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Abstract

Rijndael, or the Advanced Encryption Standard, is an interesting
cipher from a designer’s viewpoint. Over the last few decades, the
most notable, and successful attacks against the best block ciphers
were linear and differential cryptanalysis. On the other hand, Rijndael
is designed from the ground up to resist these attacks, as well as many
others, by employing special algebraic properties of its primitive oper-
ations. The byte inversion operation over finite field Fo56 was chosen
by its designer to thwart all possibly useful linear and difference in-
variances, the basic ingredients of linear and differential cryptanalysis.
However, by using simple algebraic operations with known properties,
the combinations of them may possess many interesting, and unex-
pected, algebraic properties that were not known at design time. This
paper presents such new unknown properties on the combinations of

primitive operations of AES.

1 Introduction

The Rijndael encryption algorithm is proposed by the United States gov-
ernment as an advanced encryption standard (AES) for the protection of
computerized information in the next few decades. Given the potential uses
of AES at large scale, it is important to analyze it thoroughly, that is to
know all possible about its properties, in order to avoid any possible surprise.

In this paper we analyze the algebraic structures, and in particular, the

algebraic invariances of Rijndael. These structures are important not only to
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the encryption strength of Rijndael, but also to the strength of constructions
of cryptographically secure hash functions, pseudo-random number gener-
ators, and constructions of encryption schemes secure against adaptively
chosen ciphertexts attack using Rijndael. These primitives are heavily used
in cryptographic protocols such as digital signatures, secret keys attack us-
ing Rijndael. These primitives are heavily used in cryptographic protocols
such as digital signatures, secret key exchange, key distribution, secret shar-
ing, traitor tracing, and electronic payment systems. Previously invariances
similar to the ones found here were helpful in improving linear differential
cryptanalysis of other block ciphers.

Algebraic anal***** [? 7 ?]. In this paper, in contrast, we find many
invariances that are preserved by the key-independent section of Rijndael’s
round functions, including the S-box, row shifting, and column mixing op-
erators. These invariances are quite similar to the propagation properties of
DES’s S-boxes discovered by Desmedt, Quisquater and Davio [?], and then
exploited by Biham and Shamir [?] to attack DES more efficiently than
exhaustive search. Our results are in the same spirit as that of [?]. It is
important to note that these results only show novel insights into internal
the structure of AES, not necessarily breaking it. Whether they will lead to
weaknesses in AES is still an open question. We believe that AES is a quite
strong and interesting cipher.

The AES round operations can be divided into five layers operating on
the state vector in the following order: byte inversion, affine byte trans-
formation, row shifting, column mixing, and key addition. A property of
the state vector that is preserved across at least one layer is also called an
tnvariance. We define the depth of such a property, or the depth of such
an invariance, by the maximum number of consecutive layers this property
is preserved across the layers. Thus the ultimate invariances are those of
depth five. However, such invariances are particularly difficult to find, be-
cause higher depth invariances are usually several orders of magnitude rarer.
In fact, no depth-five invariance is known. Song and Seberry, at FSE 2003,
presented a simple depth-four invariance. We present in this paper several

more depth-four invariances of AES that are quite interesting. We also show



the cyclic orders of several combinations of operations in AES that were not
obtained before. In this regard, our work improve upon previous results
of [?]. The main results are presented in Section 2. Section 3 contain the

conclusions.

2 Algebraic Invariances in Rijndael

Depth. Let f1, fo,..., fn be a sequence of operations over the same do-
main D. We say a property p defined over D is preserved by operation f
on D iff V& € D : p(x) = p(f(z)). In such case, we also call p an invari-
ance of f. We define the depth of invariance p with respect to a sequence
fi,-- -, fn is the maximum d such that p is an invariance of fi110...0 fiiq4
for some 0 < i < n. A depth-n invariance is therefore an invariance of the
product of all f;’s. Similarly, a depth-d property is a property that holds
on the operation f;110...0 f;14 for some i. Clearly, depth-d invariances
are depth-d properties w.r.t. the same sequence. We remind that the order
of an operation f is the minimum number n such that f” = fo fo...o f

n times
is the identity operation. Note that for ease of presentation, we use the

unusual reversed notation (f o g)(x) = g(f(x)).

-1

)

Rijndael. A typical round in Rijndael consists of: I(0) =0, I(z) = =
the inversion defined over finite field Fos6; A, an affine operation defined over
Fa-vector space FS; S = (1)(5)(9)(13)(2, 6,10, 14)(3,11)(7,15)(4, 16,12, 8), a

permutation on the 16 coordinates; M, a multiplication with 4 copies of the

02 03 01 01
01 02 03 01
matrix M = , whose coefficients are in Fas4; and finally
01 01 02 03
03 01 01 02

X (v) = v+ k, key addition defined over finite field Fy. Further details of

the algorithm can be found in [?].

Depth one properties. It is shown in [?] that the operations I, S, M, X
are of order 2,4,4,2, respectively. We now find the order of A. According



to [?], the affine operation A can be written as an operator in the ring

Fo[u]/(u® + 1), which is also an Fa-vector space
a(u) — Aa)(u) = f(u)a(u) + g(u) mod u® + 1,

where f(u) = u” +a% +u® +u* + 1, and g(u) = u” + u® + u? + u. Now we

calculate that
f)? =@ +a® +u’ +u? +1)" =1 mod 2® + 1.

Therefore A*(a)(u) = f(u)'a(u) + (f(u)! - 1)g(u) = la(u) + (1 — 1g(u) =
a(u) mod u® + 1. However,

fw)?=2%+ 2+ 2% # 1 mod u® + 1.

Thus:

1) the cyclic order of A is 4, thus A* = 1.

Depth two properties. Song and Seberry showed in [?] that the order
of I o Ais 277182. The order of S o M is 8. In here we find that:

2) the cyclic order of Ao S is 4, that is:
(408)o(A0S)o(AoS)o(AoS)(v) =0,

for all state vector v;

3) the cyclic order of M o X is 4, that is:
(MoX)o(MoX)o(MoX)o(MoX)(v)=uv,
for all state vector v.

Depth three properties Robshaw and Murphy [?] showed that the order
of A’0SoM is 16, where A’(a)(u) = (u” + ab+ u® +u* 4+ 1)(a) mod u® +1,
i.e. ignore the additive term g(u). Song and Seberry [?] find that the order



of Io Ao S is upper bounded by 554364. We are able to calculate the exact
order of this operator. Using the same calculations as before, and noting

that the order of an affine operator over we find that:

4) The maximum cyclic order of S o M o X is 16:

(SoMoX)6 =1

5) The maximum cyclic order of Ao S o M is 32:

(AOSOM)32 = 1,4.

6) The cyclic order of I o Ao S is 277182:

(ToAo8)*8 =1,

Depth four properties

7) The maximum cyclic order of Ao S o M o X is 32:

(AoSoMoX)* =1

8) INV; = {(z,z,....,x) | x € GFys} is an invariance of ] o Ao S o M:
———

16 copies

IToAoSoM{(x,z,..,z)) ={(z,z,..,x)}.

16 copies 16 copies
This was also discovered independently by [?].

9) INVy = {(z,y,z,y,...,2,y) | 2,y € GFys} is an invariance of [ o A o
—_—

8 copies

SoM:

IToAoSoM{(x,y,...x,y)}) = {(z,y,....,x,y)}.

8 copies 8 copies



10) INV3 = {(z,y,2,t,z,y, 2, t,...,x,y,2,t) | z,y,2,t € GFys} is an in-

4 copies

variance of o Ao S o M:

ToAoSoM{(x,y,z,t,...x,y,2,t)}) = {(z,y, 2, t...,x,y, 2, t) }.

4 copies 4 copies

11) There is a permutation group G of order |G| = 6144 such that for all

permutation m € G, there exists a permutation 7’ such that:
VX €FlSs:ToAoSoMon(X)=n"oloAoSoM(X),

where 7, 7’ are permutations of Sig. In other words, if we permute
input X by permutation m, the the output after the operation I o
Ao S oM is permuted by 7. The group G is generated by my =
(1,6,11,16), m = (5,10,15,4), my = (9,14, 3,8), m3 = (13,2,7,12) and
Sy, where Sj permutes arbitrarily on four vectors vy = [1,6,11,16],
vy = [5,10,15,4], vo = [9,14,3,8], v3 = [13,2,7,12]; and S is the

permutation group over the 16 bytes.

Security Implications. In the above, we have shown many interesting
depth four invariances of AES. Property number 8, discovered independently
by Song and Seberry [?], is included here for reference. All of the 10 other
results here are novel. Previously, no one expected such many invariances
inside AES. The existence of simple algebraic formula for these invariances,
and the not so large orders of combinations of layers in AES round function,
show that the AES round function is very rich in algebraic structures, and
suggest that it is quite possible that one can simplify further the represen-
tation of AES beyond what is known today. A naive cryptanalyst would
conclude that AES is weak. However, this is not necessarily true because
after all, all algorithms are made from simple logical AND, OR, NOT opera-
tions. Nevertheless, no one has been able to prove that these rich structures
will not one day help cryptanalysts to reduce work in attacking AES, simi-

larly to the way DES was attacked [?, ?]. This is an open question.



3 Summary

In this paper, we find several novel algebraic invariances of AES which have
never been seen before in any other ciphers. They all have depth four. We
also show that the orders of many combinations of AES round operations
are quite small. These results richness in algebraic structures of AES, and
offers novel insights into its internal working. In some way, this paper also

improves some previous result on the same cipher.
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