
Key recovery attacks on NTRU without
ciphertext validation routine

Daewan Han, Jin Hong, Jae Woo Han, and Daesung Kwon

National Security Research Institute,
161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, KOREA

dwh,jinhong,jwhan,ds kwon@etri.re.kr

Abstract. NTRU is an efficient public-key cryptosystem proposed by
Hoffstein, Pipher, and Silverman. Assuming access to a decryption oracle,
we show ways to recover the private key of NTRU systems that do not
include a ciphertext validating procedure. The strongest of our methods
will employ just a single call to the oracle, and in all cases, the number
of calls needed will be small enough to be realistic.

1 Introduction

NTRU cryptosystem([2]), introduced during the rump session of Crypto’96, is
one of the most efficient public key cryptosystem now available. Because the
encryption/decryption process of this system involves polynomials with small
coefficients, it is quite fast compared to systems like RSA, ElGamal, or ECC.
It also require only a small amount of memory and hence is suitable for con-
strained environments like smart cards, PDAs, and mobile phones. The NTRU
cryptosystem is currently being considered by standards bodies([1, 6]).
In Crypto 2000, E. Jaulmes and A. Joux ([7]) showed that a chosen ciphertext

attack on NTRU could succeed probabilistically. Reaction attacks([4]) were also
presented on NTRU. To counter-measure these attacks, various padding schemes
were proposed([3, 5]). Later, P. Nguyen and D. Pointcheval([8]) showed that there
were weakness in the padding schemes proposed by the NTRU company and
suggested a method which is claimed to be IND-CCA.

In this paper, we show how to obtain the private key of the NTRU cryptosys-
tem, assuming access to an Unconditionally Decrypting Oracle. We define a UDO

to be an oracle that returns a decryption of any given ciphertext without check-
ing its validity as a ciphertext. Access to a UDO could be realistic if, for some
reason, the ciphertext validating procedure was incorrectly implemented. For ex-
ample, when implementing NTRU-REACT ([8]), unlike other padding schemes,
it is easy to leave out the ciphertext validation procedure. This situation could
also be possible if the implementer just left it out with ill intentions.
Under the UDO assumption, we show ways to deterministically recover the

private key of NTRU cryptosystem. The first of our methods applies to the
original NTRU system as given in [2]. Let N be the NTRU parameter defining
the working ring size. Using O(N 2) calls to the UDO, we can always recover the



private key. We can also recover the private key, with probability of failure less
than 1/290, using less than 2N calls to the UDO.

We show three more methods that apply to optimized NTRU ([1, 3, 6]). To
the best of our knowledge, the present work is the first in acknowledging attacks
specific to the optimized version of NTRU. All three of the methods will recover
the private key completely. Of the three, the last one we shall present(Section 6)
is the strongest, using just a single UDO call. Thus, the NTRU cryptosystem
should never be used without a proper padding scheme.
If the use of a UDO were possible on some (flawed) implementation of RSA-

OAEP or the Cramer-Shoup scheme, we would no longer be sure of their IND-

CCA2 property. But contrary to the NTRU situation presented by this work,
nothing is known in the direction of key recovery attacks on the RSA or ElGamal
primitive. This suggests that we should still be very careful in the use of NTRU
cryptosystem.

2 Overview of the NTRU cryptosystem

The NTRU cryptosystem has gone through some changes since its first appear-
ance. To set the grounds of our discussion, we quickly present various parameters
and encryption/decryption processes for three versions of it. The readers may
refer to [2] and [1, 3] for more information. The reference [10] is also helpful in
understanding why the decryption process works.
Let N be an odd prime. We will be working over the ring R = Z[x]/(xN −1).

The ring R is identified with the set of integer polynomials of degree less than
N . Multiplication in R is denoted by ∗.
The sets Lf , Lg, Lr, and Lm, to be fixed below for each version, are subsets

of R. Two parameters p and q are chosen so that they are relatively prime and
the private key f ∈ Lf is taken so that it is invertible modulo q. The inverse will
be denoted by fq, and using a random polynomial g ∈ Lg the public key is set
to

h ≡ p ∗ fq ∗ g (mod q). (1)

To encrypt a message m ∈ Lm, we choose a random r ∈ Lr and compute

e = r ∗ h+m. (2)

The decryption process is more involved and explained below for each version
of NTRU. Let us fix one notation before doing this. Given m,n ∈ Z and t ∈ R,
define Modt

n(m) to be the unique integer in the interval (t−
n
2 , t+ n

2 ] congruent to

m modulo n. For a polynomial f(x) ∈ R, we may similarly define Modt
n(f(x)),

by applying it to the coefficients.

2.1 Original version

In the original version [2], the parameter p is fixed to be 3. When choosing a
private key f , it is also required to have a modulo p = 3 inverse fp. We define



L(d+, d−) to be the set of polynomials in R with d+ coefficients equal to 1, d−
coefficients equal to −1, and all other coefficients equal to 0. Table 1 lists the
various parameters as originally given in [2]. The message space Lm is set to all

N q Lf Lg Lr

Case A 107 64 L(15, 14) L(12, 12) L(5, 5)
Case B 167 128 L(61, 60) L(20, 20) L(18, 18)
Case C 503 256 L(216, 215) L(72, 72) L(55, 55)

Table 1. Parameters for original NTRU (p = 3)

polynomials in R with coefficients in {−1, 0, 1}.
To decrypt a ciphertext e, we go through the following process.

1. a← Mod0
q(f ∗ e).

2. Return Mod0
p(fp ∗ a).

We say that a wrapping has occurred during the decryption process if

a 6= f ∗ e,

i.e., the Mod0
q operation has changed at least one coefficient. Notice that even

though e is defined only up to modulo q, when we use e as an input to the
decryption machine, an explicit representative of e will be used. Hence this
equation makes sense as an equation in R.

2.2 Binary-F version

Set p = x+ 2. The private key space Lf is taken to be polynomials of the form

f = 1 + p ∗ F, (3)

with F a binary polynomial having dF -many nonzero coefficients.
The sets Lg and Lr are to contain binary polynomials with dg and dr coef-

ficients equal to 1, respectively. The message space Lm is the set of all binary
polynomials in R. Table 2 lists parameters as given in [1].
Given a ciphertext e, the decryption process goes through the following steps.

1. I ← Mod
N
2

q (e(1)− r(1) · h(1)).
2. A ← 1

N
(p(1) · r(1) · g(1) + I · f(1)).

3. a← ModAq (f ∗ e).
4. Return Modp(a).

Here, the Modp operation chooses a representative of a in a binary polynomial
form. We refer the readers to [3] for more detail.
As before, we say that a wrapping has occurred during decryption if a 6= f ∗e.



2.3 Low Hamming weight-F version

This version of NTRU is identical to the previous binary-F version except that
the polynomial F used in defining the private key f is of the form

F = F1 ∗ F2 + F3, (4)

with each Fi a binary polynomial having dFi
-many nonzero coefficients. The

parameter values are given in Table 2. Notice that dF = dF1
· dF2

+ dF3
in all

cases. We shall call this the LHW-F case.

N q dF dF1 dF2 dF3 dg dr

251 128 72 8 8 8 72 72
347 128 64 7 8 8 173 64
503 256 420 20 20 20 251 170

Table 2. Parameters for NTRU with p = x + 2

When we want to refer to both the binary-F and LHW-F versions of NTRU
at the same time, we shall use the phrase optimized NTRU.

Remark 1. Since r(1) = dr, g(1) = dg, and f(1) = 1+3 · dF , the values I and A
may be calculated from just e and public values.

Remark 2. The value I is calculated as

I = Mod
N
2

q

(

fq(1) · (a(1)− p(1) · r(1) · g(1))
)

in [1, 6, 10]. This may seem different from what is done in step 1. Furthermore,
in this form, knowledge of the secrete information fq also seems to be required.
But both are calculating the same value m(1), assuming that it is close to N

2 .

3 Adaptive use of wrapping behavior

We shall work with the original NTRU setting (Section 2.1) in this section. While
the arguments of this section may be modified and applied to other settings, it
is better explained in the original setting and does not involve the use of special
forms for the private key f that appears in other settings.

We show how to exploit the wrapping behavior of the modulo q reduction
process done during decryption to recover the private key, using less than 2N
calls to the decryption oracle.



3.1 Descriptive argument

We assume that we have access to a decryption oracle and may distinguish
whether or not a wrapping has occurred during the decryption process. For
example, this could be possible, in some situations, through timing techniques.
This could also be possible if we may obtain the decrypted message, since the
decrypted output of ciphertext e is equal to Mod0

p(e) if and only if no wrapping
has occurred.
We first remark that any cyclic shift f ∗ xi of the private key f may work as

a decryption key. The cyclic shift added to a during the first step of decryption
is removed when fp is applied in the second step.
Consider what would happen if we ran the ciphertext

e = −
(

1 + x+ x2 − x3 + (
q

2
− 4)x4

)

(5)

through the decryption oracle. Recall that the coefficients of f all belong to the
set {−1, 0, 1}. Hence wrapping occur if and only if there exists some consecutive
run of coefficients in f equal to the sequence (1, 1, 1,−1, 1), in reverse order.
Suppose we do have wrapping for the above particular e. We may then run

e± = −
(

1 + x+ x2 − x3 + x4 ± (
q

2
− 5)x5

)

(6)

through the decryption oracle. If either one brings a wrapping behavior, we
may continue, knowing a longer consecutive sequence of coefficients from f .
If neither returns a wrapping behavior, we know neither (1, 1, 1,−1, 1, 1) nor
(1, 1, 1,−1, 1,−1) is a consecutive run of coefficients from f (in reverse order).
But we know the shorter subsequence (1, 1, 1,−1, 1) is present in f , so the se-
quence (1, 1, 1,−1, 1, 0) must be present in f . We may then use

e0± = −
(

1 + x+ x2 − x3 + x4 ± (
q

2
− 5)x6

)

to find the next coefficient of f .
We can continue with this process until we know a consecutive sequence of

coefficients from f that contains q
2 -many ±1’s. So, for Case A of Table 1, this

process obtains some cyclic shift of f completely.
To cope with the other two cases given in Table 1, let us go back and sup-

pose that e given by (5) induces a wrapping so that (1, 1, 1,−1, 1) appears as
a consecutive run of coefficients in f . Let us also assume that q

2 = 5. Then we
cannot use e± given by (6) since they are both just equal to e. But, if we can
assume that the probability of the subsequence (1, 1, 1,−1) appearing in f more
than once is negligible, we can use

e′± = −(1 + x+ x2 − x3 ± x5) (7)

to find the next coefficient. The probability of some sequence of length n ap-
pearing in f more than once is at most N

3n . So, in Case B, this will be at most



167/363 ∼ 1/292.47 and in Case C, this is at most 503/3127 ∼ 1/2192.32, indeed,
values that may be ignored in real world applications.
Hence, we can obtain a cyclic shift of f , which in turn can be used later to

find the plain text m corresponding to any given ciphertext e.
We have included a complete example of this approach in Appendix A.

3.2 Algorithm

We summarize arguments of the previous subsection in an algorithm.

Algorithm 1

1. Initialize secret key f =
∑N−1

i=0 fix
i, input ciphertext e =

∑N−1
i=0 eix

i, and
integer w as follows.
(a) f0 = 1 , fj = 0 for 1 ≤ j ≤ N − 1
(b) ej = 0 for 0 ≤ j ≤ N − 1
(c) w = 1

2. For i from 1 to N − 1 do the following:
(a) If w < q/2, then set ei−1 = −fi−1, otherwise set ei−1 = 0.
(b) If w < q/2, then set ei = −(

q
2 − w), otherwise set ei = −1.

(c) Run e through the decryption oracle.
(d) If wrapping has occurred, set fi = 1, w = w + 1, and skip (e)∼(h).
(e) Set ei = −ei.
(f) Run e through the decryption oracle.
(g) If wrapping has occurred, set fi = −1, w = w + 1, and skip (h).
(h) Set fi = 0.

3. Reverse the order of fi. That is, set fi = fN−1−i for i = 0, 1, · · · , N − 1.
4. Return f =

∑N−1
i=0 fix

i.

This algorithm obtains some cyclic shift of f using 2N − d+ − 1 calls to the
decryption oracle. Probability of this algorithm returning a wrong value of f is
at most N/3

q
2
−1.

Remark 3. Using ideas present in this algorithm, it is possible construct an al-
gorithm that returns a cyclic shift of f deterministically without failure. But
the algorithm would use O(N 2) calls to the decryption oracle and become much
more complex.

4 Pre-designed wrapping (non-adaptive use)

This section will deal with recovering the private key f when it is given in the
form (3). So it covers both of the optimized NTRU versions(Sections 2.2 and 2.3).
We shall assume access to decrypted output of ciphertexts of our choice. The

ciphertexts to be inserted in the machine will be determined from the public
key through pre-computation and does not depend on previous output of the
decryption oracle. The number of queries to the decryption machine needed is
less than twice the size of the coefficient set for f . If the coefficient set for f is
small, the number of queries needed could be much smaller. We shall recover f

completely.



4.1 The method

We shall use a concrete example in explaining a method for recovering the private
key. Take the value N = 251 and q = 128 from Table 2 and assume that the
coefficient set of f is {0, 1, 2}. Application of this method to situations when the
coefficient set is bigger will be straightforward. We propose to run the constant
polynomial e = e (for some 0 ≤ e < q) through the decryption machine. As
stated by Remark 1, given e and a specific public key h, anybody may find
the value A. Let us fix a public key h and write A(e) to denote the value A
corresponding to the constant polynomial e = e.

For the parameter values given in theN = 251 row of Table 2 we can calculate

f(1) = 1 + (1 + 2) · F(1) = 1 + 3 · dF = 217,

fq(1) ≡ f(1)−1 ≡ 105 (mod q),

r(1) · h(1) ≡ dr · 3 · fq(1) · dg ≡ 64 (mod q).

With this, we can find the I and A values for various e = e. Gather terms of
the private key f according to their coefficients and write

f = 0 · f0 + 1 · f1 + 2 · f2. (8)

The coefficients of f ∗ e will belong to the set {0, e, 2e}. Below, we have drawn
their position relative to A(e) for some chosen e values.

• e = 24, A(e) ; 138.04

0 128 256

0 e 2e

↓ ↓ ↓

A − 3q

2
A− q

2
A A+ q

2

↑ ↑ ↑ ↑

• e = 63, A(e) ; 171.76

0 128 256

0 e 2e

↓ ↓ ↓

A − 3q

2
A− q

2
A A+ q

2

↑ ↑ ↑ ↑

• e = 105, A(e) ; 208.07

0 128 256

0 e 2e

↓ ↓ ↓

A − 3q

2
A− q

2
A A+ q

2

↑ ↑ ↑ ↑



Let us fix e = 63 and follow through the decryption steps with the help of
the above drawing.

a(e) = ModA(e)
q (f ∗ e)

= ModA(e)
q (0 · f0 + e · f1 + 2e · f2)

= (0 + q) · f0 + (e+ q) · f1 + 2e · f2

= e · f + q · (f0 + f1).

Let us do this once more with e′ = 105.

a(e′) = ModA(e′)
q (f ∗ e′)

= ModA(e′)
q (0 · f0 + e′ · f1 + 2e

′ · f2)

= (0 + 2q) · f0 + (e
′ + q) · f1 + 2e

′ · f2

= e′ · f + q · (2f0 + f1).

We may observe that the difference of the outputs from the decryption machine
satisfies

D(e, e′) := Modp(a(e))−Modp(a(e
′))

≡ a(e)− a(e′) (mod p)

= (e− e′) · f − q · f0

= (e− e′) · (1 + p · F)− q · f0

≡ (e− e′)− q · f0 (mod p).

Denote the modulo p inverse of q by qp so that qp · q ≡ 1 (mod p). We may now
obtain

Modp
(

− qp ·
(

D(e, e′)− (e− e′)
))

= Modp
(

qp · q · f0
)

= Modp(f0) = f0.

We stress that all three equalities above are true equalities in the ring R. They
are stronger than just modulo p equivalence relations. The last equality follows
since f0 is a binary polynomial. We have found all terms of f having coefficients
equal to 0 with just two queries to the decryption machine.
The above argument obtained f0 because the value 0 crossed over the value

A − 3q
2 as we changed e to e′ and since neither e nor 2e went over any ModAq

operation boundary. If we work with e = 24 and e′ = 63, we can similarly obtain
f2. The remaining terms will now have coefficient equal to 1 and we have found
the private key f with just three queries to the decryption machine.

Remark 4. In the above calculations, we’ve used the fact f ≡ 1 (mod p). Hence
this attack is not applicable to the original NTRU cryptosystem.

4.2 Feasibility of this approach

We shall use the notation

dc(n,A) =
1

q
(n−ModAq (n)) (9)



for any integer n and centering value A. An equivalent definition would be

ModAq (n) = n− q · dc(n,A).

It measures how far n is from the representative interval. When the value A is
clear from context, dc(n) will be used.
Let the coefficient set of f be {0, 1, . . . , t}. To argue that the previous section

is a meaningful attack on un-padded version of optimized NTRU, it remains
to consider how likely it is to find an (e, e′) pair with dc(i · e,A(i · e)) and
dc(i · e′,A(i · e′)) differing at just one 0 ≤ i ≤ t. We have no proof that enough
such pairs may always be found, but will give an informal argument showing
that this is highly possible. Also, a complete solution for the N = 251 case is
provided in the Appendices as an example.
Examine what happens to the dc-values when we increase e by just 1. If

we study the procedure for calculating A(e), we find that setting e ← e + 1
increases A(e), in most cases (exception occurs when I goes over the modulo

q boundary), by f(1)
N
. For the parameter values given in Table 2, this value is

roughly 0.86 (N = 251), 0.56 (N = 347), and 2.51 (N = 503) for each case. Of
course, setting e ← e + 1 increase i · e by the amount i. We want to point out

that not all t+ 1 of these values i can be close to f(1)
N
at the same time.

The second point we want to make is that, as we change e from 0 to q − 1,
the values i · e all start as being equal to 0 and end up spreading out over an
interval of length t · q. So the t+ 1 dc-values will start out as the same and end
up as different.
These two points convince us that not all of the dc-values can stay constant

over the change of e from 0 to q − 1.
Finally, we want to call to attention one more point. Since the distance be-

tween i · e and (i+1) · e is less than q, if e is big enough, it is almost impossible
(again, the same exception apply) for two adjacent dc-values to change simulta-
neously, as we increase e by 1. Non-adjacent dc-values have a better chance of
changing simultaneously, but since they have to be apart by a multiple of q for
this to happen, this is not too frequent.
If this does not convince the reader, we can just roughly say that we have

about q equations in hand to solve for t+ 1 variables.
For the case N = 251, we have given a table of dc-values in Appendix B. As

we have already seen, for the parameter values given in the first row of Table 2, we
have r(1)h(1) = 64. Notice that the maximum possible value for the coefficient
of f , in either the binary-F or the LHW-F case, is 28 = 3 ·(8+1)+1. So, for each
e = 0, 1, . . . , q − 1, we’ve listed the values dc(i · e,A(i · e)) for i = 0, 1, . . . , 28.
In Appendix C, we used these values to give an explicit instruction for deter-

mining the private key f completely with 52 queries to the decryption machine.
In practice, we do not expect f to contain coefficients as large as 28. So the
process would be a lot shorter.
If the coefficient set of f is just {0, 1, 2, 3}, which is highly probable in the

binary-F case, Appendix D explains how one could obtain f completely with
just one or two queries to the decryption machine.



5 Bypassing wrapping (using pq)

In this section, we assume the private key is given by a binary-F(Section 2.2).
We present a chosen-ciphertext attack which makes one query to the decryption
machine and recovers the private key completely.
Let us denote the modulo q inverse of p by pq, so that

pq ∗ p ≡ 1 (mod q).

If q = 2k, we may specifically set

pq =

k
∑

i=1

(−2)i−1xN−i (mod q). (10)

5.1 Simple case

If we insert pq into the decryption machine, it will calculate

a = ModA(pq)
q (f ∗ pq)

= ModAq
(

(1 + p ∗ F) ∗ pq

)

= ModAq (pq + F).

Since all the coefficients of F are either 0 or 1, with high probability, we will
have

a = ModAq (pq) + F. (11)

Assume for the moment that this is true. Then, we have

Modp(a)−Mod
A

q (pq) ≡ a−ModAq (pq) ≡ F (mod p).

Notice that the first term on the left is the output of the decryption machine,
and that the second term on the left may readily be computed. Hence we may
obtain

Modp
(

Modp(a)−Mod
A

q (pq)
)

= Modp(F) = F.

The second equality holds, since F is a binary polynomial. We have obtained
the private key f = 1 + p ∗ F with just one query.

Remark 5. This attack obviously relies on the form of the private key f = 1 +
p ∗ F. Hence this attack may not be applied to the original NTRU scheme.

It remains to justify equation (11). For parameters given in Table 2, we have
calculated various values.

N f(1) fq(1) r(1)h(1) pq(1) I(pq) A(pq)
251 217 105 64 43 107 154.47
347 193 65 64 43 235 226.43
503 1261 229 242 171 185 718.28



Some of these values are defined only up to modulo q. Now, using equation (10)
and this table, we list all coefficients (including the one corresponding to zero) of
ModAq (pq) in the following table. We’ve also written down the lower and upper
boundaries (LB,UB) of the representative interval. Last column contains the
distance between UB and the coefficient maximum.

N LB coefficients UB headroom
251 91 129, 126, 132, 120, 144, 96, 192, 128 218 26
347 163 257, 254, 260, 248, 272, 224, 192, 256 290 18
503 591 769, 766, 772, 760, 784, 736, 832, 640, 768 846 14

So at least, for the parameter values given in Table 2, equation (11) is always
satisfied.

5.2 Wrapping case

Assumption of the previous subsection, namely, equation (11), fails if and only
if

1. some coefficient c of ModA(pq)
q (pq) satisfies c ≤ A(pq) +

q
2 < c+ 1,

2. and the corresponding coefficient of F is equal to 1.

Since we know the exact polynomial ModAq (pq), we know which coefficients

satisfy the first of the above conditions. Suppose some coefficient ci of the xi

term in ModAq (pq) satisfies both conditions. Suppose further, for the moment,
that such a coefficient is unique. Then

a = ModAq (pq + F)

= ModAq (pq)− qxi + F.

And the output of the decryption machine satisfies

Modp(a) ≡ Mod
A

q (pq)− qxi + F (mod p).

As before, we may obtain the private key by computing

Modp
(

Modp(a)−Mod
A

q (pq) + qxi
)

= Modp(F) = F.

In conclusion, if pq contains t-many coefficients satisfying the above condi-
tion 1, with just one query to the decryption machine, we may find 2t candidates
for F, one of which corresponds to the true private key f = 1 + p ∗ F.

Remark 6. If q = 2k, we know from equation (10) that all of the coefficients of
pq are distinct modulo q. (Read next remark to see why this isn’t strictly true.)
Hence there can be at most one coefficient satisfying the first of the above two
conditions.

Remark 7. In the q = 2k case, if it happens that some coefficient c ≡ 0 (mod q)
satisfies the first condition, application of this method is not feasible. But with
some modifications we could use −pq or even 2pq in a similar attack.



6 Uniform wrapping (using the public key h)

This section contains the simplest, and perhaps, the strongest of our attacks on
un-padded NTRU. Using just one query to the decryption machine, we shall
obtain completely, the binary polynomial g used in defining the public key, with
probability (q − 1)/q. Since the public key is given by h = p ∗ fq ∗ g, this is
(almost) equivalent to having obtained the private key f .

As before, let pq be the modulo q inverse of p. We run e = pq ∗ h through
the decryption machine. The output of the machine will be

ModpMod
A

q (f ∗ e) = ModpMod
A

q (f ∗ pq ∗ p ∗ fq ∗ g)

= ModpMod
A

q (g).

Recall the notation (9). With probability (q−1)/q, we can expect to have dc(0) =
dc(1). For the parameter values of Table 2, we may easily check that they are
equal.

N I(pq ∗ h) A(pq ∗ h) LB UB dc(0) dc(1)
251 72 124.21 61 188 -1 -1
347 173 191.95 128 255 -1 -1
503 149 628.03 501 756 -2 -2

Assume dc(0) = dc(1) and let d denote this common value. Set

S(x) = 1 + x+ · · ·+ xN−1.

Then, we may write

ModAq (g) = g − d · q · S(x).

Hence

Modp
(

ModAq (f ∗ e)
)

+ d · q · S(x) ≡ ModAq (g) + d · q · S(x) ≡ g (mod p)

and we may obtain

Modp

(

Modp
(

ModAq (f ∗ e)
)

+ d · q · S(x)
)

= g

from just one query to the decryption machine. The value

f ∗ h ≡ f ∗ p ∗ fq ∗ g ≡ p ∗ g (mod q)

is in our hands. Now, if h is invertible modulo q, or equivalently, if g is invertible
modulo q, we can obtain f modulo q. We know the form of f , so can find f

exactly. Furthermore, the random binary polynomial g is invertible with a very
high probability. Even if it is not, we still have the possibility of using a pseudo
inverse of h to obtain f .



Remark 8. Arguments of this section cannot be applied to the original NTRU
scheme. Fundamentally, this approach is only possible because in the optimized
version of NTRU, we have fp = 1 and hence the process of multiplying fp
to a, present in the original scheme, is no longer carried out. Simplifying the
decryption process has opened up a new weakness in NTRU.

Remark 9. In the case dc(0) 6= dc(1), we may use −pq ∗ h in a similar attack.
Again, we have about 1/q chance of encountering the same problem.

Remark 10. Suppose dc(0) 6= dc(1), or equivalently, dc(0) + 1 = dc(1). We may
write g = 0 · g0 + 1 · g1 with S(x) = g0 + g1. Then

Modp
(

ModAq (g)
)

+ q · dc(0) · S(x)

≡ g − q · dc(0) · g0 − q · dc(1) · g1 + q · dc(0) · (g0 + g1) (mod p)

= 0 · g0 + (1− q) · g1

= (1− q) · (0 · g0 + 1 · g1) = (1− q) · g.

Hence, if 1− q is invertible modulo p in R, we may find g. This is true for the
values N = 251 with q = 128 and N = 347 with q = 128.

7 Conclusion

We’ve seen four chosen-ciphertext attacks applicable to un-padded versions of
NTRU cryptosystem.
The first of these, given in Section 3, is an improvement to previous reaction

attacks. It applies to the most general NTRU cryptosystem and uses less than
2N queries to the decryption oracle.
The approaches of the next three sections apply to optimized versions of

NTRU. In Section 4, we pre-compute wrappings to be expected in the decryption
process and use differences of these wrappings to recover the private key. A
very small number of queries to the decryption oracle was needed. Other two
approaches presented here, given in Section 5 and Section 6, uses just one query
to the decryption machine to recover the private key completely, under realistic
parameter values. These three methods depend on the private key being of the
form f = 1+p∗F. None of these three attacks on optimized NTRU are applicable
to the original NTRU cryptosystem. By giving special forms for the private key,
the key generation and decryption processes of NTRU cryptosystem became
simpler. But at the same time, it has opened new ways of recovering the private
key.
The number of decryption oracle use needed in approaches of this paper is

small enough to be realistic. Hence NTRU should never be used without some
form of padding, protecting it from chosen ciphertext attacks.
However, we believe any reasonable padding scheme will provide the opti-

mized NTRU cryptosystem protection from our attacks. Of course, with explicit
hash functions chosen to be used in the padding schemes, the story could be
different. This part still remains to be considered.



References

1. Consortium for Efficient Embedded Security, Efficient embedded security standards
#1: Implementation aspects of NTRUEncrypt and NTRUSign. Draft version 5.
Available from http://www.ceesstandards.org.

2. Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman, NTRU: A ring-based public
key cryptosystem. In Proc. of ANTS III, LNCS 1423. Springer-Verlag, 1998.

3. Jeffrey Hoffstein and Joseph Silverman, Optimizations for NTRU. In Public-

Key Cryptogrphy and Computational Number Theory. DeGruyter, 2002. Available
from [9].

4. Jeffrey Hoffstein and Joseph H. Silverman, Reaction attacks against the NTRU
public key cryptosystem. Techinal report #015, NTRU Cryptosystems. Available
from [9].

5. Jeffrey Hoffstein and Joseph H. Silverman, Protecting NTRU Against Chosen Ci-
phertext and Reaction Attacks, Technical Report #016, NTRU Cryptosystems.
Available from [9].

6. IEEE Standard P1363.1/D4, Standard specifications for public key cryptogra-
phy : Techniques based on hard problems over lattices, IEEE. Available from
http://grouper.ieee.org/group/1363.

7. Éliane Jaulmes and Antoine Joux, A chosen-ciphertext attack against NTRU. Ad-

vances in Cryptology - CRYPTO 2000, LNCS 1880. Springer-Verlag, 2000.
8. Phong Q. Nguyen and David Pointcheval, Analysis and improvements of NTRU en-

cryption paddings. Advances in Cryptology - CRYPTO 2002, LNCS 2442. Springer-
Verlag, 2002.

9. NTRU Cryptosystems, Technical reports. Available from http://www.ntru.com.
10. NTRU Cryptosystems, The NTRU public key cryptosystem - A tutorial. Available

from http://www.ntru.com.

A Adaptive use of wrapping - Example

We give an example of the approach given in Section 3. Let the parameters and
private key be as follows.

(N,p, q) = (11, 3, 32), f = −1 + x+ x2 − x4 + x6 + x9 − x10.

We referred to [10] for the above NTRU parameter. Other parameters like g or
h will not be needed.
We first try the ciphertext

e = −1− (
q

2
− 1)x = −1− 15x.

With this, the intermediate polynomial a = f ∗ e will be

a = 〈16, 14,−16,−15, 1, 15,−1,−15, 0,−1,−14〉

We have written down just the coefficients of a for ease of writing. Since a2 =
−16 ≤ q

2 , we will observe a wrapping. Thus, we know that, among the coefficients
fi of f , there exist a t such that (ft, ft−1) = (1, 1). In this case, the real value of t



is 2, but we don’t have access to this information. Anyway, we set a polynomial
f ′ = 〈1, 1〉 to be a candidate polynomial for the private key.
Next, we try the ciphertext

e = −1− x− (
q

2
− 2)x = 〈−1,−1,−14〉

Then,
a = f ∗ e = 〈−12, 14, 12,−15,−13, 1, 13,−1,−14,−1〉.

This will not cause a wrapping, which implies that there is no t such that
〈ft, ft−1, ft−2〉 is equal to 〈1, 1, 1〉. We next try the ciphertext

e = −1− x+ (q/2− 2)x = 〈−1,−1, 14〉.

Then, we have

a = 〈16,−14,−16, 13, 15, 1,−15,−1, 14,−1〉.

This causes a wrapping to occur, which is due to (f2, f1, f0) being equal to
(1, 1,−1). Although we don’t have access to the exact value of a, we know from
the existence of wrapping that there is a t such that (ft, ft−1, ft−2) = (1, 1,−1).
We now set f ′ = 〈1, 1,−1〉 as a candidate for the private key.

step testing ciphertext e wrapping candidate polynomial

1 (−1,−15) Yes (1, 1)

2 (−1,−1,−14) No

3 (−1,−1, 14) Yes (1, 1,−1)

4 (−1,−1, 1,−13) No

5 (−1,−1, 1, 13) Yes (1, 1,−1,−1)

6 (−1,−1, 1, 1,−12) Yes (1, 1,−1,−1, 1)

7 (−1,−1, 1, 1,−1,−11) No

8 (−1,−1, 1, 1,−1, 11) No (1, 1,−1,−1, 1, 0)

9 (1, 1,−1,−1, 1, 0,−11) No

10 (1, 1,−1,−1, 1, 0, 11) No (1, 1,−1,−1, 1, 0, 0)

11 (1, 1,−1,−1, 1, 0, 0,−11) Yes (1, 1,−1,−1, 1, 0, 0, 1)

12 (1, 1,−1,−1, 1, 0, 0, 1,−10) No

13 (1, 1,−1,−1, 1, 0, 0, 1, 10) No (1, 1,−1,−1, 1, 0, 0, 1, 0)

14 (1, 1,−1,−1, 1, 0, 0, 1, 0,−10) No

15 (1, 1,−1,−1, 1, 0, 0, 1, 0, 10) Yes (1, 1,−1,−1, 1, 0, 0, 1, 0,−1)

16 (1, 1,−1,−1, 1, 0, 0, 1, 0,−1,−9) No

17 (1, 1,−1,−1, 1, 0, 0, 1, 0,−1, 9) No (1, 1,−1,−1, 1, 0, 0, 1, 0,−1, 0)

reverse candidate polynomial (0,−1, 0, 1, 0, 0, 1,−1,−1, 1, 1)
Table 3. Process of recovering the private key

In this way, we construct ciphertexts from the candidate polynomial and try
them step by step to recover the whole coefficients of the private key. Table 3
shows a summary of this process.



When we reach step 17 of Table 3, we reverse the candidate polynomial f ′.
That is, we set

f ′i = f ′N−i−1 for 0 ≤ i ≤ N − 1.

Then, we get the polynomial

f ∗ x8 = 〈0,−1, 0, 1, 0, 0, 1,−1,−1, 1, 1〉,

which may be used in place of the real f to decrypt any given ciphertext.

B dc-value list - Example

We have used N = 251, q = 128, and dF = dg = dr = 72 in the following. We list
A(i ·e) and values dc(i ·e,A(i ·e)) for each i = 0, 1, . . . , 28 and e = 0, 1, . . . , q−1.

N = 251, q = 128, r(1)h(1) = 64

e A(e) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0, 117.29, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1, 118.16, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2, 119.02, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0
3, 119.88, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0
4, 120.75, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5, 121.61, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6, 122.48, -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7, 123.34, -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
8, 124.21, -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9, 125.07, -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

10, 125.94, -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
11, 126.80, -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12, 127.67, -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2
13, 128.53, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2
14, 129.39, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
15, 130.26, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
16, 131.12, -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
17, 131.99, -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3
18, 132.85, -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3
19, 133.72, -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3
20, 134.58, -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3
21, 135.45, -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4
22, 136.31, -1 -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4
23, 137.18, -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 4 4 4
24, 138.04, -1 -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4
25, 138.90, -1 -1 -1 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
26, 139.77, -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5
27, 140.63, -1 -1 -1 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5
28, 141.50, -1 -1 -1 0 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5
29, 142.36, -1 -1 -1 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5
30, 143.23, -1 -1 -1 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5
31, 144.09, -1 -1 -1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 5 6
32, 144.96, -1 -1 -1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6
33, 145.82, -1 -1 -1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6
34, 146.69, -1 -1 -1 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6
35, 147.55, -1 -1 -1 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7
36, 148.41, -1 -1 -1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 6 7
37, 149.28, -1 -1 -1 0 0 0 1 1 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 7 7
38, 150.14, -1 -1 -1 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 7
39, 151.01, -1 -1 -1 0 0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7
40, 151.87, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 7 8
41, 152.74, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 8
42, 153.60, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8
43, 154.47, -1 -1 -1 0 0 0 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7 7 7 8 8 8
44, 155.33, -1 -1 -1 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8
45, 156.20, -1 -1 -1 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 7 7 7 8 8 8 9
46, 157.06, -1 -1 -1 0 0 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9
47, 157.92, -1 -1 0 0 0 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 6 7 7 8 8 8 9 9
48, 158.79, -1 -1 0 0 0 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 7 8 8 9 9 9
49, 159.65, -1 -1 0 0 0 1 1 1 2 2 3 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9
50, 160.52, -1 -1 0 0 0 1 1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7 7 8 8 9 9 9 10
51, 161.38, -1 -1 0 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 10
52, 162.25, -1 -1 0 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 10 10
53, 163.11, -1 -1 0 0 0 1 1 2 2 2 3 3 4 4 5 5 5 6 6 7 7 7 8 8 9 9 9 10 10
54, 163.98, -1 -1 0 0 0 1 1 2 2 3 3 3 4 4 5 5 5 6 6 7 7 8 8 8 9 9 10 10 11
55, 164.84, -1 -1 0 0 0 1 1 2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 9 10 10 11
56, 165.71, -1 -1 0 0 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 11 11
57, 166.57, -1 -1 0 0 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 8 8 8 9 9 10 10 11 11



58, 167.43, -1 -1 0 0 1 1 1 2 2 3 3 4 4 5 5 5 6 6 7 7 8 8 9 9 10 10 10 11 11
59, 168.30, -1 -1 0 0 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 7 8 8 9 9 10 10 11 11 12
60, 169.16, -1 -1 0 0 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 12
61, 170.03, -1 -1 0 0 1 1 2 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12
62, 170.89, -1 -1 0 0 1 1 2 2 3 3 4 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12
63, 171.76, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 12 12
64, 172.62, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
65, 173.49, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13
66, 174.35, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 12 13 13
67, 175.22, -1 -1 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 11 12 12 13 13
68, 176.08, -1 -1 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13
69, 176.94, -1 -1 0 0 1 1 2 2 3 3 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 12 13 13 14
70, 177.81, -1 -1 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 8 9 10 10 11 11 12 12 13 13 14
71, 178.67, -1 -1 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 8 9 9 10 10 11 11 12 12 13 14 14
72, 179.54, -1 -1 0 0 1 1 2 3 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 12 12 13 13 14 14
73, 180.40, -1 -1 0 0 1 1 2 3 3 4 4 5 5 6 7 7 8 8 9 9 10 11 11 12 12 13 13 14 15
74, 181.27, -1 -1 0 0 1 1 2 3 3 4 4 5 6 6 7 7 8 8 9 10 10 11 11 12 12 13 14 14 15
75, 182.13, -1 -1 0 0 1 2 2 3 3 4 4 5 6 6 7 7 8 9 9 10 10 11 11 12 13 13 14 14 15
76, 183.00, -1 -1 0 0 1 2 2 3 3 4 5 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15
77, 183.86, -1 -1 0 0 1 2 2 3 3 4 5 5 6 6 7 8 8 9 9 10 11 11 12 12 13 14 14 15 15
78, 184.73, -1 -1 0 0 1 2 2 3 3 4 5 5 6 6 7 8 8 9 10 10 11 11 12 13 13 14 14 15 16
79, 185.59, -1 -1 0 0 1 2 2 3 3 4 5 5 6 7 7 8 8 9 10 10 11 12 12 13 13 14 15 15 16
80, 186.45, -1 -1 0 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 10 11 12 12 13 14 14 15 15 16
81, 187.32, -1 -1 0 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11 11 12 12 13 14 14 15 16 16
82, 188.18, -1 -1 0 0 1 2 2 3 4 4 5 6 6 7 7 8 9 9 10 11 11 12 13 13 14 15 15 16 16
83, 189.05, -1 -1 0 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 11 12 13 13 14 15 15 16 17
84, 189.91, -1 -1 0 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12 12 13 14 14 15 16 16 17
85, 190.78, -1 -1 0 1 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10 11 12 12 13 14 14 15 16 16 17
86, 191.64, -1 -1 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13 14 15 15 16 17 17
87, 192.51, -2 -1 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 11 12 13 13 14 15 15 16 17 18
88, 193.37, -2 -1 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10 11 12 12 13 14 14 15 16 16 17 18
89, 194.24, -2 -1 0 1 1 2 3 3 4 5 5 6 7 8 8 9 10 10 11 12 12 13 14 14 15 16 17 17 18
90, 195.10, -2 -1 0 1 1 2 3 3 4 5 6 6 7 8 8 9 10 10 11 12 13 13 14 15 15 16 17 17 18
91, 195.96, -2 -1 0 1 1 2 3 3 4 5 6 6 7 8 8 9 10 11 11 12 13 13 14 15 16 16 17 18 18
92, 196.83, -2 -1 0 1 1 2 3 3 4 5 6 6 7 8 9 9 10 11 11 12 13 14 14 15 16 16 17 18 19
93, 197.69, -2 -1 0 1 1 2 3 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 14 15 16 17 17 18 19
94, 198.56, -2 -1 0 1 1 2 3 4 4 5 6 7 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18 18 19
95, 199.42, -2 -1 0 1 1 2 3 4 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 16 17 18 18 19
96, 200.29, -2 -1 0 1 1 2 3 4 4 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 16 17 18 19 19
97, 201.15, -2 -1 0 1 1 2 3 4 4 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 17 18 19 20
98, 202.02, -2 -1 0 1 1 2 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 18 18 19 20
99, 202.88, -2 -1 0 1 2 2 3 4 5 5 6 7 8 8 9 10 11 12 12 13 14 15 15 16 17 18 19 19 20

100, 203.75, -2 -1 0 1 2 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 15 16 16 17 18 19 20 20
101, 204.61, -2 -1 0 1 2 2 3 4 5 6 6 7 8 9 9 10 11 12 13 13 14 15 16 17 17 18 19 20 20
102, 205.47, -2 -1 0 1 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13 14 14 15 16 17 18 18 19 20 21
103, 206.34, -2 -1 0 1 2 2 3 4 5 6 6 7 8 9 10 10 11 12 13 14 14 15 16 17 18 19 19 20 21
104, 207.20, -2 -1 0 1 2 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 15 16 17 18 19 20 20 21
105, 208.07, -2 -1 0 1 2 2 3 4 5 6 7 7 8 9 10 11 11 12 13 14 15 16 16 17 18 19 20 21 21
106, 208.93, -2 -1 0 1 2 3 3 4 5 6 7 7 8 9 10 11 12 12 13 14 15 16 17 17 18 19 20 21 22
107, 209.80, -2 -1 0 1 2 3 3 4 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17 18 18 19 20 21 22
108, 210.66, -2 -1 0 1 2 3 3 4 5 6 7 8 8 9 10 11 12 13 14 14 15 16 17 18 19 19 20 21 22
109, 211.53, -2 -1 0 1 2 3 3 4 5 6 7 8 9 9 10 11 12 13 14 15 15 16 17 18 19 20 20 21 22
110, 212.39, -2 -1 0 1 2 3 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 16 17 18 19 20 21 22 22
111, 213.25, -2 -1 0 1 2 3 4 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23
112, 214.12, -2 -1 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 18 19 20 21 22 23
113, 214.98, -2 -1 0 1 2 3 4 5 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 20 21 22 23
114, 215.85, -2 -1 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 21 22 23
115, 216.71, -2 -1 0 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 23
116, 217.58, -2 -1 0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19 20 21 22 23 24
117, 218.44, -2 -1 0 1 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24
118, 219.31, -2 -1 0 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 19 20 21 22 23 24
119, 220.17, -2 -1 0 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24
120, 221.04, -2 -1 0 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
121, 221.90, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 16 17 18 19 20 21 22 23 24 25
122, 222.76, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 18 19 20 21 22 23 24 25
123, 223.63, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25
124, 224.49, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25
125, 225.36, -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
126, 115.56, -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
127, 116.43, -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

C Designed use of wrapping - Example

For the parameters given by the N = 251 row of Table 2, we give an explicit set
of instructions for determining the private key f assuming that it is given by a
LHW-F. The first column contains the e values. Applying methods of Section 4
with e and e′ = e + 1, we can obtain the term or sum of terms given in the
third column. Using this together with information already obtained in higher
rows, the term given in the last column is obtained. This is constructed from
information given in Appendix B.



e e′

1 2 f28 f28
15 16 f21 f21
48 49 f23 f23
51 52 f27 f27
56 57 f20 f20
84 85 f3 f3
102 103 f25 f25
23 24 f14 + f25 f14
26 27 f22 + f27 f22
33 34 f10 + f14 f10
40 41 f18 + f21 f18
41 42 f24 + f27 f24
54 55 f16 + f23 f16
59 60 f19 + f21 f19

e e′

61 62 f8 + f10 f8
86 87 f0 + f28 f0
116 117 f9 + f20 f9
120 121 f13 + f14 f13
121 122 f15 + f16 f15
5 6 f10 + f11 f10
10 11 f6 + f18 f6
17 18 f11 + f19 + f26 f26
19 20 f10 + f17 + f23 f17
4 5 f12 + f13 + f14 f12
8 9 f7 + f22 + f23 f7
74 75 f5 + f17 + f24 f5
57 58 f4 + f13 + f22 + f24 f4
46 47 f2 + f13 + f24 + f27 f2

The reader can check that the only term not appearing in the last column is f1.
It may readily be set to all remaining terms.
Careful counting will show that 52 queries were needed to determine f com-

pletely. Since we’ve been very lazy in making this table, there would be ways to
reduce this number.

D Entropy of f in the binary-F case

Content of this section may not qualify as an attack on NTRU, but contains
information which could be useful when used together with some form of attack.
We work in the binary-F setting and assume that the constant term of f is

not 4, so that the coefficient set of f is {0, 1, 2, 3}.
Let us denote by (f0, f1, . . . , fN−1), the coefficients of f . Likewise, the coef-

ficients of F will be denoted with (F0, . . . , FN−1). Notice

fi = 2 · Fi + Fi−1

for all i 6= 0. So the parity (E/O) of fi determines Fi−1 completely. Similarly,
knowing whether fi belongs to the set L = {0, 1} or H = {2, 3} determines Fi

completely. Once more, if fi belongs to I = {1, 2}, then Fi = 1− Fi−1 and if fi

belongs to B = {0, 3}, then Fi = Fi−1.
We may use this argument as follows. Suppose we know that f is of the form

f = (?, L,H,H,H,L, L,H,L,H, . . . ).

Then we must have

F = (?, 0, 1, 1, 1, 0, 0, 1, 0, 1, . . . )

and hence

f = (?, ?, 2, 3, 3, 1, 0, 2, 1, 2, . . . )



We may conclude that, even though the coefficient set of f is of size 4, knowing
one bit of information for each fi (i 6= 0), in the form of E/O, L/H, or I/B, is
enough to determine f almost completely.
This may not have any impact on the security of NTRU cryptosystem by

itself, but may be useful when combined with other methods of attacks. For
example, for the N = 251 case, still assuming that the coefficients of f belong to
the set {0, 1, 2, 3}, using Appendix B, we see that

a(70) = 70 · f + q(f0 + f1),

in the notation of Section 4. Hence, with just one query to the decryption ma-
chine, we can obtain

Modp

(

qp
(

Modp(a(70))− 70
)

)

= f0 + f1.

This determines whether each fi belongs to L or H, so determines f almost
completely.
If we are not so lucky as to find such an e, we could use the difference of two

queries to the decryption machine in a similar attack.


