
ISOMORPHISM CLASSES OF PICARD CURVES
OVER FINITE FIELDS

JONG WON LEE

Abstract. In this paper we determine the number of isomorphism classes of
Picard curves, i.e., superelliptic curves y3 = f(x) of genus three, over finite

fields of characteristic different from 3. In the process of doing this we also
provide reduced forms of Picard curves together the number of such forms up
to isomorphism. In addition to its own theoretical meaning it has applications

to cryptography.

1. Introduction

Starting in around 1985, the theory of elliptic and hyperelliptic curves over finite
fields has been of interest for construction of cryptosystems based on the discrete
logarithm problem, and elliptic curve cryptography is now at the stage of commer-
cial interest. One of the main reason for interest in these curves is that they provides
us a number of finite abelian groups — the so-called Jacobian groups, on which the
discrete logarithm problem seems to be far more computationally infeasible than
on the multiplicative groups of finite fields.

Recently a new class of curves, which are called superelliptic curves and are gen-
eralizations of hyperelliptic curves when the ground field has an odd characteristic,
has suggested for constructing public key cryptosystems by Galbraith, Paulus and
Smart in [8]. Besides providing an algorithm for the arithmetic on the Jacobian of
the superelliptic curves, in the same paper they proved the method of Adleman,
DeMarrais and Huang [1] can be extended to the superelliptic curve case. This
leads us to restrict our attention to superelliptic curves of small genus. The first
such a non-hyperelliptic example is the superelliptic curves of genus three asso-
ciated to a cubic function field, which has a special name the Picard curve. Like
elliptic curve and hyperelliptic curve of genus 2, a Picard curves admits a geometric
interpretation of the arithmetic on its Jacobian group which can be exploited for
an efficient arithmetic as described in [3]. Furthermore, the fact that the Jacobian
group is isomorphic to the ideal class group of the function field can be used to get
an explicit formula which makes the arithmetic more efficient [2, 4].

In addition to its own theoretical importance, the computation of isomorphism
classes of the above-mentioned curves has a crytographical meaning. Before setting
cryptosystem based on the curves it may useful to know how many essentially
different choice of curves we may have. Isomorphism classes of elliptic curves [14,
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12, 11] and hyperelliptic curves of genus two over finite fields [7, 5, 6] are now
well-understood. In this paper, we determine the number of isomorphism classes of
Picard curves over finite fields. In the process of doing this we also provide reduced
forms of Picard curves together the number of such forms up to isomorphism.

The remainder of the paper is organized as follows. After giving the basic no-
tions and properties of Picard curves in the next section, we count the number
of isomorphism classes of Picard curves over finite fields of characteristic different
from 2 and 3 in section 3. Finally, in section 4 we do the same thing for Picard
curves over finite fields of even characteristic.

2. The Picard curves

To simplify the exposition, we start with an algebraic function field K over a
field k, that is, a finitely generated extension field of k with transcendental degree
one in which k is algebraically closed. If p is a place (i.e., a discrete valuation ring
between k and K) of K, we denote by vp the discrete valuation of K corresponding
to it. The degree, deg p, of a place p is defined as the extension degree of the
residue field of p over k. For a divisor D =

∑
npp (that is, a finite formal sum of

places of K) on K, we write L(D) for the k-vector space of elements f ∈ K with
vp(f) + np ≥ 0 for all places p of K. Details of algebraic function fields can be
found in [13].

The abstract curve CK of K is the (cofinite) topological space consisting of the
places of K that is trivial on k together with a sheaf of k-algebras. Two abstract
curves CK and CK′ are said to be isomorphic (over k) if the algebraic function
fields K and K ′ are isomorphic as k-algebras. For more details concerning with
abstract curves, one may consult Hartshorne’s book [9]

Definition 2.1. Let k be a field with chark 6= 3. A Picard curve over k is
the abstract curve of an algebraic function field of the form k(x, y) with relation
y3 = f(x), where f(X) ∈ k[X] is a separable monic polynomial of degree 4.

In what follows, whenever we refer to “a Picard curve y3 = f(x) over k”, the
abstract curve of the algebraic function field K = k(x, y) with relation y3 = f(x)
is always intended.

Remarks 2.2. 1) Let p∞ be a place of K lying over the infinite place of k(x).
From the relation y3 = f(x) it follows that vp∞(x) = −3n and vp∞(y) = −4n for
some positive integer n. On the other hand, one can show that

3n ≤ vp∞(1/x) · deg(p∞) ≤ [K : k(1/x)] ≤ 3

and hence we must have n = 1. This means that Y 3 − f(x) is the minimal poly-
nomial of y over k(x), that the infinite place of k(x) totally ramifies in K and that
the degree of the place p∞ is 1.

2) As a consequence of Riemann-Hurwitz theorem the genus of the Picard curve
is given by

−2 +
1
2

∑
p

(3− gcd(3, vp(f))) deg p,

where the p runs through the places of k(x); for a proof see [13, III.7.4]. So, the
Picard curve has genus 3.
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Let C : y3 = x4 + a3x
3 + a6x

2 + a9x+ a12 be a Picard curve over k, and let p∞
denote the unique place of the function field of C lying over the infinite place of
k(x). Then x ∈ L(3p∞) and y ∈ L(4p∞). Since deg p∞ = 1 and since the genus of
the Picard curves is 3, by virtue of Riemann-Roch theorem and Clifford’s theorem
we see that

L(3p∞) = k ⊕ kx and L(4p∞) = k ⊕ kx⊕ ky.

Let Ĉ : ŷ3 = x̂4 + â3x̂
3 + â6x̂

2 + â9x̂+ â12 be another Picard curve over k which is
isomorphic to C. Identifying the function fields of C and Ĉ as k-algebras yields

k ⊕ kx = k ⊕ kx̂ and k ⊕ kx⊕ ky = k ⊕ kx̂⊕ kŷ.

So, we have x = α3x̂+ β and y = α4ŷ + γx̂+ δ for some α3, α4, β, γ, δ ∈ k with α3

and α4 nonzero. Here, in order to get the equation of Ĉ by this change of variables
we must have α3 = α3, α4 = α4 for some nonzero α ∈ k, and γ = δ = 0. This
proves:

Proposition 2.3. Let k be a field with chark 6= 3. Two Picard curves C : y3 =
x4 + a3x

3 + a6x
2 + a9x + a12 and Ĉ : ŷ3 = x̂4 + â3x̂

3 + â6x̂
2 + â9x̂ + â12 over k

are isomorphic over k if and only if x = α3x̂+β and y = α4ŷ for some α ∈ k∗ and
β ∈ k.

Under the change of variables in the proposition, the coefficients of the Picard
curves satisfy the following system of equations:

(2.1)


α3â3 = 4β + a3

α6â6 = 6β2 + 3βa3 + a6

α9â9 = 4β3 + 3β2a3 + 2βa6 + a9

α12â12 = β4 + β3a3 + β2a6 + βa9 + a12

3. Isomorphism Classes when char(Fq) 6= 2, 3

In this section we count the isomorphism classes of Picard curves over a finite field
Fq of odd characteristic. The basis idea is as follows. We will consider a collection
P of Picard curves of special form for which any Picard curves is isomorphic to one
of elements of P and the multiplicative group F∗q acts on P such that two curves in
P are isomorphic if and only if they are in the same orbit. We then get the number
of isomorphism classes of Picard curves in terms of the number of orbits in P under
the action of F∗q .

Since charFq 6= 2, via change of variables x = x̂ + a3
4 and y = ŷ, each Picard

curve y3 = x4 + a6x
2 + a9x + a12 is isomorphic to a Picard curve of the form

y3 = x4 + ax2 + bx + c. Let P denote the set of all Picard curves of this form. If
two curves in the set P are isomorphic, then a possible change of variable between
them is x = α3x̂ and y = α4ŷ for some nonzero element α in Fq, in which case the
system of equations (2.1) becomes

(3.1)

 α6â6 = a6

α9â9 = a9

α12â12 = a12

Hence, the multiplicative group F∗q is regarded as to act on P by

α : y3 = x4 + ax2 + bx+ c 7→ y3 = x4 +
a

α6
x2 +

b

α9
x+

c

α12
.
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Note that by definition two Picard curves in P are isomorphic if and only if they
are in an orbit under this action.

So as to determine the number of orbits in P we first need to know the size of
the set P and the following result tells us that it is q3 − q2.

Lemma 3.1. Let Fq be the finite field of odd characteristic with q elements. Then
the number of non-separable polynomials with coefficients in Fq of the following
form is q2:

(3.2) x4 + ax2 + bx+ c.

Proof. Let N be the set of all non-separable polynomials of the form (3.2). Write
N as a disjoint union N = N1 t N2, where N1 consists of the polynomials in N
which have a multiple root in Fq. We first determine the cardinality of the set N2.
For this, consider f(x) ∈ N2 and let α be a multiple root of it. Then, since f(x) is
to have all of the conjugates of α over Fq as its multiple roots, it should be of the
form f(x) = (x2 − A)2, where A ∈ Fq and x2 − A is irreducible over Fq. Clearly,
any polynomial of this form belongs to N2. So, the cardinality of N2 is equal to the
number of quadratic non-residue in F∗q and hence |N2| = q−1

2 . Now, to determine
|N1| we consider g(x) = x4 + ax2 + bx+ c ∈ N1 with a multiple root α in Fq. Then
we can write g(x) = (x− α)2(x2 + 2αx+ β) for some β ∈ Fq with

(3.3) a = −3α2 + β, b = 2α3 − 2αβ, c = α2β.

So, we have a legitimate surjective map ψ : Fq × Fq → N1 given by (α, β) 7→
(x−α)2(x2 +2αx+β). It follow easily from the equation (3.3) that two pairs (α, β)
and (α1, β1) are sent to the same non-separable polynomial by ψ if and only if
α2 = α2

1 = β = β1. This means that each element in N1 has at most two preimages,
and that the number of elements of N2 which have two preimages is the same as
the number of quadratic non-resides in Fq. Therefore, we have |N1| = q2 − q−1

2 ,
which proves the lemma. �

Theorem 3.2. Let Fq be a finite field of characteristic 6= 2, 3 with q elements.
Then the number of isomorphism classes of Picard curves over Fq is

q2 + q − 1 if q − 1 ≡ 2, 10, 14, 22, 26, 34 (mod 36),
q2 + q + 1 if q − 1 ≡ 4, 8, 16, 20, 28, 32 (mod 36),
3(q2 + q − 1) if q − 1 ≡ 6, 30 (mod 36),
3(q2 + q + 1) if q − 1 ≡ 12, 18, 24 (mod 36),
3(q2 + q + 3) if q − 1 ≡ 0 (mod 36).

Proof. We divide the set P into four disjoint subsets:

P4 =
{
y3 = x4 + ax2 + bx+ c ∈ P | a = b = 0 6= c

}
,

P3 =
{
y3 = x4 + ax2 + bx+ c ∈ P | a = c = 0 6= b

}
,

P2 =
{
y3 = x4 + ax2 + bx+ c ∈ P | b = 0, a 6= 0 6= c

}
,

and P1 = P−
⋃4

i=2 Pi. Clearly, |P4| = |P3| = q−1. Since a polynomialX4+aX2+c
is non-separable if and only if (a

2 )2 = c, we have |P2| = (q−1)(q−2) and hence by the
lemma |P1| = q(q−1)2. For each i, the set Pi is stable under the action of F∗q on P
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and by (3.1) each curve in Pi has the same isotropy group Gi =
{
α ∈ Fq | α3i = 1

}
.

Hence the number of orbits in P is

1
q − 1

4∑
i=1

|Pi||Gi| = |G4|+ |G3|+ (q − 2)|G2|+ (q2 − q)|G1|.

From the fact that |Gi| = gcd(3i, q− 1), the theorem now follows immediately. �

4. Isomorphism Classes when char(Fq) = 2

In this final section we count the number of isomorphism classes of Picard curve
over a finite of even characteristic. To this end, we first consider three sets of
Picard curves such that two curves in different sets cannot be isomorphic and any
ismorphism class of Picard curves can be represented by a curve in the union of the
sets. We then achieve our goal by counting the isomorphism classes in each set.

Throughout this section, unless specified otherwise, whenever we refer to finite
fields, finite fields of characteristic 2 are understood.

Let Fq be a finite field of characteristic 2. Then any Picard curve over Fq is
isomorphic to one and only one of the following types:

y3 = x4 + ax3 + bx+ c with a 6= 0;(4.1)

y3 = x4 + ax2 + bx+ c with a 6= 0 6= b;(4.2)

y3 = x4 + ax+ b with a 6= 0.(4.3)

Indeed, let a Picard curve C : y3 = x4 + a3x
3 + a2

6 + a9x + a12 over Fq be given.
First we note that, since charFq = 2, the system of equations (2.1) becomes

(4.4)


α3â3 = a3

α6â6 = βa3 + a6

α9â9 = β2a3 + a9

α12â12 = β4 + β3a3 + β2a6 + βa9 + a12

from which we see that any two Picard curves of different types cannot be iso-
morphic to each other. If a3 is nonzero, then, taking α = 1 and β ∈ Fq such
that βa3 + a6 = 0, we see that the curve is isomorphic to a Picard curve of the
form (4.1); in this case we say C is of type A. If a3 = 0 and a6 6= 0, in order
for X4 + a3X

3 + a6X
2 + a9X + a12 to be seprable the coefficient a6 should be

nonzero; in this case C is said to be of type B. If a3 = a6 = 0, in order for
X4 + a3X

3 + a6X
2 + a9X + a12 to be separable a9 should be nonzero; in this case

C is said to be of type C.
We first count isomorphism classes of Picard curves of type A in terms of iso-

morphism classes of Picard curves of the form (4.1). For this, we need to know the
number of such curves.

Lemma 4.1. The number of separable polynomials over Fq of the following form
is q(q − 1)2:

(4.5) x4 + ax3 + bx+ c (a 6= 0).

Proof. We prove this lemma by counting the number of non-separable polynomial
of the given form is q(q − 1). Let f(x) be a non-separable polynomial of the form
(4.5). Then any multiple root, say α, of it should be in Fq. In this case, f(x) can
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be written as f(x) = (x − α)2(x + βx + α2) for some nonzero β ∈ Fq. So, we get
a surjective map from Fq × F∗q to the set of non-separable polynomial of the form
(4.5) defined by (α, β) 7→ (x−α)2(x+ βx+α2), which can be easily checked to be
injective. This completes the proof. �

Proposition 4.2. The number of isomorphism classes of Picard curves over Fq =
F2m of type A is given by {

q(q − 1) if m is odd,
3q(q − 1) if m is even.

Proof. The multiplicative group F∗q canonically acts on the set, say Σ of Picard curve
of the form (4.1). Each curve in the set Σ has the same isotropy G =

{
α | α3 = 1

}
.

So, the number of isomorphism classes in Σ is |Σ|
(F∗q :G) . On the other hand, according

to the previous lemma, |Σ| = q(q − 1)2. Now, the result follows immediately. �

We now count the number of isomorphism classes of Picard curves of type B.
Let B denote the set of Picard curves of the form (4.2). The group F∗q ×Fq acts on
B in the following manner:

(α, β) : y3 = x4 + a6x
2 + a9x+ a12 7→ ŷ3 = x̂4 + â6x̂

2 + â9x̂+ â12,

where

(4.6)

 α6â6 = a6

α9â9 = a9

α12â12 = β4 + β2a6 + βa9 + a12.

The isotropy group of a Picard curve y3 = x4 + a3x
3 + a9x + a12 in B under

this action is the product G3×Ga6,a9 , where G3 =
{
α ∈ Fq | α3 = 1

}
and Ga6,a9 ={

β ∈ Fq | β4 + a6β
2 + a9β = 0

}
. Note that the separability of the polynomial X4+

a6X
2 + a9X implies |Ga6,a9 | = 1, 2 or 4. So, we can write

B = B1 t B2 t B4,

where each Bn consists of Picard curves y3 = x4 + a3x
3 + a9x+ a12 of type B such

that |Ga6,a9 | = n.

Lemma 4.3. Let G3 and Bi be as above. Then we have |B2| = 1
2q

2(q − 1) and
|B4| = 1

2q(q − 1)(q − 1− |G3|).

Proof. We first compute |B2| by counting the number of cubic polynomials of the
form

(4.7) x3 + ax+ b (a, b ∈ F∗q)

with only one solution in Fq. Let f(x) be such a polynomial and let α denote its
unique root lies in Fq. Then we have a following factorization

f(x) = (x− α)(x2 + αx+ β)

for some nonzero β ∈ Fq such that x2 + αx + β is irreducible. Since x2 + αx + β

is irreducible if and only if the absolute trace of β
α2 is nonzero and since there are

exactly q
2 elements of Fq with nonzero absolute trace, the number of polynomials

of the form 4.7 with only one roots in Fq is 1
2q(q − 1) and hence |B2| = 1

2q
2(q − 1).
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To determine |B4|, we consider three distinct nonzero elements α, β and γ of Fq.
To say that the polynomial (x− α)(x− β)(x− γ) is of the form (4.7) is equivalent
to saying that they satisfy the relations α+ β + γ = 0 and α2 + αβ + β2 6= 0. So,
the cardinality of B4 is equal to q times the number of ways to find two distinct
nonzero elements α, β ∈ Fq such that (α

β )2 + α
β + 1 6= 0. Given nonzero α ∈ Fq,

the number of nonzero element β ∈ Fq different from α such that (α
β )2 + α

β + 1 6= 0
is q − 1 − |G3| and hence the number of cubic polynomials of the form (4.7) is
1
2 (q − 1)(q − 1− |G3|); therefore, we obtain the claimed cardinality of B4. �

Proposition 4.4. The number of isomorphism classes of Picard curves over Fq =
F2m of type B is given by {

3q − 4 if m is odd,
9q − 21 if m is even.

Proof. According to the rule (4.6) of change of variables and our construction of
the sets Bi, it can be checked easily that the sets Bi are stable under the action of
F∗q ×Fq on B. The isotropy group of each element in Bi has the cardinality |G3| · i.
Hence, the number of isomorphism classes of Picard curves of type B is

1
q(q − 1)

(|B1||G3|+ 2|B2||G3|+ 4|B4||G3|)

=
|G3|

q(q − 1)
(|B|+ |B2|+ 3|B4|)

= |G3|
(
q − 1 +

q

2
+

3
2
(q − 1− |G3|)

)
.

The remaining of the proof now follows easily. �

It now remains to count isomorphism classes of the Picard curves of type C. Let
C be the set of all Picard curves over Fq of the form (4.3). Proposition 2.3 allows
us to regard the group F∗q × Fq as to act on C as follows:

(α, β) : y3 = x4 + a9x+ a12 7→ ŷ3 = x̂4 + â9x̂+ â12,

where

(4.8)
{

α9â9 = a9

α12â12 = β4 + βa9 + a12.

The isopropy group of a Picard curve y3 = x4 + a9x+ a12 of type C is

G =
{
(α, β) ∈ F∗q × Fq | α9 = 1, β4 + a9β + a12(α3 − 1) = 0

}
.

Let G9 =
{
α ∈ Fq | α9 = 1

}
. We consider three cases depending on the size of G9.

Case I: |G9| = 1. The binomial X3 + a9 is reducible and, since Fq contains no
primitive third root of unity, has only one root in Fq. Hence, |G| = 2.

Case II: |G9| = 3. Since Fq contains a primitive third root of unity we have

|G| =

{
3 if X3 + a9 is irreducible over Fq,

12 otherwise.

Case III: |G9| = 9. If X3 +a9 is irreducible, then for any b ∈ Fq the polynomial
X4 + a9X + b is the product of linear polynomial and an irreducible polynomial
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(see [10, Theorem 3.83]) and hence in this case we have |G| = 9 · 1 = 9. Now, we
suppose that X3 + a9 is reducible and say a9 = A3, where A ∈ Fq. Let α denote
a generator of G9. One can show that X4 + X + b (b ∈ Fq) has a root in Fq if
and only if Tr(b) = 0. So, X4 + a9X + a12(α3n − 1) has a root in Fq if and only if

Tr
(

a12(α
3n−1)

A4

)
= 0, in which case all of its four distinct roots are contained in Fq.

Note that, since α6 + α3 + 1 = 0,

Tr
(
a12α

6

A4

)
+ Tr

(
a12α

3

A4

)
= Tr

(a12

A4

)
and that, as n runs from 1 to 9, α3n assumes each of 1, α3, α6 exactly three times.
If Tr

(
a12
A4

)
= 1, then either Tr

(
a12α3

A4

)
= 0 or Tr

(
a12α6

A4

)
= 0 but not both and

hence |G| = 3 · 4 = 12. If Tr
(

a12
A4

)
= 0, we have two possibilities

Tr
(
a12α

6

A4

)
= Tr

(
a12α

3

A4

)
= 0

or

Tr
(
a12α

6

A4

)
= Tr

(
a12α

3

A4

)
= 1;

in the former case |G| = 9 · 4 = 36 and in the latter case |G| = 3 · 4 = 12.

Proposition 4.5. The number of isomorphism classes of Picard curves over a
finite field Fq = F2m of type C is

2 if m is odd,
6 if m ≡ 2, 4 (mod 6),
12 if m ≡ 0 (mod 6).

Proof. When m is odd, since the cardinality of the isotropy group of any curve in
C is 2, that is, since all the orbits in C have constant length 1

2q(q − 1), there are
two orbits in C.

Suppose that m ≡ 2, 4 (mod 6), equivalently that |G9| = 3. We divide C into
two subsets which are stable under the action on C:

C3,1 =
{
y3 = x4 + ax+ b | a /∈ F3

q

}
,

C3,2 =
{
y3 = x4 + ax+ b | a ∈ F3

q

}
.

It follows easily that |C3,1| = 2
3q(q− 1) and |C3,2| = 1

3q(q− 1). Since the cardinality
of isotropy groups of the curves in C3,1 (resp. C3,2) is constant, so is the length of
orbits and this constant value is given by 1

3q(q − 1) (resp. 1
12q(q − 1)). Hence the

number of isomorphism classes in the sets C3,1 and C3,2 are 2 and 4, respectively.
Now, finally we consider the case whenm ≡ 0 (mod 6), equivalently when |G9| =

9. We partition C into four subsets C9,i which are stable under the action of F∗q×Fq,
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where

C9,1 =
{
y3 = x4 + ax+ b | a /∈ F3

q

}
,

C9,2 =
{
y3 = x4 + ax+ b | a ∈ F3

q,Tr(ba−4/3) = 1
}
,

C9,3 =
{
y3 = x4 + ax+ b | a ∈ F3

q,Tr(bα3a−4/3) = Tr(bα6a−4/3) = 0
}
,

C9,4 =
{
y3 = x4 + ax+ b | a ∈ F3

q,Tr(bα3a−4/3) = Tr(bα6a−4/3) = 1
}
.

Here, α denotes a generator of G9. Clearly, |C9,1| = 2
3q(q−1) and |C9,2| = 1

6q(q−1).
A simple dimension argument shows that |C9,3| = 1

12q(q − 1) and hence we have
|C9,4| = 1

12q(q − 1). On the other hand, the isotropy groups of curves in C9,i have
the same size as proved and given above. After the very similar argument in the
previous paragraph, we see that the number of isomorphism classes in C9,i are
6, 2, 3, 1. This completes the proof. �

Finally, combining Propositions 4.2, 4.4 and 4.5, we get the main result of this
section.

Theorem 4.6. The number of isomorphism classes of Picard curves over a finite
field Fq = F2m is given by

q2 + 2q − 2 if m is odd,
3(q2 − 5) if m ≡ 2, 4 (mod 6),
3(q2 − 3) if m ≡ 0 (mod 6).
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