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Abstract. In this paper we present a fast addition algorithm in the Jacobian

of a Picard curve over a finite field Fq of characteristic different from 3. This

algorithm has a nice geometric interpretation, comparable to the classic ”chord
and tangent” law for the elliptic curves. Computational cost for addition is

144M + 12SQ + 2I and 158M + 16SQ + 2I for doubling.
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Introduction

The discrete logarithm problem (DLP) is one of the two main problems on which
public key cryptography is based (the other one being integer factorisation, in RSA
cryptosystem): for example, Diffie-Hellman key exchange protocol ([DH76]) and
ElGamal cryptosystem ([ElG85]) are based on this problem.

In 1987, Miller ([Mil86a]) and Koblitz ([Kob87]) suggested (independently) the
use of the group of points of an elliptic curve over a finite field for DLP. It is now
a well treated subject, and is even used in some industrial applications. Most of
today’s research is focused on the natural generalization of this example: DLP in
the Jacobian of higher genus curves. One advantage is that, given an abstract finite
group, one can use smaller fields (as Hasse-Weil formula shows).

In order to produce cryptosystems based on these Jacobian varieties, the first
thing to worry about is to have secure cryptosystems (see [KW03] to find secure
Picard curves). Still, it is very important to compute efficiently in the group, and
an important part of today’s reseach is devoted to allow fast arithmetic in Jacobians
of curves. For instance, many papers study the case of hyperelliptic curves of genus
2 and 3 ([Lan02], [MCT01], [KGM+02], [PWGP03]).

In this article, we find explicit formulae for computing in the Jacobian of a Picard
curve, basing us on some geometric aspects of these curves. Volcheck ([Vol94]),
Huang and Ierardi ([HI94]) already proposed general methods for computing in the
Jacobians of arbitrary algebraic curves. These algorithms are not practical from a
computational point of view though, and in addition they need to extend the base
field.
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1. Preliminaries and notations

1.1. Jacobian varieties of algebraic curves. In this section, we briefly recall
fundamental facts on Picard groups and Jacobians. The letter k stands for an
arbitrary perfect field, and k denotes a given algebraic closure of k.

Let C be a complete non-singular curve over k. The divisor group of C is the
free abelian group Div(C) consisting of formal sums

∑
P∈C(k) mP ·P , in which the

mP ’s are integers, finitely many of them being non-zero. Each divisor consists in
an obvious way of a positive part and a negative part. It is called effective if there
is no negative part.

A divisor is defined over k if it is fixed by the natural Galois action of Gal (k|k).
The divisor group of C over k, denoted Divk(C), is the group of elements of Div(C)
defined over k.

Given any D =
∑

P∈C(k) mP · P ∈ Div(C), one can define the degree of D,
denoted deg(D), as

∑
P mP .

Let f be a non-zero element of the function field of C. Then, the divisor of f is

(f) :=
∑

P∈C(k)

vP (f) · P

where vP (f) denotes the valuation of f in the discrete valuation ring k[C]P .
Any such divisor is called a principal divisor, and two divisors are said to be

equivalent if they differ from a principal divisor. One can check that any principal
divisor is indeed a degree zero divisor. Moreover, if f is defined over k, then
(f) ∈ Divk(C).

The divisor class group (or the Picard group), denoted Pic(C), is then the quo-
tient of the group Div(C) by the subgroup of principal divisors. We let Pick(C) be
the subgroup of Pic(C) fixed by the natural Galois action of Gal (k|k). If we sub-
stitute Div(C) by Div0(C), we respectively obtain the degree 0 part of the divisor
class group of C, denoted Pic0(C), and its subgroup Pic0

k(C).

The most important and striking fact about Pic0
k(C) is that it admits a kind of a

”reification” (as D. Mumford suggestively presents them), the Jacobian variety JC

of C. More precisely, JC represents a functor attached to the Picard group of C (see
[Mil86b] for a very dense introduction to Jacobian varieties). It is automatically
an abelian variety, whose dimension is the genus of C. Moreover, for each field L
such that C has a L-rational point, the group JC(L) is canonically isomorphic to
Pic0

L(C).
Suppose the curve C has an affine model over k, with only one point at infinity

(this is the case for Picard curves). Then, one can see the Jacobian in a third way,
namely as the ideal class group of the integral closure of k[x] in k(C) (which is a
Dedekind ring) associated to this model ([GPS02, p. 6] or [Har77]). The sum of
two divisors corresponds to the product of the associated ideals.

Of course, it may appear obvious to compute in the Jacobian (or, equivalently, in
the degree zero Picard group): the sum of two divisors is just the resulting formal
sum. But it is of considerable importance for cryptographic ends to have a unique
and concise way to express divisors. This leads to the notion of a reduced divisor.
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Indeed, a consequence of Riemann-Roch theorem is the following representation
theorem of divisors:

Theorem (Representation by reduced divisors). Let C be a non-singular curve
over k of genus g, with a given k-point P∞. Let D be an element of Div0

k(C).
Then, there exists an effective divisor E over k of degree m ≤ g, whose support
does not contain P∞, and such that E−m ·P∞ is equivalent to D (we refer to such
a divisor as an almost reduced divisor).

It is unique if we demand m to be minimal, and it is then called the reduced
representation of (the divisor class of) D.

1.2. Picard curves and their Jacobians. In the following k is any field of char-
acteristic different from 3.

A Picard curve is a genus 3 cyclic trigonal curve. Any Picard curve C admits a
projective model of the following form

z · y3 = z4 · f4(x/z)

where f4 is a monic degree 4 separable polynomial of one variable over k. It has a
unique point at infinity, P∞, namely (0 : 1 : 0).

Any Picard curve C appears as a cyclic Galois cover of degree 3 of the projective
line, with 5 (totally) ramified points (including P∞). The automorphism group of
this cover is generated by

σ : (x : y : z) 7→ (x : ζy : z)

where ζ is a non-trivial cubic root of unity. Two points are conjugate if they lie on
the same geometric fibre of the cover. Each non-ramification point P of C has thus
two conjugate points, namely Pσ and Pσ2

.

Note that vP∞(x) = −3 and vP∞(y) = −4. Let f be a polynomial in k[x, y],
of degree m, not lying in the ideal of C. According to Bézout theorem (as C is
irreducible), the intersection multiplicity of f with C at P∞, denoted by ord∞(f),
is equal to 4m + vP∞(f).

In the following, we will use the so-called ”Mumford representation” of divisors.
This represention arises from the one proposed in [Mum84], page 3.17, for reduced
divisors of hyperelliptic curves. One may see it as an interpolation theorem for the
points in the support of the divisor. This is harmless for hyperelliptic curves, as
there can not be any pair of conjugate points in the support of a reduced divisor of a
hyperelliptic curve. Unfortunately, this is not true anymore for Picard curves, and
in fact Mumford representation is only suitable for a peculiar (but very likely) class
of reduced divisors, namely the ones that do not have any two conjugate points in
their support (they are called typical in [BEFG02], a terminology that we will keep
in this paper).

Theorem (Reduced divisors and Mumford representation). An almost reduced
divisor is not reduced if and only if its positive part D0 is of degree 3, and such
that there exists a line l with (l)0 ≥ D0.

Let D be a typical reduced divisor over k. It can then be uniquely represented as
the intersection divisor of u and y − v, with:

- u, v ∈ k[x],
- u monic,
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- deg(v) < deg(u) ≤ 3, and
- u|v3 − f4.

Notation. For any typical reduced divisor D, we will note its Mumford represen-
tation polynomials by uD and y − vD. In the ideal class group, D corresponds to
< uD, y − vD >.

Proof. The presented proof differs from the one of [BEFG02].

First of all, let us treat the case where D0 = P + Q is of degree 2. Suppose we
have P + Q− 2 · P∞ = R− P∞ + (f) for a f ∈ k(C). Then,

P + Q + Rσ + Rσ2
− 4 · P∞ = (f1)

for a f1 ∈ k(C). As vP∞(f1) = −4, f1 must be a line not passing through P∞. This
contradicts the fact that it goes through Rσ and Rσ2

.

Suppose now that D = P1+P2+P3−3·P∞. The divisor D can not be equivalent
to some R − P∞, because this would prove the existence of a polynomial f such
that vP∞(f) = −5.

If D is equivalent to some Q1 + Q2 − 2 · P∞, we have to distinguish two cases,
namely whether Q1 and Q2 are conjugate or not.

If they are not conjugate, then

P1 + P2 + P3 + Qσ
1 + Qσ2

1 + Qσ
2 + Qσ2

2 − 7 · P∞ = (f)

with f a conic crossing C once through P∞. It crosses the line (Q1P∞) (resp.
(Q2P∞)) in three points, thus it should contain these two lines. This contradicts
the previous statement.

In the remaining case (D equivalent to Q1 + Qσ
1 − 2 · P∞), one has

P1 + P2 + P3 + Qσ2

1 − 4 · P∞ = (f)

This means that there exists a line f such that (f)0 ≥ P1 + P2 + P3.

The second part of the theorem is straightforward.
�

Remark 1. In the case of a non-typical divisor D = P1 + Pσ
1 + P2, then one can

write D as the intersection divisor of u ∈ k[x] (corresponding to the two lines
(P1P∞) and (P2P∞)), deg(u) ≤ 2, with an element of the k-vector space spanned
by 1, x, y, x2, y2, xy (corresponding to the two lines (P1P2) and (Pσ

1 P2)).

The presented algorithm in the next section only works for typical divisors, and
the result is an almost reduced divisor, which is with very high probability a typical
one.

2. Fast addition algorithm for Jacobian of Picard curves

2.1. Main algorithm. As said in the introduction, the following algorithm is in-
spired by the ”chord and tangent” law on the group of points of an elliptic curve.
In our case, we will have to replace the chord or the tangent by a cubic, and we will
introduce a conic in order to get the opposite of a divisor. Note that for an elliptic
curve, or even a hyperelliptic curve, the latter operation requires no computation.
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Figure 1. Case where w is a conic

In [RBESC98], the authors make use of similar geometric constructions to pro-
pose a reduction algorithm. Instead of using a cubic, they work recursively, reducing
a degree 4 effective divisor into a degree ≤ 3 effective divisor, with the help of two
conics. Their algorithm requires to work with rational points (or to perform some
field extensions). It also requires to make a final factorisation of a polynomial in
k[x] of degree at most 3. As our algorithm is completely explicit (i.e. we only
perform some elementary operations in the base field k), we will not need any of
these requirements.

2.1.1. Geometric description of the Jacobian group addition. In the most common
case, we have two typical reduced divisors D1 := P1 + P2 + P3 − 3 · P∞ and
D2 := Q1 + Q2 + Q3 − 3 · P∞, and we want to find the reduced divisor equivalent
to P1 + P2 + P3 + Q1 + Q2 + Q3 − 6 · P∞. Let us consider the divisor

D := −(P1 + P2 + P3 + Q1 + Q2 + Q3 − 9 · P∞)

This is a degree 3 divisor defined over k. Riemann-Roch theorem asserts that

l(D)− l(K −D) = deg(D) + 1− g = 1

(where K stands for the canonical divisor), so that in any case l(D) ≥ 1.
In particular, there exists a w in k(C) such that (w) ≥ −D. As the only pole of

w is P∞, it is a polynomial in k[x, y]. Moreover, as vP∞(w) ≥ −9, one knows that
w is an element of the k-vector space spanned by 1, x, x2, xy, y, y2, x3. From now
on, we take w to be the unique such element (up to a multiplicative factor) with
maximal valuation at P∞.

If w is a conic, a very unlikely situation, then geometric considerations on J(C)
allow a very easy computation of the reduction of D1 + D2. Let us illustrate this
in the case where the support of D1 + D2 consists of six points aside from P∞ that
lie on a (unique) conic, not going through P∞. Then the conic crosses C in exactly
two more points Q1 and Q2. Taking the line through those two points gives us two
new points K1 and K2, such that K1 + K2 − 2 · P∞ is the reduction of D1 + D2

(see figure 1).
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Figure 2. Description of the algorithm

If w is a cubic, Bézout theorem asserts that the corresponding variety crosses C
in exactly three more points, say R1, R2 and R3. One has the obvious relation

(P1 +P2 +P3−3 ·P∞)+(Q1 +Q2 +Q3−3 ·P∞) = −(R1 +R2 +R3−3 ·P∞)+(w)

so that we have obtained an almost reduced form of the opposite of D1 + D2.

Using Riemann-Roch in the same way as we have just done, one can show that
there exists a unique conic v going through R1, R2, R3 and twice in P∞. It crosses
C in three further points K1, K2, K3, and by construction, K1 + K2 + K3− 3 ·P∞
is in the class of D1 + D2.

One can roughly sum-up how the algorithm works by figure 2.

2.1.2. Algebraic interpretation and formulae. The presented algorithm can be nat-
urally divided into three steps: finding w, reduce −(D1 + D2), and then taking the
opposite (with the conic). Now we give an algebraic interpretation of these steps.

First step: computation of the cubic
This is the only step where one has to distinguish between addition and doubling.

Addition
First of all, let us treat the most common case, in which w can be expressed as

w = y2 + s · y + t

where s and t are polynomials in x, with deg(s) ≤ 1 and deg(t) ≤ 3. As the support
of D1 (resp. D2) is contained in the support of (w), we are naturally led to find
three polynomials s, δ1 and δ2 in x, of degree ≤ 1, such that

w = (y − v1) · (y + v1 + s) + u1 · δ1 = (y − v2) · (y + v2 + s) + u2 · δ2

It is easy to see that the leading coefficient of δ1 (resp. δ2) has to be the square of
that of v1 (resp. v2).
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It then leads to the unique condition:

(v1 + v2 + s) · (v1 − v2) + u2 · δ2 − u1 · δ1 = 0

In case w has no y2 term, then the same strategy gives the condition

s · (v1 − v2) + δ2 · u2 − δ1 · u1 = 0

where δ1 and δ2 are constant polynomials.

Note that these two equations are very similar. In fact, during the computation
of s and δ1, we consider in both subcases the remainder r of t1 · u1 by u2, where t1
is the inverse of v1 − v2 modulo u2. It turns out that if r is of degree 2, then we
are in the first subcase, if not we are in the second one.

The only remaining case is a trivial one; namely when the points of the support
of D1 are conjugate of the points of the support of D2.

Doubling
In that case, we are looking for a w in the ideal I2 =< u2

1, u1 ·(y−v1), (y−v1)2 >.
Here we only treat the main subcase, where w has a y2 part, and hence when w
can be written in the following manner:

(y − v1) · (y + v1 + s) + u1 · δ1

(the other subcases are either similar or trivial, and very unlikely anyway). The
unique condition, obtained in the same way as above, is then

(y − v1) · (2v1 + s) + u1 · δ1 ∈ I2

In other respects, an easy computation shows that:

3v2
1 (y − v1)− u1 · w1 ∈ I2

where w1 is defined by v3
1 − f4 = u1 · w1.

This implies that

3v2
1u1 · δ1 + (2v1 + s) · u1 · w1 ∈ I2

If v1 is prime to u1, that is if the support of D1 does not contain any ramification
point (different from P∞), then we have

u1|
(
3v2

1 · δ1 + (2v1 + s) · w1

)
and the computation of the inverse of w1 in k[x]/(u1) gives us δ1, and then s.

Remark 2. If the support of D1 + 3 · P∞ does contain a ramification point, then
the geometry of the curve allows us to compute the reduction of 2 ·D1 easily.

Second step: computation of −(D1 + D2)
Here, we only treat the most common case (which is also the most difficult one),

namely when w has a y2 term, and hence can be written

w = y2 + s · y + t3

with s, t ∈ k[x], deg(s) ≤ 1 and deg(t) ≤ 3.

We already know how to characterize the reduced divisor equivalent to −(D1 +
D2): it suffices to compute the intersection divisor of the (variety attached to the)
cubic w with C.
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A way to find u−(D1+D2) is thus to compute the resultant Res(w,C) of w with
y3 − f4 (relative to y), to compute the quotient of Res(w,C) by u1 · u2, and then
to normalize.

To compute v−(D1+D2), one can exploit the relation

(t− s2) · v−(D1+D2) ≡ (s · t− f4) mod (u−(D1+D2))

so that v−(D1+D2) is the remainder of the quotient of α1 · (s · t− f4) by u−(D1+D2),
where α1 is the inverse of t− s2 in k[x, y]/(u−(D1+D2)).

Third step: computation of D1 + D2

Obviously, one has vD1+D2 = v−(D1+D2). Thus, we are reduced to compute
uD1+D2 . It is easily obtained as the (normalized) quotient of (vD1+D2)

3 − f4 by
u−(D1+D2).

2.2. Explicit formulae in the most common case. The given algorithms cor-
respond to the case when w has a y2 term.

Note that in order to speed up the algorithm, we have used Karatsuba tricks to
multiply two polynomials. Similarly, we only compute the coefficients we need in
the algorithm. For instance, as we only need to know the quotient of the resultant
of w and C by u1 · u2, the degree ≤ 5 part of this resultant is irrelevant.

The reader can find the tables for addition and doubling at the end of this article.

3. Remarks and outlook

As far as we know, the presented algorithm for computing in the Jacobian of a
Picard curve is quite efficient. In [BEFG02, p. 24], the authors present estimations
for the cost of various algorithms computing the reduction of a typical divisor of
degree 6 in the Jacobian of a Picard curve. The most efficient algorithm is supposed
to need roughly 150M and 6I. The composition in itself has a computational cost
of about 50M and 1I.

Our viewpoint was definitely geometric, and we did not separate composition
from reduction. One may hope that this viewpoint can be generalised to a much
broader class of curves. This statement is strenghtened by the fact that Can-
tor algorithm and its improvements ([Lan02]) for computing in the Jacobian of a
hyperelliptic curve of genus 2 can be interpreted in the very same way as our al-
gorithm. Note though that this case is the only one where Cantor’s algorithm and
ours coincide.

We have presented formulae for Picard curves. We stress the fact that they are
immediately adaptable to non-singular curves of genus 3 with a hyperflex. Indeed,
it is possible to write an equation for such a curve (over a field of characteristic
different from 3) in the following form:

y3 + h · y = f4,

where f4 is a monic degree 4 polynomial and h a polynomial in k[x] of degree at
most 2. In that form, addition requires 160M +17SQ+2I and a doubling requires
177M + 21SQ + 2I.
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The present version of this paper is subject to further modifications. It is well
possible that some multiplications can be saved. It is a topic of current research of
the authors to render the formulae even more efficient.
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Table 1. Addition, deg u1 = deg u2 = 3

Input D1 = [u1, v1] and D2 = [u2, v2]

ui = x3 + ui2x2 + ui1x + ui0, vi = vi2x2 + vi1x + vi0
f = x4 + f3x3 + f2x2 + f1x + f0

Output D = [uD1+D2 , vD1+D2 ] = D1 + D2 with

uD1+D2 = x3 + d1x2 + d2x + d3
vD1+D2 = v′2x2 + v′1x + v′0

Step Expression Operations
1 compute resultant res1 of (v1 − v2) and u2, and z1 := res1/(v1 − v2) mod u2 15M+1SQ

t1 = u21(v22 − v12), t2 = u22(v22 − v12), t3 = u20(v22 − v12);
t4 = u22(v20 − v10), t5 = u21(v21 − v11), t6 = (v22 − v12)(t1 + v10 − v20);
t7 = (v21 − v11)(v21 − v11 − t2), t8 = (t4 − t3 − t5)(t2 + v11 − v21);
t9 = (v22 − v12)(t4 − t3 − t5), t10 = (v21 − v11)(v20 − v10 − t1);
inv0 = t6 + t7, t11 = inv0 · u22, t12 = u20(v21 − v11);

t13 = inv0 · t12, t14 = t3(t9 − t10), s1 = (v20 − v10 − t1)2;
inv2 = t8 + s1, t15 = inv2(v20 − v10);
inv1 = t11 + t9 − t10, res1 = t15 − t13 − t14;

z1 = inv0x2 + inv1x + inv2
2 compute the cubic w = y2 + sy + t: 52M+1SQ+1I

t16 = (u12 − u22)inv0, t17 = (u11 − u21)inv1;
t18 = (u10 − u20)inv2, t19 = (u12 + u11 − u22 − u21)(inv0 + inv1);
t20 = (u12 + u10 − u22 − u20)(inv0 + inv2);
t21 = (u11 + u10 − u21 − u20)(inv1 + inv2);
t22 = u22 · t16, t23 = u21 · t16, t24 = u22(t22 + t16 + t17 − t19);
t25 = (u21 + u20)(t19 − t22 − t17), t26 = u20(t22 + t16 + t17 − t19);
r0 = t24 + t20 + t17 − t23 − t16 − t18;

r1 = t21 + t23 − t17 − t18 − t25 − t26, r2 = t18 + t26, s2 = v2
12;

t27 = r0 · res1, t28 = r0 · s2, t29 = r0 · t28, t30 = t28 · res1;
t31 = −res1 · (v12 + v22), t32 = r1 · s2, t33 = u22 · t28;
γ1 = t31 + t33 − t32, t34 = res1 · γ1, t35 = −t27(v11 + v21);
t36 = −t27(v10 + v20), t37 = r1γ1, t38 = r2 · t28, t39 = r2 · γ1;
t40 = u21 · t29, t41 = u20 · t29;
λ1 = t35 + t40 − t37 − t38, µ1 = t36 + t41 − t39;
t42 = −t27 · v12, t43 = −t27 · v11;
t44 = −t27 · v10, t45 = (v12 + v11)(t42 + t43 − λ1);
t46 = v11(t43 − λ1), t47 = (v12 + v10)(t42 + t44 − µ1);
t48 = v10(t44 − µ1), t49 = (v11 + v10)(t43 + t44 − λ1 − µ1);
t50 = t30(u12 + u11), t51 = u11 · t30, t52 = t34(u12 + u10), t53 = u10 · t34;
t54 = (u11 + u10)(t30 + t34), B0 = t34 + t50 + t45 + t30 − t51 − t46;
B1 = t52 + t30 + t51 + t47 + t46 − t53 − t48;
B2 = t54 + t49 − t51 − t53 − t46 − t48;
B3 = t53 + t48;

t55 = B0 · t27, i1 = (t55)−1, t56 = i1 · B0;
t57 = i1 · t27, t58 = t57 · t27, t59 = t57 · B1;
t60 = t57 · B2, t61 = t57 · B3, t62 = t56 · λ1, t63 = t56 · µ1;
t64 = t56 · B0, t65 = t56 · B1, t66 = t56 · B2, t67 = t56 · B3;

w = y2 + (t62x + t63)y + t64x3 + t65x2 + t66x + t67
3 compute res(w, C, y): 14M+5SQ

s3 = t259, t68 = t59(6t60 + s3), s4 = t262, s5 = (t62 + t63)2;

s6 = t263, t69 = t62t64, t70 = t62(s4 − 3t65);
t71 = t63t64, t72 = −3f3t69, t73 = t62(s5 − 3t66 − s4 − s6);
t74 = t63(s4 − 3t65), t75 = f3t70, t76 = −3f2t69, t77 = −3f3t71;

s7 = t258, t78 = t58s7, t79 = t78(1 − 3t69);
t80 = t78(t70 + t72 + 2f3 − 3t71);

t81 = t78(t73 + t74 + t75 + t76 + t77 + 2f2 + f2
3 );

4 compute u−(D1+D2): 7M

t82 = u12u22, t83 = u12u21, t84 = u11u22;
t85 = (u11 + u21 + u10 + u20 + t82 + t83 + t84)(1 + t79 + 3t59 − u12 − u22);
t86 = (u10 + u20 + t83 + t84)(t79 + 3t59 − u12 − u22);
c1 = t79 + 3t59 − u12 − u22, t87 = c1(u12 + u22);
c2 = t80 + 3t60 + 3s3 − u11 − u21 − t82 − t87, t88 = c2(u12 + u22);
c3 = u11 + u21 + t68 + t81 + t82 + t86 + 3t61 − t88 − t85;

u−(D1+D2) = x3 + c1x2 + c2x + c3
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5 compute res(t − s2, u−(D1+D2), x): 42M+2SQ

t89 = c3t64, t90 = c1t64, t91 = c2t64, t92 = c2(t65 − s4);
t93 = c1(t66 + s4 + s6 − s5), t94 = c3(t66 + s4 + s6 − s5);
t95 = c2(t67 − s6), t96 = c3(t65 − s4), t97 = c1(t67 − s6);

s8 = (t89 + s6 − t67)2, s9 = (t91 + s5 − t66 − s4 − s6)2;
t98 = (t94 − t95)(t90 + s4 − t65);
t99 = (s8 − t98)(t89 + t92 + s6 − t67 − t93);
t100 = (t96 − t97)(t90 − t65 + s4);
t101 = (t91 + s5 − t66 − s4 − s6)(t89 + s6 − t67);
t102 = (t96 − t97)(t100 − 2t101);
t103 = s9(t94 − t95), res2 = t99 + t102 + t103;
t104 = (t90 + s4 − t65)(t92 + t89 + s6 − t93 − t67);
j0 = t104 − s9, t105 = c1j0, t106 = c1(t100 − t101);
t107 = c2j0, t108 = c3(t66 + s4 + s6 − s5);
t109 = (t108 − t95)(t90 + s4 − t65), j1 = t105 + t101 − t100;
j2 = t107 + t109 − t106 − s8, t110 = t62(t65 + t66);
t111 = t62t66, t112 = t63(t65 + t67), t113 = t63t67;
t114 = (t62 + t63)(t66 + t67), t115 = c1(1 − t69);
t116 = c1(t115 + t71 + t110 − f3 − t111), t117 = c2(1 − t69);
t118 = (c2 + c3)(1 + f3 + t111 − t69 − t115 − t71 − t110);
t119 = c3(t115 + t71 + t110 − f3 − t111);
t120 = j0(t116 + f2 + t113 − t117 − t112 − t111);
t121 = (j0 + j1)(t116 + f2 + f1 + 2t113 − t112 − t114 − t118 − t119);
t122 = j1(f1 + t111 + t113 + t117 − t114 − t118 − t119);
t123 = (j0 + j2)(t116 + f2 + f0 + t119 − t112 − t117 − t111);
t124 = j2(f0 + t119 − t113);
t125 = (j1 + j2)(f1 + f0 + t111 + t117 + t119 − t114 − t118 − t119);
t126 = c1t120, t127 = c2t120;
t128 = c1(t126 + t120 + t122 − t121), t129 = (c2 + c3)(t121 − t126 − t122);
t130 = c3(t126 + t120 + t122 − t121);

6 compute vD1+D2 : 5M+1I

t131 = res2(t128 + t123 + t122 − t127 − t120 − t124), i2 = (t131)−1;
t132 = i2(t128 + t123 + t122 − t127 − t120 − t124);
t133 = t132(t128 + t123 + t122 − t127 − t120 − t124);
t134 = t132(t125 + t127 − t122 − t124 − t129 − t130);
t135 = t132(t124 + t130);
v′2 = −t133, v′1 = −t134, v′0 = −t135;

7 compute uD1+D2 : 9M+3SQ

s10 = res2
2, t136 = i2s10, s11 = t2136, t137 = t136s11;

t138 = t136t134, s12 = t2138, t139 = t136t135;
t140 = t138(s12 + 6t139), t141 = t137f3;
t142 = c1(3t138 − c1), d1 = 3t138 − c1;
d2 = 3t139 + 3s12 + t137 − c2 − t142;
t143 = c1d2, t144 = c2(3t138 − c1);
d3 = t140 + t141 − c3 − t143 − t144;

total 144M, 12S, 2I
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Table 2. Doubling, deg u1 = 3

Input D1 = [u1, v1]

u1 = x3 + u12x2 + u11x + u10, v1 = v12x2 + v11x + v10
f = x4 + f3x3 + f2x2 + f1x + f0

Output D = [u2D1 , v2D1 ] = 2D1 with

u2D1 = x3 + d1x2 + d2x + d3
v2D1 = v′2x2 + v′1x + v′0

Step Expression Operations

1 compute w1 such that u1w1 = v3
1 − f : 11M+2SQ

s1 = v2
12, s2 = v2

11, t1 = −s1v12, t2 = −3s1v11;
t3 = v12v10, t4 = −3v12(t3 + s2);
t5 = −v11(s2 + 6t3), t6 = t1u12, t7 = t1u11;
t8 = u12(t2 − t6), t9 = u12(t4 + 1 − t7 − t8);
t10 = (u11 + u10)(t1 + t2 − t6), t11 = u10(t2 − t6);

2 compute resultant res1 of (v1 − v2) and u2, and z1 := res1/(v1 − v2) mod u2 16M+2SQ

t12 = −u10t1, t13 = u11(t6 − t2);
t14 = u12(t7 + t8 − t4 − 1), t15 = u10(t7 + t8 − t4 − 1);
t16 = u11(t9 + t10 − t5 − f3 − t7 − t11);
t17 = u12(t9 + t10 − t5 − f3 − t7 − t11);

s3 = (t12 + t5 + f3 + t7 + t11 − t9 − t10)2;

s4 = (t4 + 1 − 2t7 − t8)2, t18 = (t2 − 2t6)(t15 − t16);
t19 = (t12 + t13 + t5 + f3 + t7 + t11 − t9 − t10 − t14)(s3 − t18);
t20 = (t2 − 2t6)(−t11 − t17);
t21 = (t4 + 1 − 2t7 − t8)(t5 + t12 + t7 + f3 + t11 − t9 − t10);
t22 = (t20 − 2t21)(−t11 − t17), t23 = (t15 − t16)s4;
res1 = t19 + t22 + t23;
t24 = (t2 − 2t6)(t13 + t12 + t7 + t11 + t5 + f3 − t9 − t10 − t14);
inv0 = t24 − s4, t25 = u12 · inv0;
t26 = u12(t20 − t21), t27 = u11 · inv0;
inv1 = t25 + t21 − t20, inv2 = t27 + t18 − t26 − s3;

z1 = inv0x2 + inv1x + inv2
3 compute the cubic w = y2 + sy + t: 58M+1SQ+1I

t28 = v12v11, t29 = v11v10, s5 = v2
10;

t30 = u12s1, t31 = u11s1, t32 = u12(t30 − 2t28);
t33 = (u11 + u10)(s1 + 2t28 − t30);
t34 = u10(t30 − 2t28);
t35 = (t32 + 2t3 + s2 − t31)inv0;
t36 = (2t29 + t31 − t33 − t34)inv1;
t37 = (s5 + t34)inv2;
t38 = (t32 + s2 + 2t3 + 2t29 − t33 − t34)(inv0 + inv1);
t39 = (t32 + t34 + s2 + s5 + 2t3 − t31)(inv0 + inv2);
t40 = (t31 + s5 + 2t29 − t33)(inv1 + inv2);
t41 = u12t35, t42 = u11t35;
t43 = u12(t41 + t36 + t35 − t38);
t44 = (u11 + u10)(t38 − t41 − t36);
t45 = u10(t41 + t36 + t35 − t38);
r0 = t43 + t39 + t36 − t42 − t35 − t37;
r1 = t40 + t42 − t36 − t37 − t44 − t45;
r2 = t37 + t45, t46 = res1r0, t47 = r0s1;
t48 = t47res1, t49 = −2res1v12, t50 = 3r1s1;
t51 = 3t47u12, γ1 = t51 − t49 − t50);
t52 = res1γ1, t53 = −t46v11, t54 = −t46v10;
t55 = r1γ1, t56 = 3r2t47, t57 = r2γ1;
t58 = 3t47u11, t59 = 3t47u10;
t60 = t58r0, t61 = t59r0;
λ1 = 3(2t53 + t55 + t56 − t60);
µ1 = 3(2t54 + t57 − t61), t62 = −3t46v12;
t63 = −(v12 + v11)(λ1 − t62 − 3t53);
t64 = −v11(λ1 − 3t53);
t65 = −(v12 + v10)(µ1 − t62 − 3t54);
t66 = −v10(µ1 − 3t54);
t67 = −(v11 + v10)(λ1 + µ1 − 3t53 − 3t54);
t68 = 3t48(u12 + u11), t69 = 3t48u11;
t70 = (u12 + u10)t52, t71 = u10t52;
t72 = (u11 + u10)(3t48 + t52);
B0 = t52 + t68 + t63 + 3t48 − t69 − t64;
B1 = t70 + t69 + t65 + t64 + 3t48 − t71 − t66;
B2 = t72 + t67 − t69 − t71 − t64 − t66;

B3 = t71 + t66, t73 = 3t46B0, i1 = (t73)−1;
t74 = i1B0, t75 = 3t46i1, t76 = 3t46t75;
t77 = t75B1, t78 = t75B2, t79 = t75B3;
t80 = t74λ1, t81 = t74µ1, t82 = t74B0;
t83 = t74B1, t84 = t74B2, t85 = t74B3;

w = y2 + (t80x + t81)y + t82x3 + t83x2 + t84x + t85
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4 compute res(w, C, y): 14M+5SQ

s6 = t277, t86 = t77(6t78 + s6), s7 = t280;

s8 = (t80 + t81)2, s9 = t281, t87 = t80t82;
t88 = t80(s7 − 3t83), t89 = t81t82, t90 = −3f3t87;
t91 = t80(s8 − 3t84 − s7 − s9), t92 = t81(s7 − 3t83);

t93 = f3t88, t94 = −3f2t87, t95 = −3f3t89, s10 = t276;
t96 = t76s10, t97 = t96(1 − 3t87);
t98 = t96(t88 + t90 + 2f3 − 3t89);

t99 = t96(t91 + t92 + t93 + t94 + t95 + 2f2 + f2
3 );

5 compute u−2D1 : 5M+1SQ

s11 = u2
12, t100 = u12u11;

t101 = (2u11 + 2u10 + 2t100 + s11)(1 + t97 + 3t77 − 2u12);
t102 = (2u10 + 2t100)(t97 + 3t77 − 2u12);
c1 = t97 + 3t77 − 2u12, t103 = 2u12c1;
c2 = t98 + 3t78 + 3s6 − s11 − t103 − 2u11;
t104 = 2u12c2;
c3 = 2u11 + s11 + t102 + t99 + t86 + 3t79 − t104 − t101;

u−(2D1) = x3 + c1x2 + c2x + c3

6 compute res(t − s2, u−2D1 , x): 40M+2SQ

t105 = c3t82, t106 = c1t82, t107 = c2t82;
t108 = c2(t83 − s7), t109 = c1(t84 + s7 + s9 − s8);
t110 = c3(t84 + s7 + s9 − s8), t111 = c2(t85 − s9);
t112 = c3(t83 − s7), t113 = c1(t85 − s9);

s12 = (t105 + s9 − t85)2;

s13 = (t107 + s8 − t84 − s7 − s9)2;
t114 = (t106 + s7 − t83)(t110 − t111);
t115 = (t105 + t108 + s9 − t85 − t109)(s12 − t114);
t116 = (t112 − t113)(t106 + s7 − t83);
t117 = (t107 + s8 − t84 − s7 − s9)(t105 + s9 − t85);
t118 = (t112 − t113)(t116 − 2t117);
t119 = (t110 − t111)s13, res2 = t115 + t118 + t119;
t120 = (t108 + s9 + t105 − t109 − t85)(t106 − t83 + s7);
j0 = t120 − s13, t121 = j0 · c1;
t122 = c1(t116 − t117), t123 = j0 · c2;
j1 = t121 + t117 − t116, j2 = t123 + t114 − t122 − s12;
t124 = t80(t83 + t84), t125 = t80t84;
t126 = t81(t83 + t85), t127 = t81t85;
t128 = (t80 + t81)(t84 + t85), t129 = c1(1 − t87);
t130 = (t129 + t89 + t124 − f3 − t125)c1;
t131 = c2(1 − t87);
t132 = (c2 + c3)(1 + f3 + t125 − t87 − t129 − t89 − t124);
t133 = c3(t129 + t89 + t124 − f3 − t125);
t134 = (t130 + f2 + t127 − t131 − t126 − t125)j0;
t135 = (j0 + j1)(t130 + f2 + f1 + 2t127 − t126 − t128 − t132 − t133);
t136 = (f1 + t125 + t127 + t131 − t128 − t132 − t133)j1;
t137 = (j0 + j2)(t130 + t133 + f2 + f0 − t131 − t126 − t125);
t138 = (f0 + t133 − t127)j2;
t139 = (j1 + j2)(f1 + f0 + t125 + t131 − t128 − t132);
t140 = t134c1, t141 = c2t134;
t142 = c1(t140 + t134 + t136 − t135);
t143 = (c2 + c3)(t135 − t140 − t136);
t144 = c3(t140 + t134 + t136 − t135);

7 compute v2D1 : 5M+1I

t145 = res2(t142 + t137 + t136 − t141 − t134 − t138);

i2 = (t145)−1;
t146 = i2(t142 + t137 + t136 − t141 − t134 − t138);
t147 = t146(t142 + t137 + t136 − t141 − t134 − t138);
t148 = t146(t139 + t141 − t136 − t138 − t143 − t144);
t149 = t146(t138 + t144);
v′2 = −t147, v′1 = −t148, v′0 = −t149;

8 compute u2D1 : 9M+3SQ

s14 = res2
2, t150 = i2s14, s15 = t2150;

t151 = t150s15, t152 = t150t148, s16 = t2152;
t153 = t150t149, t154 = t152(s16 + 6t153);
t155 = t151f3, t156 = c1(3t152 − c1);
d1 = 3t152 − c1, d2 = 3t153 + 3s16 + t151 − c2 − t156;
t157 = c1d2, t158 = c2(3t152 − c1);
d3 = t154 + t155 − t157 − c3 − t158;

total 158M, 16S, 2I


