum_{\sigma \in \Theta} \Pr(\sigma \notin BAD(f_1, f_2)) \\ \cdot \left| \Pr(T_{\Lambda_{n+m}} = \sigma \mid \sigma \notin BAD(f_1, f_2)) - \Pr(T_{\mathcal{P}_{n+m}} = \sigma) \right| \le \varepsilon_{n,m,q} ,$$

where $\varepsilon_{n,m,q} = \{2^{n+m}(2^n-1)(2^m-1)\cdots(2^n-q+1)(2^m-q+1)\}^{-1}$.

However, we can only say that there are at most $1/\varepsilon_{n,m,q} \sigma$ such that $\sigma \in \Theta$. This implies only that

$$\sum_{\sigma \in \Theta} \Pr(\sigma \notin \operatorname{BAD}(f_1, f_2)) \\ \cdot \left| \Pr(T_{\Lambda_{n+m}} = \sigma \mid \sigma \notin \operatorname{BAD}(f_1, f_2)) - \Pr(T_{\mathcal{P}_{n+m}} = \sigma) \right| \le 1$$

and $ADV_{\mathcal{D}} < 1$. Hence it does not prove that $ADV_{\mathcal{D}}$ is negligible.

On collision. In [6, Lemma 4, p.261], it is stated that

$$\Pr(f_3(L_2^{(i)}) = y_L^{(i)} \oplus \overline{R_2^{(i)}} \text{ for } 1 \le \forall i \le q) = \frac{(2^n - q)!}{(2^n)!},$$
(26)

where:

- f_3 is a random permutation over $\{0,1\}^n$,
- $L_2^{(i)}$ is a fixed *n*-bit string such that $L_2^{(i)} \neq L_2^{(j)}$ for $1 \leq \forall i < \forall j \leq q$,
- y_L⁽ⁱ⁾ is a fixed n-bit string such that y_L⁽ⁱ⁾ ≠ y_L^(j) for 1 ≤ ∀i < ∀j ≤ q, and
 R₂⁽ⁱ⁾ is a fixed n-bit string such that R₂⁽ⁱ⁾ ≠ R₂^(j) for 1 ≤ ∀i < ∀j ≤ q.

However eq.(26) does not hold because in general, $y_L^{(i)} \oplus \overline{R_2^{(i)}} \neq y_L^{(j)} \oplus \overline{R_2^{(j)}}$ does not hold even if $y_L^{(i)} \neq y_L^{(j)}$ and $\overline{R_2^{(i)}} \neq \overline{R_2^{(j)}}$. For example, $y_L^{(i)} = 0^n, y_L^{(j)} = 10^{n-1}, \overline{R_2^{(i)}} = 0^n, \overline{R_2^{(j)}} = 10^{n-1}$. Exactly the same problem occurs in the analysis of f_4 in [6, Lemma 4, p.261].

A.2 Flaws on Theorem 3

In [6, p.266] it is stated that "Theorem 3 is proved straightforwardly by the similar process in the proof of Theorem 1." However, the proof of Theorem 1 is wrong as shown above. Therefore, the proof of Theorem 3 is also wrong. (In addition, the proof of Lemma 6 is wrong similarly to above.)