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1 Introduction

Let n = pq be the modulus of a RSA cryptosystem with private key d and

public exponent e. A classical attack to RSA ([11], also see [9]) shows that

the cryptosystem becomes insecure if d < 4
√
n. In the last years, several im-

provements to the RSA short decryption exponent attack have been obtained

(e.g., see [1]). In the Boneh-Durfee attack ([2, 3]) it is shown that RSA is

insecure if the decryption exponent d < n0.292. Furthermore, the authors

conjectured that, indeed, this cryptosystem is insecure for d <
√
n. More-

over, Sun et al. ([8]) have proposed three variants of the RSA with small

private keys for resisting the Boneh-Durfee attack. These variants suggest to

use unbalanced factor primes p, q of the RSA modulus. Nevertheless, Dur-

fee and Nguyen ([4]) have broken two of these three new proposals. More

recently, Weger ([10]) has proved that if the prime numbers p, q are chosen

in such a way that its difference |p − q| is small enough, then one obtains
improvements on the Wiener and Boneh-Durfee attacks.

These cryptanalyses have increased the interest of using decryption ex-

ponents as large as possible, in order to avoid such attacks, although then

the decryption process is slower. In fact, it is usually recommended that the

size of the decryption exponent d must be almost equal to the RSA modulus

n (e.g., see [5, §8.2.2], [7, §12.4]).

In this communication we show that, once the public exponent e has

been chosen, we can select the prime factors p, q in such a way that the

decryption exponent d has a bitlength almost equal to the bitlength of the

RSA modulus. Hence we obtain sufficient conditions on p and q which

prevents the cryptosystem against the aforementioned attacks.
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2 Basic results

Proposition 1 Assume d, e are the decryption and encryption exponents

respectively of the RSA cryptosystem with modulus n = pq. If de = 1+kφ(n),

then k < e. If k = e− 1, then

d ≥ 2
3
φ(n).

Proof. If e denotes the encryption exponent, then there exists a positive

integer k such that de = 1 + kφ(n). As

1 + kφ(n)

e
= d < φ(n),

we have

k <
φ(n)e− 1

φ(n)
= e− 1

φ(n)
< e.

Furthermore, as e ≥ 3, for k = e− 1 we obtain

d =
1 + (e− 1)φ(n)

e

=
1

e
+

µ
1− 1

e

¶
φ(n)

>

µ
1− 1

e

¶
φ(n)

≥ 2

3
φ(n).

Hence, when k is as large as possible, the bitlength of d can be bounded

as follows:

Corollary 2 With the same hypotheses as in Proposition 1, we have

bitlength(d) ≥ bitlength(n)− 1.
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Proof. As d ≥ 2
3φ(n), from the very definition of the Euler function we

deduce,

blg dc > blg(p− 1) + lg(q − 1) + lg(2/3)c
≥ blg(p− 1)c+ blg(q − 1)c− 1
≥ blgnc− 2.

Accordingly, bitlength(d) = blg dc+ 1 > blgnc− 1 = bitlength(n)− 2.
Below, we analyze the conditions that p, q must satisfy for the equation

k = e− 1 to hold. Then, Proposition 1 will ensure that the bitlength of the
decryption exponent is almost the same than that of n.

Proposition 3 Let d, e be as in Proposition 1, where we further assume

k = e − 1. Let rp = p(mod e) and rq = q(mod e) be the residues of p and

q, respectively modulo e, and let Se be the set of elements r ∈ Ze such that
r(r − 1) is invertible modulo e; that is, r(r − 1) ∈ Z∗e.

(i) We have rp, rq ∈ Se. Hence rp, rq ∈ Z∗e − {0, 1}.

(ii) In Ze, we have

rq =
rp

rp − 1 . (1)

(iii) If e = pm1
1 · · · pmt

t is the prime factorization of e, then

#Se =
tY
i=1

(pi − 2)pmi−1
i .

Conversely, if p and q are arbitrary primes satisfying (ii), then k = e−1.
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Proof.

(i) Assume p = ecp + rp, where cp ∈ N. Then rp ∈ Z∗e, because p is a
prime number. We also have p−1 = ecp+rp−1 and gcd(e, p−1) = 1.
Hence we conclude gcd(e, rp − 1) = 1.

(ii) Taking account of the identities

d =
1 + (e− 1)φ(n)

e

= φ(n)− φ(n)− 1
e

,

it follows that e divides φ(n) − 1 = pq − p − q; hence (rp − 1)rq = rp
in Ze.

(iii) The formula follows taking into account that an integer s is invertible

in Z/pm if and only if it is invertible in Z/p.

Conversely, if p and q satisfy (ii), then

q(p− 1) ≡ p(mod e),

or equivalently,

n ≡ p+ q(mod e);

say,

n = p+ q + he,

for an integer h > 0.

Then, we have

f =
1 + (e− 1)φ(n)

e

= φ(n)− φ(n)− 1
e

= φ(n)− h.

5



Hence, f is an integer, and ef ≡ 1(modφ(n)). Therefore, d = f and k =

e− 1.
The next corollary measures the percent of elements in Ze that belong

to Se.

Corollary 4 Letting Ne = #Se, we have

Ne
φ(e)

=
tY
i=1

pi − 2
pi − 1 .

Hence, if every prime factor of e goes to ∞, then the probability of finding
a residue in Se goes to 1.

Some simple consequences of the previous results are the following:

1. Note that by virtue of the Theorem of Dirichlet ([6, Chapter 2]) the

primes p of the form p = ecp + rp are approximately equi-distributed

among the series ecp+rp for a fixed cp, and that every arithmetic series

ecp + rp with gcd(cp, rp) = 1 contains infinitely many primes.

2. If e is a prime, then Ne = e− 2.

3. If e = 3m, then
Ne
φ(e)

=
1

2
, (2)

and if e = lm, where l > 3 is a prime, then

Ne
φ(e)

>
1

2
. (3)

4. Assume t ≥ 2 and that the least prime factor of e is greater than 3;
that is, 3 < p1 < . . . < pt. Then, we have

Ne
φ(e)

>
1

2
. (4)
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In fact, if we set

εi =
1

pi − 1 , 1 ≤ i ≤ t,
f(x) = (x− ε1) · · · (x− εt),

then it is easily seen that (4) is equivalent to saying 2f(1) − 1 > 0,

and this inequality can be proved in two steps,

(a) If p1 = 5, p2 = 7, and pi ≥ 11, 3 ≤ i ≤ t, the result follows from
a direct computation, and

(b) If pi ≥ 13 for 3 ≤ i ≤ t, the result follows by simply bounding
ε1 + . . .+ εt.

5. If t ≥ 2 and p1 = 3, then Ne/φ(e) is slightly less than 1
2 .

3 Algorithm

From the previous results, an algorithm to generate the keys for the RSA

and modifying the algorithm proposed in [5, § 8.2.1] is as follows:

1. Choose the encryption exponent e > 2.

2. Generate a large random prime p such that rp(rp − 1) ∈ Z∗e, where
rp = p(mod e).

3. Compute a large prime number q = rp · (rp − 1)−1 (mod e) + k · e, for
some k.

4. Compute n = p · q, φ = (p− 1) (q − 1), and verify that 1 < e < φ and

gcd (e,φ) = 1.
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5. Use the extended Euclidean algorithm to compute the unique integer

d, 1 < d < φ, such that e · d ≡ 1 (modφ), or compute directly d =
(1 + (e− 1)φ) /e.

4 Conclusions

The probability that a random chosen d would be sufficiently large is high,

but, then the probability of the corresponding encryption exponent e would

be large is also high. In practice, however, the exponent e is wanted to

belong to a small predetermined set of values; for example, 3 or 216 + 1, in

order to improve the efficiency of the encryption process. The interest of the

algorithm above is that encryption exponents whose associated decryption

exponent is of the same size as the RSA modulus, can be chosen arbitrarily.

Once the encryption exponent e is selected, the only constraints for p and q

are the items (i) and (ii) in the Proposition 3. Such conditions only affect

the residues of p and q modulo e.

As the map

x 7→ x

x− 1
is an involution, the residues rp and rq play a completely symmetric role.

Hence every rp ∈ Se corresponds to a unique rq ∈ Se such that (rp, rq)
satisfies the items in Proposition 3. For example, rp = 2 if and only if

rq = 2. This is the only case in which rp = rq.

If e is a prime number, then p can be chosen arbitrarily and q is only

conditioned to satisfy the equation (1). We remark that Ne is as large as

possible when e is a prime. On the other hand, if e is a composite number,

then Ne may be much smaller than e− 2, thus imposing more constrains to
select p and q than in the prime case.
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If e = 3, there are no constrain on p and q, as in this case, we have

rp = rq = 2 for every pair p, q satisfying the RSA conditions.

By setting k = e − 1 does not provide a factoring advantage to an
attacker, as the prime factors, p, q, can still be taken at random as follows

from the formulas (2)-(4).

Finally, as the algorithm above shows, choosing rp and rq in Se does not

increase the running time for key generation, as the modification runs in

polynomial time.
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