
Imperfect Decryption and an Attack on the NTRU

Encryption Scheme

John A. Proos

University of Waterloo,
Waterloo, Canada

japroos@math.uwaterloo.ca

January 7, 2003

Abstract

A property of the NTRU public-key cryptosystem is that it does
not provide perfect decryption. That is, given an instance of the cryp-
tosystem, there exist ciphertexts which can be validly created using
the public key but which can’t be decrypted using the private key.
The valid ciphertexts which an NTRU secret key will not correctly
decipher determine, up to a cyclic shift, the secret key. In this paper
we present attacks based on this property against the NTRU primitive
and many of the suggested NTRU padding schemes [15, 10, 11]. These
attacks use an oracle for determining if valid ciphertexts can be cor-
rectly deciphered, and recover the user’s secret key. The attacks are
quite practical. For example, the attack against the NTRU-REACT
padding scheme proposed in [15] with the N = 503 parameter set [21]
requires on average fewer than 30,000 oracle calls and can be performed
on a PC in a few minutes. As the traditional definition of a public-
key encryption scheme requires perfect decryption, we also define a
new type of encryption scheme which encompasses both NTRU and
an attack model for the attacks presented against it.

1 Introduction

The NTRU cryptosystem [9] is based on polynomial algebra modulo two
distinct moduli. The problem of recovering the secret key from the public
key has a very natural formation as a lattice basis reduction problem (see
[5]). The security parameters suggested for the cryptosystem by NTRU

1

Cryptosystems Inc. are designed to make the related lattice basis reduction
problem intractable (see [21]).

In [12] Jaulmes and Joux presented a chosen ciphertext attack against
the NTRU cryptosystem. The basis of the attack was to construct invalid
ciphertexts and ask for their decryptions. Knowledge of these decryptions
could then be used to recover information about the user’s secret key. The
attack could be launched against the NTRU primitive as well as the OAEP-
based padded version of NTRU found in [19]. Since the publication of this
attack there have been many new padding schemes introduced [15, 10, 11]
to protect the NTRU cryptosystem against invalid ciphertext attacks. All
but one of the new padding schemes has the property that the decrypted
value gives sufficient information to recalculate the unique valid ciphertext
for the padded message. The one padding scheme without this property
can be broken by an attack similar to the Jaulmes and Joux attack against
the OAEP-based NTRU padding scheme (see section 5.3). When the valid
ciphertext can be computed from the decryption value, attacks based on
invalid ciphertexts can then be thwarted by altering the decryption process
to compute the valid ciphertext from the recovered plaintext and return ‘in-
valid’ whenever the received ciphertext does not match the valid ciphertext.
The modified decryption algorithm will return ‘invalid’ whenever it is given
an invalid ciphertext. Thus no information about the secret key can be
revealed through ciphertexts which the attacker already knows are invalid.

The NTRU cryptosystem has the interesting property that it does not
provide perfect decryption. That is, given a key pair (pk, sk) there exist
messages m for which some of the ciphertexts created using pk and m will
not correctly decrypt to m. When the ability to correctly decipher valid
ciphertexts is dependent on the secret key, the act of decrypting can leak
information about the secret key. This information can be leaked both when
messages are incorrectly and correctly decrypted. Thus imperfect decryption
can be a very dangerous property for a cryptosystem to have. The NTRU
cryptosystem has the undesirable property that the set of ciphertexts which
do not correctly decrypt determine, up to a cyclic shift, the secret key.

The fact that the NTRU cryptosystem has imperfect decryption means
that it does not satisfy the traditional definition of a public-key encryp-
tion scheme (see section 2.1). In this paper we present a new attack model
for schemes with imperfect decryption and present attacks within this new
model against the NTRU primitive and many of the suggested NTRU padding
schemes. All of these attacks use indecipherable valid ciphertexts to recover
the user’s secret key. In the new attack model the attacker is given access
to an oracle for determining when a validly created ciphertext correctly de-

2

crypts. Suppose an NTRU padding scheme which is secure against invalid
ciphertext attacks receives a validly created ciphertext c of m which incor-
rectly decrypts to m′. The decryption algorithm, as modified above to resist
the Jaulmes-Joux attacks, will return ‘invalid’ since the re-encryption of m′

will not equal c. Thus decryption will return ‘invalid’ for a valid ciphertext
exactly when the ciphertext can not be correctly deciphered. This implies
that if the attacker can determine whether a user decrypts a ciphertext to
a message or ‘invalid’ then the attacker can use the user as the oracle.

The new attack is quite practical and realistic. For example, the attack
against the NTRU-REACT padding scheme proposed in [15] with the N =
503 parameter set [21] requires on average fewer than 30,000 oracle calls and
can be performed on a PC in a few minutes. The attacks on some of the
other padding scheme and parameter set combinations require more than
30,000 oracle calls. The success rates of the attacks depend on the number
of oracle calls they are allowed to perform, but all the attacks have been
successful with fewer than 250,000 oracle calls.

The rest of this paper is organized as follows. Section 2 recalls the
definition of and security notions for public-key encryption schemes, and
provides definitions for the new attack model for encryption schemes without
perfect decryption. Section 3 reviews the REACT transformation [16] and
analyzes its security for schemes without perfect decryption. Sections 4
and 5 review the NTRU cryptosystem and its suggested padding schemes.
Section 6 presents the new attacks and some implementation results.

2 Encryption Schemes and Security

2.1 Public-Key Encryption Schemes

The standard definition of a public-key encryption scheme (PKE) [1, 3, 8]
is a triple of algorithms, Π = (K, E ,D), where

• K, the key generation algorithm, is a probabilistic algorithm which
takes as input a security parameter k ∈ N and returns a pair (pk, sk)
of matching public and secret keys.

• E , the encryption algorithm, is a probabilistic algorithm that takes as
input a public key pk and a message x ∈ M ⊆ {0, 1}∗ and returns
a ciphertext y ∈ C ⊆ {0, 1}∗, denoted Epk(x) = y. M is referred
to as the message space and C is referred to as the ciphertext space.
We will on occasion denote encryption as a deterministic algorithm,
Epk(x; r) = y, where r is a bit string recording the coin tosses used

3

by Epk to produce y on input x. The random bit string r used in an
encryption will be referred to as a nonce.

• D, the decryption algorithm, is a deterministic algorithm that takes as
input a secret key sk and a ciphertext y and returns either a message
x ∈ M or a special symbol ⊥ to indicate that the ciphertext was
invalid. This is denoted Dsk(y) = x,⊥.

It is further required that for all (pk, sk) which can be output from K and
all x ∈ M that if Epk(x; r) = y for any r then Dsk(y) = x. That is the
decryption algorithm will correctly decrypt any validly encrypted message.
Given a key pair (pk, sk) a ciphertext y is called valid if there exists a
message x and a random string r such that E(x; r) = y, otherwise y is called
invalid.

There are some security results [16, 7] for which the definition of a PKE
also requires the decryption algorithm to have the property that it returns
⊥ for all invalid ciphertexts. The encryption schemes which meet this more
restrictive definition are simply a subset of those meeting the above defini-
tion and will be referred to as restricted PKEs. The results for the REACT
transformation [16] are actually stated with no reference as to how a decryp-
tion algorithm should behave on invalid ciphertexts, but in fact only hold
for the more restrictive definition of a PKE (see section 3).

2.2 Imperfect Public-Key Encryption Schemes

As mentioned above, the NTRU cryptosystem, ΠN = (KN , EN ,DN), does
not provide perfect decryption since there exist x and r combinations for
which ENpk(x; r) produces a ciphertext y such that DNsk(y) 6= x. Thus the
NTRU encryption scheme does not meet the definition of a public-key en-
cryption scheme. This means that the security results proved for PKEs can
not be assumed to hold true for NTRU.

In order to analyze the security of systems, like NTRU, without perfect
decryption we define an imperfect public-key encryption scheme (IPKE) as
a PKE without the requirement of perfect decryption (i.e. there can exist
(pk, sk), x and r for which Dsk(Epk(x; r)) 6= x). It would certainly be more
natural to refer to IPKEs as public-key encryption schemes and the subset of
these with perfect decryption (i.e. PKEs) as perfect public-key encryption
schemes. However, we are restricted by the fact that there already exists a
definition for PKEs.

Just as for PKEs, we can create a subset of all IPKEs by adding the
requirement that invalid ciphertexts always decrypt to⊥. IPKEs which meet

4

this requirement will be referred to as restricted IPKEs. From the definitions
it is clear that every PKE is also a IPKE and that every restricted PKE is
also a restricted IPKE. Note that the requirement of perfect decryption
forces PKE encryption algorithms to be injective, however the encryption
algorithm of an IPKE need not be injective.

We shall refer to a valid ciphertext y = Epk(x; r) as decipherable or
indecipherable with respect to x depending on whether or not Dsk(y) = x.
There are two points worth mentioning with regard to the definitions of
validity and decipherability. The first is that the validity of a ciphertext
depends only on its ability to be generated by Epk and is independent of
Dsk. The second is that since encryption is no longer required to be injective
there can exist ciphertexts y which can be validly created from two different
messages. The decipherability of such ciphertexts can then be different with
respect to the different messages. For example if y = Epk(x; r) = Epk(x′; r′),
Dsk(y) = x and x 6= x′ then y is decipherable with respect to x but is
indecipherable with respect to x′.

2.3 Security Notions

The three popular notions of security for encryption schemes are one-way
(OW), indistinguishability (IND) and non-malleability (NM). An encryption
scheme is said to be one-way if given a ciphertext y = E(x; r) an attacker
can not recover the entire message x. Suppose an attacker chooses two mes-
sages m1 and m2 and someone encrypts one of these messages to form the
ciphertext y. Indistinguishability (also known as semantic security) implies
that given y the attacker can not guess which of m1 and m2 was encrypted
with probability significantly better than one half. The last notion of secu-
rity, non-malleability, roughly speaking requires that given a ciphertext y of
a message x an attacker can not form a new ciphertext y′ whose message is
related to x in any meaningful way. There are two different definitions of
non-malleability, but they were shown to be equivalent for PKEs (see [3]).

There are several types of attacks against encryption schemes which vary
in the amount of information and abilities which are given to an attacker.
For public-key encryption schemes the weakest type of attack is a chosen
plaintext attack (CPA) which simply assumes that the attacker has access
to the public key and the encryption function. Other types of attacks are
created by giving the attacker access to various oracles. These attacks in-
clude:

• Reaction attacks (RA): Here the attacker is given access to an oracle

5

that given a ciphertext y will return whether or not y decrypts to
invalid (i.e. returns whether Dsk(y) =⊥).

• Plaintext-checking attacks (PCA): Here the attacker is given access to
an oracle that given a bit string y and a message x returns whether
or not y is an encryption of x. (i.e. returns whether there exists an r
such that Epk(x; r) = y)

• Chosen-ciphertext attacks (CCA1 and CCA2): Here the attacker is
given access to a decryption oracle that on input y returns Dsk(y).
There are two versions of these attacks, non-adaptive chosen-ciphertext
attacks (CCA1) and adaptive chosen-ciphertext attacks (CCA2). For
the non-adaptive version of the attack the attacker is only given access
to the decryption oracle prior to being given the challenge ciphertext.
For the adaptive version the attacker can query the decryption oracle
even after receiving the challenge ciphertext, but for obvious reasons
is not allowed to ask for the decryption of the challenge ciphertext.

If an encryption scheme is secure in the sense of SEC ∈ {OW,IND,NM}
against ATT ∈ {RA,CPA,CCA1,CCA2} we will denote this by SEC-ATT
(e.g. IND-CPA implies indistinguishability against chosen plaintext at-
tacks). Note that the oracle for a CCA2 attack can be used to simulate
the oracles of the other three attacks and thus if a scheme is secure against
CCA2 attacks it is also secure against RA, CPA and CCA1 attacks. In [1]
many relations among the various security levels were determined for PKEs,
including that for PKEs IND-CCA2 is equivalent to NM-CCA2. Since the
results are only proven for PKEs, care must be exercised when applying
these results to IPKEs without perfect decryption. Section 3.1 gives an
example of a result which holds for PKEs but does not hold for IPKEs.

2.4 Decipherable Ciphertext Attacks

When an encryption scheme has perfect decryption the act of correctly de-
crypting a ciphertext which is known to be valid does not reveal any infor-
mation about the secret key. However, when an encryption scheme has im-
perfect decryption an attacker may be able to determine information about
the secret key from knowledge of whether or not a valid ciphertext decrypted
correctly. It is important to note that information about the secret key can
be leaked even when a valid ciphertext is correctly decrypted. We shall now
define a new type of oracle and attack based on the imperfect decryption
property of IPKEs.

6

Let Π = (K, E ,D) be an IPKE. Given an instance of Π with key pair
(pk, sk), a decipherable ciphertext oracle, DC(pk,sk), is an oracle which on
input x, r and y such that Epk(x; r) = y returns whether or not Dsk(y) = x.
That is, a DC oracle can be used to determine if a valid ciphertext encrypted
using pk can be correctly decrypted using sk.

An attack which makes use of the public information and a DC oracle
shall be referred to as a decipherable ciphertext attack (DCA). Because a DC
oracle provides some information about decryption, the strength of a DCA
attack is greater than a CPA attack. On the other hand, a decryption oracle
can be used to simulate a DC oracle which implies that a DCA attack is
weaker than a CCA2 attack. Note that for a PKE, every valid ciphertext is
decipherable which means a DC oracle for a PKE provides no information.
Thus, for PKEs, DCA attacks are equivalent to CPA attacks.

3 The REACT Transformation

In 2000 Okamoto and Pointcheval [16] presented their Rapid Enhanced-
security Asymmetric Cryptosystem Transform (REACT). REACT uses two
hash functions G and H which output k1-bit and k2-bit strings respectively
and transforms a PKE Π = (K, E ,D) into a new PKE ΠR = (KR, ER,DR)
as follows:

• KR = K,

• ERpk(m;S,R): To encrypt a k1-bit message m select a random message
S and nonce R for Π and calculate c1 = Epk(S;R). The ciphertext then
consists of (c1, c2, c3), where c2 = G(S)⊕m and c3 = H(S,m, c1, c2).

• DRsk(c1, c2, c3): To decrypt calculate S′ = Dsk(c1), m′ = G(S′)⊕c2 and
c′3 = H(S′,m′, c1, c2). If S′ is a Π message (thus not ⊥) and c′3 = c3

then output m′, otherwise output ⊥.

It was shown by Okamoto and Pointcheval [16] that in the random oracle
model if Π is OW-PCA then ΠR will be IND-CCA2. However the proof
only holds for restricted PKEs since its validity requires that D(y) =⊥ for
all invalid ciphertexts y. It turns out that when REACT is applied to a
OW-PCA PKE which does not return ⊥ for all invalid ciphertexts then the
resulting PKE may not be IND-CCA2. To see this, consider any OW-PCA
PKE Π′ = (K′, E ′,D′) and let k be the bit length of the secret keys generated
by K′. Select a valid Π′ message x and k invalid Π′ ciphertexts y1, y2, . . . , yk.
Form the PKE Π = (K, E ,D) on the same message space as Π′ as follows.

7

• K = K′

• Epk(m; r) = E ′pk(m; r)

• Dsk(y) =

D′sk(y) if y 6∈ {y1, y2, . . . , yk}
x if y = yi and the i-th bit of sk is 1
⊥ otherwise

Π and Π′ differ only in the decryption of a few invalid ciphertexts and are
thus indistinguishable to a PCA attacker. Since Π′ is OW-PCA this implies
that Π is also OW-PCA.

Suppose REACT is applied to Π to produce ΠR. The following reaction
attack could then be applied to ΠR to recover the secret key. For 1 ≤ i ≤ k
form a ΠR ciphertext yRi with S = x and c1 replaced by yi. The yRi can then
be sent to the ΠR reaction oracle with the knowledge that yRi will decrypt
to ⊥ if and only if the ith bit of sk is zero. Thus ΠR is neither OW-RA nor
IND-CCA2.

Alternatively the security results for REACT can be shown to hold for
all PKEs when the PCA attack oracle is replaced by an oracle which given
y and a message m returns whether or not Dsk(y) = m (instead of returning
whether or not there exists an r such that Epk(m; r) = y).

3.1 REACT on IPKEs

In [15] REACT is applied to the NTRU cryptosystem and the claim is made
that the system produced is IND-CCA2 provided that the NTRU primitive
is OW-PCA. However, as theorem 1 shows, applying REACT to a OW-PCA
restricted IPKE may not produce a IND-CCA2 IPKE.

Theorem 1 Suppose there exists a OW-PCA restricted PKE. Let Π =
(K, E ,D) be a OW-PCA restricted IPKE. Let ΠR = (KR, ER,DR) be the
IPKE produced by applying REACT to Π. Then ΠR may not be IND-CCA2.
In fact, ΠR may not even be OW-DCA.

Proof:
Given a binary string z denote the set of indices for which zi = 1 by I1(z).
Let Π′ = (K′, E ′,D′) be any OW-PCA restricted PKE. LetM be the message
space of Π′ and let k be the bit size of the secret keys generated by K′. Form
the restricted IPKE Π = (K, E ,D) on M as follows:

• K = K′,

8

• E : To encrypt a message m ∈M first select a Π′ nonce r and calculate
y′ = E ′pk(m; r) then select a k-bit integer s and set Epk(m; r||s) = y′||s.

• D: If y has bit length less than k define Dsk(y) =⊥; otherwise set s to
be the last k bits of y, set y′ such that y = y′||s and define

Dsk(y = y′||s) =

{
m if D′sk(y′) = m and I1(s) ⊆ I1(sk)
⊥ otherwise

The valid Π ciphertexts are just the valid Π′ ciphertexts with k random
bits concatenated to the end. Thus it follows from the OW-PCA of Π′

that Π is also OW-PCA. Furthermore, since D′ returns ⊥ for all invalid Π′

ciphertexts, D will return ⊥ for all invalid Π ciphertexts. Therefore Π is a
OW-PCA restricted IPKE. Note that a valid Π ciphertext will not decrypt
correctly exactly when the random string concatenated to the end of the Π′

ciphertext has a 1 in a position where the secret key does not.
Let ΠR = (KR, ER,DR) be the IPKE formed by applying REACT to Π

using the two hash functions G and H. Let k1 and k2 be the number of bits
returned by G and H respectively.

A DCA attack which can be used on ΠR to recover the secret key is as
follows:

1. Select random k1-bit messages m1, . . .mk for ΠR, random messages
S1, . . . , Sk ∈M and random nonces R1, . . . , Rk for Π′.

2. For 1 ≤ i ≤ k calculate ERpk(mi;Si, Ri||ei) = (c1i, c2i, c3i), where ei is
the k-bit {0, 1} vector which is zero except for the i-th coordinate.

3. For 1 ≤ i ≤ k send (c1i, c2i, c3i) to the ΠR DC oracle and note that
ski = 1 if and only if (c1i, c2i, c3i) is decipherable.

4. Output the secret key sk.

Thus ΠR is not OW-DCA and since a decryption oracle can be used to
simulate a DC oracle, ΠR is also not IND-CCA2. 2

As REACT does provide added security for restricted PKEs and since a
DCA/PCA attack is equivalent to a PCA attacks for PKEs it would be an
interesting question to determine if REACT applied to a OW-DCA/PCA
restricted IPKE will produce a IND-CCA2 IPKE.

9

4 The NTRU Cryptosystem

The NTRU cryptosystem as presented in [9] depends on three integer pa-
rameters (N, p, q) and fours sets of integer polynomials of degree less than
N , denoted Lf , Lg, Lr and Lm. It is also possible to define the system
with p being a polynomial as in [4, 10], however for this paper we will only
consider the case where p is an integer. The parameters p and q are chosen
such that gcd(p, q) = 1 and q is considerably larger than p. All polynomials
are in the ring

R = Z[X]/(XN − 1)

Polynomials in R will occasionally be taken modulo q or p which simply
means reducing each coefficient modulo q or p. Lm is the message space and
provided p is odd is defined as

Lm =
{
m ∈ R : m has all coefficients in [−1

2
(p− 1),

1
2

(p− 1)]
}

Let

L(d1, d2) =
{
z ∈ R :

z has d1 coefficients equal to 1,
d2 equal to −1 and the rest 0

}
then

Lf = L(df , df − 1), Lg = L(dg, dg), Lr = L(dr, dr)

where df , dg and dr are positive integers whose values depend on N, q and
p (see table 1 below).

4.1 NTRU Key Generation

NTRU key pairs are generated by selecting two polynomials g ∈ Lg and
f ∈ Lf such that there exist polynomials f−1

p and f−1
q which satisfy

f · f−1
p ≡ 1 (mod p) and f · f−1

q ≡ 1 (mod q)

The secret key consists of the polynomials f and f−1
p , while the public key

is the polynomial h = f−1
q · g (mod q).

4.2 NTRU Encryption and Decryption

Suppose that a public key h and a message m ∈ Lm are given. The encryp-
tion algorithm, EN , then consists of selecting a random element r ∈ Lr and
calculating e = m+ prh (mod q) (i.e. ENh (m; r) = m+ prh (mod q)).

10

Given a ciphertext e = m+prh (mod q) the decryption algorithm DN
f,f−1

p

calculates

a ≡ ef (mod q)
≡ mf + prhf (mod q)
≡ mf + prg (mod q)

The NTRU parameters are selected in such a way that for the vast majority
of m and r all the coefficients of mf + prg will have absolute value at most
q/2. Thus for most m and r when the coefficients of a are selected to be the
least residue modulo q (i.e. in (−q/2, q/2]) a is equal to mf + prg. When
this is the case decryption can proceed as follows

af−1
p (mod p) ≡ (mf + prg)f−1

p (mod p)

≡ (mf)f−1
p (mod p)

≡ m (mod p)

By the definition of the message space if m ∈ Lm then m = m (mod p)
and the decryption algorithm will have recovered the message m. Thus if
ENh (m; r) = e then DN

f,f−1
p

(e) = m exactly when ef (mod q) reduced to the
range (−q/2, q/2] equals mf + prg. This implies that a valid ciphertext
e = m + prh (mod q) will be indecipherable if and only if at least one
coefficient of mf +prg has a value outside (−q/2, q/2] which provides a nice
classification of indecipherable messages.

4.3 Suggested Parameters

The following NTRU parameter values were suggested in [21]. It has been

N p q Lf Lg Lr
107 3 64 L(15, 14) L(12, 12) L(5, 5)
167 3 128 L(61, 60) L(20, 20) L(18, 18)
263 3 128 L(50, 49) L(24, 24) L(16, 16)
503 3 256 L(216, 215) L(72, 72) L(55, 55)

Table 1: Suggested Security Parameters

shown that the suggested N = 107 parameters can be broken by lattice
attacks in a few hours [13, 14]. Thus the N = 107 parameters are no longer
considered secure, however we include N = 107 in the interest of providing
run time comparisons versus the other security levels.

11

5 NTRU Padding Schemes

In [15] Nguyen and Pointcheval analyzed the security of the three NTRU
padding schemes proposed by NTRU Cryptosystems Inc. [10, 11] and sug-
gested three new NTRU padding schemes. During the analysis of the six
padding schemes there was an implicit assumption that NTRU is a PKE,
when NTRU is in fact only an IPKE. Thus the ‘proven’ security levels may
not actually hold under the stated assumptions.

In the analysis of the three original NTRU padding schemes the first was
shown to be semantically insecure (not IND-CPA) and the second and third
were claimed to be IND-CCA2 secure in the random oracle model under
‘rather unusual assumptions’ (see [15]). In this paper we will not directly
consider the first two original padding schemes since it is the third scheme
and a modified version of the third scheme which are being considered for
standardization [4].

Of the three new padding schemes proposed by Nguyen and Pointcheval,
one is based on OAEP [2] and the other two are based on REACT [16]. All
three of the new padding schemes were claimed to be IND-CCA2 in the
random oracle model based on the NTRU primitive being OW-CPA.

Let mlen and rlen be the length of the bit strings needed to describe
polynomials in Lm and Lr respectively. All of the NTRU padding schemes
work by forming strings of length mlen and rlen and mapping them to
polynomials m ∈ Lm and r ∈ Lr. The mappings used are normally quite
natural (see [4]) and will not be discussed here. We will occasionally refer
to binary strings of length mlen and rlen as begin in Lm and Lr with the
implicit understanding that we are actually dealing with the polynomials to
which the binary strings map.

5.1 NTRU-PAD3

There are two versions of the third original NTRU padding scheme which
are being proposed for standardization [4]. Both versions form an mlen bit
binary string S which depends on the message M and a random string R.
The two version differ only in how S is formed from M and R.

Once S is determined the message m ∈ Lm is formed as follows using
two hash functions F and G which map {0, 1}mlen/2 to itself. Let S = S||S,
where S and S are each mlen/2 bits in length. Calculate m1 = S ⊕ F (S)
and m2 = S⊕G(m1). The message m ∈ Lm is then formed using the string
m1||m2. The nonce r ∈ Lr is formed using the string H(M ||R), where H is
a third hash function.

12

For the first method of forming S each of M and R is split in half to
form M,M,R and R. The values of S and S are then set to M ||R and
M ||R respectively. Because of the way that R is split the semantic security
provided by this padding scheme is 2k2/2, where R is a k2-bit string [6].

The second method of forming S, which appears in [4], is designed to
provide a semantic security level of 2k2 . In this version of the padding scheme
S is formed as S = R||Mlen||M ||0, where Mlen is the length of M and the
string is padded with zeros to ensure that S has the desired length.

5.2 NTRU-OAEP

The padding scheme based on OAEP uses three hash functions

H : {0, 1}k1+k2=mlen → {0, 1}rlen,
F : {0, 1}k1 → {0, 1}k2 and
G : {0, 1}k2 → {0, 1}k1

Encoding of a message M ∈ {0, 1}k1 proceeds by first selecting a random
R ∈ {0, 1}k2 and then computing s = M ⊕ G(R), t = R ⊕ F (s) and y =
ENpk(s||t;H(M ||R)). To decode the ciphertext y the user first uses DNsk to
retrieve s||t from which they can compute R = t⊕F (s) and M = s⊕G(R).
The message is accepted if M and R are valid and when used correctly
generate the ciphertext y.

5.3 NTRU-REACT

The first REACT based padding scheme for NTRU uses two hash functions

G : {0, 1}mlen → {0, 1}k1 and H : {0, 1}∗ → {0, 1}k2

The encoding of a message M ∈ {0, 1}k1 is performed by selecting random
S ∈ {0, 1}mlen and R ∈ {0, 1}rlen and computing a = ENpk(S;R), b = M ⊕
G(S) and c = H(a, b,M, S). The ciphertext is then (a, b, c) from which the
user can compute S′ = DNsk(a), M ′ = b ⊕ G(S′) and c′ = H(a, b,M ′, S′).
The ciphertext is excepted if M ′ and S′ are valid messages and c′ = c.

During the security analysis of this padding scheme it was implicitly
assumed that the NTRU primitive was a OW-PCA restricted PKE, which
would allow the use of the REACT transformation. However NTRU is
not a restricted PKE (or even a restricted IPKE) and an attack similar to
the Jaulmes and Joux [12] attack on the plaintext aware NTRU padding
scheme in [19] can be applied against the NTRU primitive to recover the

13

secret key. The basic principal of the attack is to send invalid ciphertexts
of the form e = m + b (mod q), instead of m + prh (mod q), for carefully
selected polynomials b for which knowledge of whether or not Dsk(e) = m
reveals information about the secret key. Furthermore the same attack can
be applied to NTRU-REACT by replacing a = ENpk(S;R) with a = S + b
(mod q). The NTRU-REACT ciphertexts formed in this way will decrypt
to ⊥ exactly when DNsk(a) 6= S. Thus NTRU-REACT is in fact not OW-
RA. Note that this attack relies only on the fact that the NTRU primitive
does not return ⊥ for all invalid ciphertexts and not on the fact that there
exist indecipherable ciphertexts. The reason that such an invalid ciphertext
attack can be used against NTRU-REACT is that NTRU-REACT does not
recover the R ∈ Lr used by the NTRU primitive. Thus an NTRU-REACT
user does not check if the a contained in the ciphertext is in fact a valid
NTRU ciphertext.

5.4 NTRU-REACT2

The second REACT based padding scheme is a modified version of the
NTRU-REACT scheme. NTRU-REACT2, which was considered an im-
proved version of NTRU-REACT, requires a symmetric encryption scheme
(E,D) with k1 bit keys and k2 bit messages and uses two hash functions

G : {0, 1}mlen → {0, 1}k1 and H : {0, 1}∗ → {0, 1}rlen

To encode a message M ∈ {0, 1}k2 one selects a random S ∈ {0, 1}mlen and
computes K = G(S), b = EK(M), R = H(S, b) and a = ENpk(S;R). The
ciphertext is a||b and can be decoded using the secret key by determining
S′ = DNsk(a), K ′ = G(S′) and M ′ = DK′(b). Again the ciphertext a||b is
only accepted if it can be corrected generated from S′ and M ′.

6 Decipherable Ciphertext Attacks on NTRU

Let ΠN = (KN , EN ,DN) be the NTRU primitive. Suppose that an attacker
is given an NTRU public key h and has access to a DC oracle for an instance
of the NTRU primitive with public key h and secret key (f, f−1

p). In sections
6.1 and 6.2, we present two DCA attacks against the NTRU primitive which
can recover either the user’s secret key or an equivalent secret key. The
first attack assumes the attacker has complete freedom over the choices of
m ∈ Lm and r ∈ Lr, while the second attack assumes that the attacker
may select m ∈ Lm but that the r ∈ Lr must be selected at random. Both

14

attacks begin by searching for a pair (m, r) which lead to an indecipherable
ciphertext. The first attack then proceeds by fixing r and vary m to find
f . The second attack fixes m and varies r to find g from which f can be
found. In sections 6.3, 6.4, 6.5, and 6.6, we extend the attacks to the padding
schemes described in section 5.

6.1 NTRU Primitive Attack 1: Fixed r

This attack consists of three main stages. In the first stage the attacker
must find a pair (m, r) ∈ Lm×Lr for which e = ENh (m; r) is indecipherable.
The second stage of the attack uses the (m, r) pair found in the first stage
to find a pair (m̄, r̄) ∈ Lm×Lr which generate a ciphertext which is in some
sense just indecipherable. The final stage of the attack uses (m̄, r̄) to recover
the secret key. Note that for all parameters suggested in table 1 the value of
p is always 3 and q is always a power of 2. We shall assume these properties
of p and q in the presentation of our attack. We emphases, however, that
the attack will also work when q is not a power of two and can be easily
modified to work when the integer p is not 3.

Stage 1:
As mentioned above, the goal of stage 1 is to determine a pair (m, r) ∈ Lm×
Lr which generate an indecipherable ciphertext. The most straight forward
approach is to simply select random m and r and use the DC oracle to
determine if the ciphertext they generate is indecipherable. See section 6.1.1
for some experimental results on the expected number of oracle calls which
would be required to find (m, r) randomly for the parameters suggested in
table 1.

Given an m and r the attacker can determine exactly the set, Im,r, of
(f, g) pairs for which e = ENh (m; r) will be indecipherable. Thus sending
e = ENh (m; r) to the DC oracle is equivalent to checking whether or not
(f, g) is in Im,r. So instead of simply selecting m and r at random the at-
tacker could use a systematic approach to try to maximize the size of

⋃
Im,r

after each DC oracle call. Such a systematic approach would provide a more
efficient method of finding an indecipherable (m, r) pair than a simple ran-
dom search.

Stage 2:
Suppose that stage 1 of the attack has been completed and found (m, r) ∈
Lm×Lr for which e = ENh (m; r) is indecipherable. Then at least one coeffi-
cient of mf + rpg is outside the interval (−q/2, q/2]. The attacker now pro-

15

ceeds to either determine that ENh (0; r) is indecipherable or finds a message
m̄ ∈ Lm for which ENh (m̄; r) is indecipherable, the coefficients of m̄f + rpg
are in [−q/2, q/2 + 1] and such that if any nonzero bit of m̄ was set to zero
then ENh (m̄; r) would be decipherable.

To find m̄ the attacker starts by setting m̄ = m. The attacker then
selects a nonzero coefficient of m̄ and uses the DC oracle to determine if
ENh (m̄; r) would be decipherable if the selected nonzero coefficient of m̄ was
set to zero. If the ciphertext would still be indecipherable then the selected
coefficient is set to zero. The attacker repeats this process until either m̄ = 0
or setting any of the remaining nonzero coefficients of m̄ to 0 would cause
ENh (m̄; r) to be decipherable.

For p = 3 the j-th coefficient of z̄ = m̄f + rpg is

z̄j =
N−1∑
i=0

m̄ifj−i + 3
N−1∑
i=0

rigj−i (1)

where the subscript k indicates the coefficient of xk and all subscripts are
taken modulo N . Since all the coefficients of m̄ and f are in {−1, 0, 1}
setting one coefficient of m̄ to zero will alter each coefficient of z by either
−1, 0 or 1. Thus if the above process terminates with m̄ 6= 0 then (m̄, r)
must satisfy the required conditions. If m̄ 6= 0 then stage 2 is completed
and outputs m̄ and r̄ = r.

Indecipherable (m, r) which lead to indecipherable (0, r) are extremely
rare compared to those for which (0, r) is decipherable. We would thus not
expect to need to handle the case of an indecipherable (0, r) in stage 2 very
often. However, if an indecipherable (0, r) is found then there are two ob-
vious choices as to how to proceed. The first would be simply return to
stage 1. The second would be to apply small modifications to r until (0, r)
is decipherable and then try random m until (m, r) is indecipherable. Here
rpg would still have at least one coefficient near the decipherable boundary
meaning only a few oracles calls should be required before finding the de-
sired m. Our implementation of the attack never found any indecipherable
(0, r) and thus never had to handle such an occurrence.

Stage 3:
Suppose that stage 2 has now completed and found (m̄, r̄) such that ENh (m̄; r̄)
is indecipherable, the coefficients of z = m̄f + r̄pg are in [−q/2, q/2 + 1] and
such that if any nonzero bit of m̄ is set to zero then ENh (m̄; r̄) would be
decipherable. Since ENh (m̄; r̄) is indecipherable z has at least one coefficient
in {−q/2, q/2 + 1}. Suppose for the moment that exactly one coefficient, j,

16

of z is in {−q/2, q/2 + 1} and the rest are in [−q/2 + 2, q/2− 1]. Thus

zj =
N−1∑
i=0

m̄ifj−i + 3
N−1∑
i=0

r̄igj−i ∈ {−q/2, q/2 + 1}

Further assume that zj = q/2 + 1. Let m̄i−, m̄i0 and m̄i+ be m̄ with its i-th
coefficient, m̄i, set to −1, 0 and 1 respectively. The value of fj−i (for the
unknown j) can now be determined as follows:

1. If m̄i = 1: Since EN (m̄i0; r̄) is decipherable fj−i = 1.

2. If m̄i = −1: Since EN (m̄i0; r̄) is decipherable fj−i = −1.

3. If m̄i = 0: If EN (m̄i−; r̄) is decipherable then fj−i = 1, if EN (m̄i+, r̄)
is decipherable then fj−i = −1, otherwise fj−i = 0.

Recall that if h is the NTRU public key generated from f and g then h
will also be the public key generated by xif and xig for any i and that xif
can be used equally well as a secret key. Thus wlog we may assume that
j = 0 and we will have determined a valid secret key f from which we can
determine f−1

p .
For the above procedure we assumed that zj = q/2 + 1. If zj = −q/2

then the f found by the above procedure will be −1 times an actual valid
secret key f . Thus by proceeding as if zj = q/2+1 and then checking which
of f and −f has the correct number of ones we can always find a valid secret
key pair.

There are two other assumptions made in the above procedure for finding
f which need to be addressed. One of these assumptions was that exactly
one of the coefficients of z was in {−q/2, q/2+1} and the other was that the
rest of the coefficients of z were in [−q/2+2, q/2−1]. The only problem which
would be caused if either of these assumptions failed would be that when
m̄i = 0 the ciphertexts EN (m̄−i; r̄) and EN (m̄+i, r̄) could be indecipherable
not because zj is still out of range, but because some other coefficient zk is
out of range. This would result in incorrectly assigning fj−i = 0. The odds
of these assumptions not holding is quite small. Furthermore, since we know
the number of 1’s and −1’s in f if only a few bits of f are incorrectly assigned
zero then f could be recovered by exhaustively trying all possibilities. If such
errors ever prevented f from being recovered the attacker could either apply
small modifications to m̄ and r̄ and return to stage 2 or simply return to
stage 1.

In summary, stage 3 is guaranteed to recover a secret key if z = m̄f +
pr̄g has exactly one coefficient in {−q/2, q/2 + 1} and the rest in [−q/2 +

17

2, q/2 − 1]. When z does not meet these requirements some information
about f can be determined and there are techniques which may allow f to
still be found; however, the attacker may be required to restart the attack.
Heuristically one would expect a random indecipherable (m, r) to lead to
an indecipherable pair (m̄, r̄) for which z has the desired properties and
experimentally this is exactly what happened for every indecipherable (m, r)
found.

6.1.1 Implementation Results for NTRU Attack 1

The majority of the work and DC oracle calls required for this attack are
performed in stage 1 while finding the first indecipherable (m, r) pair. After
the first indecipherable ciphertext is found the attack requires only around
3N additional calls to the DC oracle, many of which will return indecipher-
able. Table 2 shows the average number of DC oracle calls and the number
of oracle calls returning ‘indecipherable’ when the attack was applied to one
hundred instances of NTRU for each of the suggested parameters in table 1.
The table also includes the ranges for the number of calls to the DC oracle
which were required to find the first indecipherable ciphertext and complete
stage 1. For each security level the attack was successful against all one
hundred instances of NTRU.

N DC Oracle Calls Indecipherable Calls
Average Std Dev Stage 1 Range Average Std Dev

107 26241.32 26417.98 106− 163844 222.35 5.70
167 20104.72 21213.11 62− 116576 218.5 10.60
263 822979.1 778444.9 10632− 4357309 505.6 11.67
503 27259.39 28640.06 173− 165589 602.01 19.79

Table 2: NTRU Attack 1

Recall that there exists (m, r) pairs, which would terminate stage 1, but
not lead to a successful completion of stages 2 and 3. As mentioned in the
last section such (m, r) are unlikely and no such (m, r) pair was found during
any runnings of the attack.

6.2 NTRU Primitive Attack 2: Fixed m

The second attack on the NTRU primitive assumes that the attacker has
access to a DC oracle and that each time an (m, r) pair is generated for
encryption the r must be selected at random from Lr. The reason for re-

18

quiring the r’s to be selected at random will be shown later when the attack
is modified to be applied to various padding schemes. The first stage of this
attack is the same as for the first NTRU primitive attack and consists of
searching for a pair (m, r) ∈ Lm × Lr which generates an indecipherable
ciphertext. The second stage then fixes m and randomly searches for r̄ for
which (m, r̄) is indecipherable. The attack then attempts to determine g
and f by analyzing the distribution of 1’s and −1’s in the r̄’s.

Stage 1:
Search for a pair (m, r) ∈ Lm × Lr which generates an indecipherable ci-
phertext. See stage 1 of NTRU attack 1 in section 6.1 for details.

Stage 2:
Assume that an indecipherable pair (m, r) was found in stage 1 of the attack
and let y = mf . Suppose that y has one coefficient, j, which is closer to the
boundary of decipherability (q/2 for positive coefficients and −q/2 + 1 for
negative coefficients) than any other coefficient. Since cyclicly shifted secret
keys (xif, xig) work equally well for decryption we may assume wlog that
j = 0.

Let r̄ ∈ Lr and consider the calculation of (r̄g)0 =
∑N−1

i=0 r̄igN−i. We
shall say that r̄ and g have a positive collision whenever r̄i = gN−i 6= 0 and
a negative collision whenever r̄i = −gN−i 6= 0. The net collision between r̄
and g will be taken to be the number of positive collisions minus the number
of negative collisions. Thus (r̄g)0 equals the net collisions between r̄ and g.

Select random r̄ ∈ Lr and use the DC oracle to determine if (m, r̄) is
decipherable. Note that y0 is closer to the boundary of decipherability than
the other coefficients of y and the expected contribution of pr̄g to each coeffi-
cient of z̄ = y+pr̄g is equal. Thus if (m, r̄) is indecipherable it is more likely
to be indecipherable in the 0-th coordinate than any other. Furthermore,
when this is the case z0 = y0 + p(rg)0 is outside the decipherable range and
if y0 is positive (resp. negative) this implies that the net collision between
r̄ and g is almost certainly positive (resp. negative).

For the moment suppose that y0 is positive and that many r̄ for which
(m, r̄) is indecipherable have been found. Since most of the r̄’s will have
a net positive collision with g by analyze the distribution of 1’s and −1’s
in the r̄’s we would expect to be able to recover the nonzero coefficients
of g. In practise we see three distinct frequencies for when r̄i = 1: a high
frequency when gN−i = 1, a random frequency when gN−i = 0 and low
frequency when gN−i = −1. Similarly we see three distinct frequencies for
when r̄i = −1. Thus when enough r̄ are found the attacker can determine

19

all the coefficients of g from the frequencies of the nonzero coefficients in the
r̄’s. Since fh ≡ g (mod q) once g has been determined f can be found by
solving the linear system Hf ′ = g′ modulo q, where H is the N ×N matrix
whose rows are the cyclic shifts of the coefficients of h and f ′ and g′ are the
N × 1 coefficient vectors of f and g.

To reduce the number of indecipherable (m, r̄) pairs required to deter-
mine g the above technique can be combined with the lattice techniques
for finding NTRU secret keys. This can be accomplished by using the fre-
quencies of the 1’s and −1’s in the r̄’s to guess some of the bits of g. The
number of bits of g which can be guessed correctly will depend on the num-
ber of (m, r̄) found and the rate at which they were found. Suppose that
x bits of g have been determined. These bits yield x equations of the form
f0hj +f1hj−1 + ...+fN−1hj−N+1 ≡ gj (mod q) which can be used to reduce
the dimension of the NTRU lattice reduction problem from a 2N × 2N lat-
tice to a 2(N − x)× 2(N − x) lattice (see [20, 14, 5] for details). Note that
the lattice attack will determine both g and f .

If y = mf has at least one large coefficient then the rate at which
indecipherable (m, r̄) are found will be noticeably larger than for random
m and random r. Thus by analyzing the rate at which r̄ are found we can
determine if y has no large coefficients at which point the attack can simply
return to stage 1. If y = mf has two or more large coefficients which are
equally close to the decipherable boundary then the frequencies of 1’s and
−1’s will not have the correct form and the attack will need to return to stage
1. Even when the attack is forced to return to stage one some information
about g may still be able to be determined. As shown below for randomly
determined indecipherable (m, r) there is a good chance that y = mf has
the desired properties. Note that if y0 is negative then the above techniques
will find −g and −f , but this can easily be corrected since the value of f(1)
is known to be one.

6.2.1 Implementation Results for NTRU Attack 2

The second attack on the NTRU primitive was run against one hundred
instances of NTRU for each of the sets of suggested parameters. The attack
tested to see if a 100 × 100 dimensional lattice could be used to find the
secret key after every 25 r̄ were found (a practical bound on the dimension of
lattices which can be reduced is closer to 200×200). The attack successfully
recovered the secret keys for every instance of every security level after only
a few iterations of stages one and two.

Tables 3 and 4 contain some analysis of the implementation of the attack.

20

Table 3 shows the number of times stage 1 needed to be executed before the
attack was successful, along with the maximum number of DC oracles calls
which could be done in stage 2 before an attempt was deemed unsuccessful.
Note that the number of oracle calls to complete stage 1 was the same as for
attack 1 and that the number of iterations required will vary with the amount
of oracle calls allowed in stage 2. Table 4 contains details on the successful
stage 2’s including information on the number of DC oracle calls required,
the number of oracle calls returning ’indecipherable’, the rate at which the
indecipherable (m, r̄) were found and the difference in the distances of the
two coordinates of mf which were closest to the decipherable boundary.

N Iterations for Success Max Stage 2
1 2 3 4 5 6 7 8 Rate DC Calls

107 65 26 7 2 0 0 0 0 68.5% 500000
167 76 15 6 2 1 0 0 0 73.0% 500000
263 66 18 12 2 1 1 0 0 63.7% 3000000
503 47 24 18 7 2 1 1 0 50.0% 3000000

Table 3: NTRU Attack 2 Iterations

N Total DC Calls Indec DC Calls Indec mf Gap
Average Std Dev (SD) Avg SD Rate Avg SD

107 134809.17 126114.33 34.6 15.69 3896.2 4.6 2.25
167 110519.4 135748.33 62.45 21.55 1769.7 11.02 4.83
263 575803.99 533204.22 69.75 21.52 8255.3 13.18 4.75
503 565485.64 604270.83 323 133.18 1750.7 20.92 8.73

Table 4: Successful Stage 2 Details

6.3 An attack on NTRU-REACT

We will now show how the two DCA attacks against the NTRU primitive
can be used as the basis for attacks against the NTRU padding schemes.
The attacks rely on the fact that a validly created ciphertext for any of
the padding schemes will decrypt to the original message exactly when the
underlying NTRU primitive ciphertext is decipherable (otherwise it will de-
crypt to ⊥). Thus a DC oracle for the underlying instance of the NTRU
primitive can be simulated by using the oracle from either a DCA or RA
attack against the padding scheme.

21

For NTRU-REACT the encoder has complete control over the values
S ∈ Lm and R ∈ Lr and thus the first DCA attack against the NTRU
primitive can be easily modified to apply to NTRU-REACT. The running
time of this attack will be the same as the running time for the first DCA
attack against the primitive.

6.4 An attack on NTRU-REACT2

During an encryption using NTRU-REACT2 the encoder has complete con-
trol over the elements S ∈ Lm but the R ∈ Lr are determined by using S,
M , the hash functions and the symmetric encryption scheme. By keeping
S fixed and varying M the attacker is in exactly the scenario of the second
attack on the NTRU primitive. Thus the second attack on the NTRU prim-
itive can be applied to NTRU-REACT2 with the same running time and
success rate as it had against the NTRU primitive.

6.5 An attack on NTRU-OAEP

When encrypting using the NTRU-OAEP padding scheme the message used
in the NTRU primitive is s||t or more accurately some element of Lm which
is derived from s||t. While neither attack on the NTRU primitive can be
applied directly to NTRU-OAEP a modified version of the second attack can
be used. The modification is required because in stage 2 of the attack if the
message s||t is held constant then NTRU-OAEP will always use the same
nonce from Lr. To overcome this problem we make minor changes to the
message used in stage 2 with the hope that the majority of the indecipherable
ciphertexts found will still be indecipherable because of the same coordinate.

The minor changes to the s||t found in stage 1 are done by keeping s
constant and perturbing t. SupposeR andM lead to (s||t,H(M ||R)) ∈ Lm×
Lr. The attacker forms many Ri = R⊕w which are R with minor changes.
Then for each Ri calculates M = s ⊕ G(Ri) and ti = Ri ⊕ F (s) = t ⊕ w.
Note that because of the hash functions the minor changes to R will cause
the elements of Lr to change randomly.

The success of this attack will depend on the size of t and how s||t
is mapped to m ∈ Lm. More specifically it will depend on how many
coefficients of m change when minor changes are applied to t. For our
implementation we have assumed that the alterations to t permit the top 30
coefficients of m to be altered as desired.

The NTRU-OAEP attack was run against one hundred instances of each
of the sets of suggested NTRU parameters. Tables 5 and 6 contain some

22

analysis of the implementation of the attack. The rate at which the lattice
reductions were attempted and the dimension of the lattices used were the
same as in the implementation of NTRU attack 2 (See section 6.2.1). In
order to provide a good comparison of the success rate and work required
for the NTRU-OAEP attack compared to NTRU attack 2 the secret keys
and indecipherable ciphertexts used in the implementation of NTRU attack
2 were reused for the modified attack. Thus the NTRU-OAEP attack only
generated new indecipherable ciphertexts when the ones used in the imple-
mentation of NTRU attack 2 no longer revealed a secret key. One can see
from the tables that the NTRU-OAEP attack is only slightly less efficient
than the NTRU attack 2.

N Iterations for Success Max Stage 2
1 2 3 4 5 6 7 8 Rate DC Calls

107 61 27 8 2 2 0 0 0 63.7% 500000
167 73 19 5 2 1 0 0 0 71.9% 500000
263 63 22 12 1 1 1 0 0 63.3% 3000000
503 44 27 18 5 3 2 1 0 48.5% 3000000

Table 5: NTRU-OAEP Attack Iterations

N Total DC Calls Indec DC Calls Indec mf Gap
Avg SD Avg SD Rate Avg SD

107 162972.1 156468.99 35.73 12.69 4561.2 4.62 2.40
167 133308.28 155890.09 66.67 30.99 1999.5 11.33 4.82
263 818353.84 853847.84 70.88 21.82 11545.6 13.1 4.79
503 591276.36 648049.95 319.08 120.18 1853.1 21.65 8.27

Table 6: Successful Stage 2 Details

It is worth noting that the technique used to modified NTRU attack 2
to work against NTRU-OAEP can also be used to produce attacks against
the first and second original NTRU padding schemes. The running times of
these attacks would be very similar to the running time of the NTRU-OAEP
attack.

6.6 An attack on NTRU-PAD3

Like NTRU-OAEP neither of the attacks on the NTRU primitive can be
applied directly to NTRU-PAD3, but once again a modified version of NTRU

23

attack 2 can be used. Recall that when encrypting using NTRU-PAD3 the
message used in the NTRU primitive is m1||m2, where m1 = S ⊕ F (S) and
m2 = S ⊕ G(m1). Suppose that in stage 1 of the attack it was found that
(m1||m2,H(M ||R)) generate an indecipherable message. Then instead of
holding m1||m2 constant in stage 2 of the attack, m1 will be held constant
and small modifications will be applied to m2. Because of the way the hash
function H is used to generate the nonce r used in the NTRU primitive the
small changes in m2 will cause the r used to change randomly.

When S = M ||R and S = M ||R it is easy to hold the value of m1

constant while applying small changes to m2. Suppose we wish to modify
m2 to be m2 ⊕w while holding m1 constant. Simply select S′ = S ⊕w and
set S′ = m1 ⊕ F (S′) then m′1 = S′ ⊕ F (S′) = m1 and

m′2 = S′ ⊕G(m′1)
= w ⊕ S ⊕G(m1)
= w ⊕m2

When S = b||Mlen||M ||0 the task of keeping m1 constant while applying
small changes to m2 is slightly harder. The difficulty arrives from the fact
that Mlen will be part of S but its value is determined by the portion of M
in S. However, Mlen is a short string (in [4] it is always 8 bits). Thus m1

can be held constant while applying small modifications to m2 by repeatedly
attempting the above procedure until the required Mlen corresponds with
the desired value for S′.

The attack on NTRU-PAD3 was run against one hundred instances of
each of the sets of suggested NTRU parameters. The implementation as-
sumed that the m1||m2 is mapped to m ∈ Lm in such a way that m2

completely determines the coefficients of x(N+1)/2, . . . , xN−1. Tables 7 and
8 contain some analysis of the implementation of the attack. Like the im-
plementation of the NTRU-OAEP attack the NTRU-PAD3 attack was run
in the same form as NTRU attack 2 and with the same secret keys and in-
decipherable messages. One can see from the tables that the NTRU-PAD3
attack has a success rate and running time approximately equal to that of
the NTRU-OAEP attack.

7 Conclusions and Future Work

The current provable security results for PKEs assume that the encryp-
tion schemes in question provide perfect decryption. As such the results
can’t be assumed to hold for the more general class of IPKEs, which do

24

N Iterations for Success Max Stage 2
1 2 3 4 5 6 7 8 Rate DC Calls

107 65 25 6 1 2 0 1 0 64.9% 500000
167 73 17 7 2 1 0 0 0 70.9% 500000
263 67 22 9 0 1 0 0 0 67.6% 3000000
503 43 27 18 5 3 2 2 0 47.2% 3000000

Table 7: NTRU-PAD3 Attack Iterations

N Total DC Calls Indec DC Calls Indec mf Gap
Avg SD Avg SD Rate Avg SD

107 153274.2 159503.04 35.34 12.36 4337.1 4.7 2.38
167 113046.38 131427.51 66.93 24.58 1689.0 11.37 4.72
263 825059.36 850154.51 71.14 25.99 11597.7 12.89 4.72
503 509594.18 554497.27 310.01 99.90 1643.8 22.25 7.92

Table 8: Successful Stage 2 Details

not necessarily provide perfect decryption. As the REACT transformation
demonstrates, some security proofs which hold for PKEs do not hold for
all IPKEs. The DCA attacks against the NTRU primitive and its vari-
ous suggested paddings schemes show that attacks based on indecipherable
ciphertexts can be quite dangerous. Thus the security of cryptosystems
without perfect decryption against DCA attacks must be considered before
the system can be considered secure.

The DCA attacks presented in this paper show that finding even a single
indecipherable NTRU ciphertext can lead to the recovery of the user’s secret
key. The attacks can also be launched against the various suggested NTRU
padding schemes. This demonstates that it is very important to consider the
security of NTRU padding schemes against DCA attacks. Perhaps the most
effective way of protecting against DCA attacks is to select NTRU parame-
ters in such a way that the problem of finding even a single indecipherable
ciphertext is intractable.

In [10] many suggestions for the optimization of NTRU were suggested
including changing p from 3 to X+2. The proposed NTRU standard [4] also
contains a modification which causes the amount of work performed by the
decryption algorithm to decrypt ciphertexts to be dependent on the secret
key. The idea of this modification is to decrease the frequency of indecipher-
able ciphertexts by allowing the decryption algorithm to do additional work
in an attempt to decipher what would otherwise have been indecipherable ci-

25

phertexts. The reduction of the frequency of indecipherable ciphertexts will
have a direct affect on the success probability of DCA attacks. However,
the variation in the amount of work performed by the decryption algorithm
allows the possible use of timing and power analysis attacks to determine
which ciphertexts require additional processing and such ciphertexts could
be used in place of the indecipherable ciphertexts used in the p = 3 attacks.
Attacks based on such ciphertexts have had some success against the pa-
rameters proposed in [4]. A follow up paper [17] will include an analysis of
the security of the proposed modified versions of NTRU against DCA based
attacks.

8 Acknowledgments

The author would like to thank Dan Brown for his many helpful discussions.

References

[1] Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P. Re-
lations Among Notions of Security for Public-Key Schemes. In Advances
in Cryptology — CRYPTO ’98 (1998), vol. 1462 of LNCS, Springer-
Verlag, pp. 26–46.

[2] Bellare, M., and Rogaway, P. Optimal Asymmetric Encryption.
In Advances in Cryptology — EUROCRYPT ’94 (1995), vol. 950 of
LNCS, Springer-Verlag, pp. 92–111.

[3] Bellare, M., and Sahai, A. Non-malleable Encryption: Equivalence
between Two Notions, and an Indistinguishability-Based Characteriza-
tion. In Advances in Cryptology — CRYPTO ’99 (1999), vol. 1666 of
LNCS, Springer-Verlag, pp. 519–536.

[4] Consortium for Efficient Embedded Security. EESS #1: Im-
plementation Aspects of NTRUEncrypt and NTRUSign. Version 1,
available at www.ceesstandards.org, Nov 2002.

[5] Coppersmith, D., and Shamir, A. Lattice Attacks on NTRU. In Ad-
vances in Cryptology — EUROCRYPT ’97 (1997), vol. 1233 of LNCS,
Springer-Verlag, pp. 52–61.

[6] Dai, W. P1363: NTRU attack with 2−40 advantage. Available at
http://www.weidai.com/ntru-attack.tex, 2002.

26

[7] Fujisaki, E., and Okamoto, T. How to Enhance the Security of
Public-Key Encryption at Minimum Cost. In PKC ’99 (1999), vol. 1560
of LNCS, Springer-Verlag, pp. 53–68.

[8] Goldwasser, S., and Micali, S. Probablilistic Encryption. J. of
Computer and System Sciences, 28 (1984), 270–299.

[9] Hoffstein, J., Pipher, J., and Silverman, J. NTRU: A Ring-
Based Public Key Cryptosystem . In Proc of ANTS 3 (1998), vol. 1423
of LNCS, Springer-Verlag, pp. 267–288.

[10] Hoffstein, J., and Silverman, J. Optimizations for NTRU. In
Public-Key Cryptography and Computational Number Theory. Warsaw,
Sept. 11-15, 2000.

[11] Hoffstein, J., and Silverman, J. Protecting NTRU Against Chosen
Ciphertext Attacks. Tech. Rep. 16, NTRU Cryptosystems, June 2000.
version 1, available at www.ntru.com.

[12] Jaulmes, E., and Joux, A. A Chosen Ciphertext Attack on NTRU.
In Advances in Cryptology — CRYPTO ’00 (2000), vol. 1880 of LNCS,
Springer-Verlag, pp. 20–35.

[13] May, A. Cryptanalysis of NTRU-107. preprint, April 1999, (unpub-
lished).

[14] May, A., and Silverman, J. Dimension Reduction Methods for
Convolution Modular Lattices. In Proc. of CaCL 2001 (2001), vol. 2146
of LNCS, Springer-Verlag, pp. 110–125.

[15] Nguyen, P., and Pointcheval, D. Analysis and improvements of
NTRU encryption paddings. In Advances in Cryptology — CRYPTO
2002 (2002), vol. 2442 of LNCS, Springer-Verlag, pp. 210–225.

[16] Okamoto, T., and Pointcheval, D. REACT: Rapid Enhanced-
security Asymmetric Cryptosystem Transform. In Proc. of CT-RSA
’01 (2001), vol. 2020 of LNCS, Springer-Verlag, pp. 159–175.

[17] Proos, J. Attacks on the EESS Standard for the NTRU Encryption
Scheme. In preparation.

[18] Shoup, V. Number Theory C++ Library (NTL). Available at
www.shoup.net/ntl.

27

[19] Silverman, J. Plaintext Awareness and the NTRU PKCS. Tech.
Rep. 7, NTRU Cryptosystems, July 1998. version 1,(version 2 available
at www.ntru.com).

[20] Silverman, J. Dimension-Reduced Lattices, Zero-Forced Lattices and
the NTRU Public Key Cryptosystem. Tech. Rep. 13, NTRU Cryptosys-
tems, March 1999. version 1, available at www.ntru.com.

[21] Silverman, J. Estimated breaking times for NTRU lattices. Tech.
Rep. 12, NTRU Cryptosystems, 1999. Available at www.ntru.com.

28

