
OMAC: One-Key CBC MAC

Tetsu Iwata and Kaoru Kurosawa

Department of Computer and Information Sciences,
Ibaraki University

4–12–1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
{iwata, kurosawa}@cis.ibaraki.ac.jp

March 10, 2003

Abstract. In this paper, we present One-key CBC MAC (OMAC) and
prove its security for arbitrary length messages. OMAC takes only one
key, K (k bits) of a block cipher E. Previously, XCBC requires three
keys, (k + 2n) bits in total, and TMAC requires two keys, (k + n) bits
in total, where n denotes the block length of E.
The saving of the key length makes the security proof of OMAC sub-
stantially harder than those of XCBC and TMAC.

Key words: CBC MAC, block cipher, provable security

1 Introduction

1.1 Background

The CBC MAC [6, 7] is a well-known method to generate a message authentica-
tion code (MAC) based on a block cipher. Bellare, Kilian, and Rogaway proved
the security of the CBC MAC for fixed message length mn bits, where n is the
block length of the underlying block cipher E [1]. However, it is well known that
the CBC MAC is not secure unless the message length is fixed.

Therefore, several variants of CBC MAC have been proposed for variable
length messages.

First Encrypted MAC (EMAC) was proposed. It is obtained by encrypting
the CBC MAC value by E again with a new key K2. That is,

EMACK1,K2(M) = EK2(CBCK1(M)) ,

where M is a message, K1 is the key of the CBC MAC and CBCK1(M) is the
CBC MAC value of M [2]. Petrank and Rackoff then proved that EMAC is
secure if the message length is a positive multiple of n [11] (Vaudenay showed
another proof by using decorrelation theory [14]). Note that, however, EMAC
requires two key schedulings of the underlying block cipher E.

Next Black and Rogaway proposed XCBC which requires only one key schedul-
ing of the underlying block cipher E [3]. XCBC takes three keys: one block cipher
key K1, and two n-bit keys K2 and K3. XCBC is described as follows (see Fig. 1).

M [1]

�
E�K1

�
�

��
�

M [2]

��
�

E�K1

�
�

��
�

M [3]

��
�

E�K1

�
T

�K2

M [1]

�
E�K1

�
�

��
�

M [2]

��
�

E�K1

�
�

��
�

M [3] 10i︸ ︷︷ ︸
��
�

E�K1

�
T

�K3

Fig. 1. Illustration of XCBC.

Table 1. Comparison of key length.

XCBC [3] TMAC [9] OMAC (This paper)

key length (k + 2n) bits (k + n) bits k bits

– If |M | = mn for some m > 0, then XCBC computes exactly the same as the
CBC MAC, except for XORing an n-bit key K2 before encrypting the last
block.

– Otherwise, 10i padding (i = n−1−|M |mod n) is appended to M and XCBC
computes exactly the same as the CBC MAC for the padded message, except
for XORing another n-bit key K3 before encrypting the last block.

However, drawback of XCBC is that it requires three keys, (k + 2n) bits in
total.

Finally Kurosawa and Iwata proposed Two-key CBC MAC (TMAC) [9].
TMAC takes two keys, (k + n) bits in total: a block cipher key K1 and an n-bit
key K2. TMAC is obtained from XCBC by replacing (K2, K3) with (K2 ·u, K2),
where u is some non-zero constant and “·” denotes multiplication in GF(2n).

1.2 Our Contribution

In this paper, we present One-key CBC MAC (OMAC) and prove its security
for arbitrary length messages. OMAC takes only one key, K of a block cipher
E. The key length, k bits, is the minimum because the underlying block cipher
must have a k-bit key K anyway. See Table 1 for a comparison with XCBC and
TMAC (See Appendix A for a detailed comparison).

OMAC is a generic name for OMAC1 and OMAC2. OMAC1 is obtained from
XCBC by replacing (K2, K3) with (L · u, L · u2) for some non-zero constant u in
GF(2n), where L is given by

L = EK(0n) .

OMAC2 is similarly obtained by using (L · u, L · u−1). We can compute L · u,
L · u−1 and L · u2 = (L · u) · u efficiently by one shift and one conditional XOR
from L, L and L · u, respectively.

OMAC1 (resp. OMAC2) is described as follows (see Fig. 2).

2

M [1]

�
E�K

�
�

��
�

M [2]

��
�

E�K
�

�
��

�

M [3]

��
�

E�K
�

T

�L · u

M [1]

�
E�K

�
�

��
�

M [2]

��
�

E�K
�

�
��

�

M [3] 10i︸ ︷︷ ︸
��
�

E�K
�

T

�L · u2

Fig. 2. Illustration of OMAC1. Note that L = EK(0n). OMAC2 is obtained by replac-
ing L · u2 with L · u−1 in the right figure.

– If |M | = mn for some m > 0, then OMAC computes exactly the same as
the CBC MAC, except for XORing L · u before encrypting the last block.

– Otherwise, 10i padding (i = n−1−|M | mod n) is appended to M and OMAC
computes exactly the same as the CBC MAC for the padded message, except
for XORing L · u2 (resp. L · u−1) before encrypting the last block.

Note that in TMAC, K2 is a part of the key while in OMAC, L is not a part
of the key and is generated from K.

This saving of the key length makes the security proof of OMAC substantially
harder than that of TMAC, as shown below. In Fig. 2, suppose that M [1] = 0n.
Then the output of the first EK is L. The same L always appears again at the
last block. In general, such reuse of L would get one into trouble in the security
proof.

(In OCB mode [13] and PMAC [5], L = EK(0n) is also used as a key of a
universal hash function. However, L appears as an output of some internal block
cipher only with negligible probability.)

Nevertheless we prove that OMAC is as secure as XCBC, where the security
analysis is in the concrete-security paradigm [1]. Further OMAC has all other
nice properties which XCBC (and TMAC) has. That is, the domain of OMAC
is {0, 1}∗, it requires one key scheduling of the underlying block cipher E and
max{1, �|M |/n�} block cipher invocations.

1.3 Other Related Work

Jaulmes, Joux and Valette proposed RMAC [8] which is an extension of EMAC.
RMAC encrypts the CBC MAC value with K2⊕R, where R is an n-bit random
string and it is a part of the tag. That is,

RMACK1,K2(M) = (EK2⊕R(CBCK1(M)), R) .

They showed that the security of RMAC is beyond the birthday paradox limit.
(XCBC, TMAC and OMAC are secure up to the birthday paradox limit.)

3

2 Preliminaries

2.1 Notation

We use similar notation as in [13, 5]. For a set A, x
R← A means that x is

chosen from A uniformly at random. If a, b ∈ {0, 1}∗ are equal-length strings
then a ⊕ b is their bitwise XOR. If a, b ∈ {0, 1}∗ are strings then a ◦ b denote
their concatenation. For simplicity, we sometimes write ab for a ◦ b if there is no
confusion.

For an n-bit string a = an−1 · · · a1a0 ∈ {0, 1}n, let a << 1 = an−2 · · · a1a00
denote the n-bit string which is a left shift of a by 1 bit, while a >> 1 =
0an−1 · · · a2a1 denote the n-bit string which is a right shift of a by 1 bit.

If a ∈ {0, 1}∗ is a string then |a| denotes its length in bits. For any bit string
a ∈ {0, 1}∗ such that |a| ≤ n, we let

padn(a) =
{

a10n−|a|−1 if |a| < n,
a if |a| = n.

(1)

Define ‖a‖n = max{1, �|a|/n�}, where the empty string counts as one block.
In pseudocode, we write “Partition M into M [1] · · ·M [m]” as shorthand for “Let
m = ‖M‖n, and let M [1], . . . , M [m] be bit strings such that M [1] · · ·M [m] = M
and |M [i]| = n for 1 ≤ i < m.”

2.2 CBC MAC

The block cipher E is a function E : KE × {0, 1}n → {0, 1}n, where each
E(K, ·) = EK(·) is a permutation on {0, 1}n, KE is the set of possible keys
and n is the block length.

The CBC MAC [6, 7] is the simplest and most well-known algorithm to make
a MAC from a block cipher E. Let M = M [1] ◦M [2] ◦ · · · ◦M [m] be a message
string, where |M [1]| = |M [2]| = · · · = |M [m]| = n. Then CBCK(M), the CBC
MAC of M under key K, is defined as Y [m], where

Y [i] = EK(M [i]⊕ Y [i− 1])

for i = 1, . . . , m and Y [0] = 0n. Bellare, Kilian and Rogaway proved the security
of the CBC MAC for fixed message length mn bits [1].

2.3 The Field with 2n Points

We interchangeably think of a point a in GF(2n) in any of the following ways: (1)
as an abstract point in a field; (2) as an n-bit string an−1 · · · a1a0 ∈ {0, 1}n; (3)
as a formal polynomial a(u) = an−1un−1 + · · ·+a1u+a0 with binary coefficients.

To add two points in GF(2n), take their bitwise XOR. We denote this oper-
ation by a⊕ b.

To multiply two points, fix some irreducible polynomial f(u) having binary
coefficients and degree n. To be concrete, choose the lexicographically first poly-
nomial among the irreducible degree n polynomials having a minimum number

4

of coefficients. We list some indicated polynomials (See [10, Chapter 10] for other
polynomials).


f(u) = u64 + u4 + u3 + u + 1 for n = 64,
f(u) = u128 + u7 + u2 + u + 1 for n = 128, and
f(u) = u256 + u10 + u5 + u2 + 1 for n = 256.

To multiply two points a ∈ GF(2n) and b ∈ GF(2n), regard a and b as polyno-
mials a(u) = an−1un−1 + · · · + a1u + a0 and b(u) = bn−1un−1 + · · · + b1u + b0,
form their product c(u) where one adds and multiplies coefficients in GF(2), and
take the remainder when dividing c(u) by f(u).

Note that it is particularly easy to multiply a point a ∈ {0, 1}n by u. For
example, if n = 128,

a · u =
{

a << 1 if a127 = 0,
(a << 1)⊕ 012010000111 otherwise. (2)

Also, note that it is easy to divide a point a ∈ {0, 1}n by u, meaning that one
multiplies a by the multiplicative inverse of u in the field: a · u−1. For example,
if n = 128,

a · u−1 =
{

a >> 1 if a0 = 0,
(a >> 1)⊕ 101201000011 otherwise. (3)

3 Basic Construction

In this section, we show a basic construction of OMAC-family.
OMAC-family is defined by a block cipher E : KE × {0, 1}n → {0, 1}n, an

n-bit constant Cst, a universal hash function H : {0, 1}n × X → {0, 1}n, and
two distinct constants Cst1, Cst2 ∈ X , where X is the finite domain of H .

H , Cst1 and Cst2 must satisfy the following conditions while Cst is arbitrary.
We write HL(·) for H(L, ·).
1. For any y ∈ {0, 1}n, the number of L ∈ {0, 1}n such that HL(Cst1) = y is

at most ε1 · 2n for some sufficiently small ε1.
2. For any y ∈ {0, 1}n, the number of L ∈ {0, 1}n such that HL(Cst2) = y is

at most ε2 · 2n for some sufficiently small ε2.
3. For any y ∈ {0, 1}n, the number of L ∈ {0, 1}n such that HL(Cst1) ⊕

HL(Cst2) = y is at most ε3 · 2n for some sufficiently small ε3.
4. For any y ∈ {0, 1}n, the number of L ∈ {0, 1}n such that HL(Cst1)⊕L = y

is at most ε4 · 2n for some sufficiently small ε4.
5. For any y ∈ {0, 1}n, the number of L ∈ {0, 1}n such that HL(Cst2)⊕L = y

is at most ε5 · 2n for some sufficiently small ε5.
6. For any y ∈ {0, 1}n, the number of L ∈ {0, 1}n such that HL(Cst1) ⊕

HL(Cst2)⊕ L = y is at most ε6 · 2n for some sufficiently small ε6.

Remark 3.1. Property 1 and 2 says that HL(Cst1) and HL(Cst2) are almost
uniformly distributed. Property 3 is satisfied by AXU (almost XOR universal)
hash functions [12]. Property 4, 5, 6 are new requirements introduced here.

5

Algorithm OMAC-familyK(M)
L← EK(Cst)
Y [0] ← 0n

Partition M into M [1] · · ·M [m]
for i← 1 to m− 1 do

X[i]←M [i] ⊕ Y [i− 1]
Y [i]← EK(X[i])

X[m]← padn(M [m])⊕ Y [m− 1]
if |M [m]| = n then X[m]← X[m]⊕HL(Cst1)

else X[m]← X[m] ⊕HL(Cst2)
T ← EK(X[m])
return T

Fig. 3. Definition of OMAC-family.

M [1]

�
E�K

�
�

��
�

M [2]

��
�

E�K
�

�
��

�

M [3]

��
�

E�K
�

T

�HL(Cst1)

M [1]

�
E�K

�
�

��
�

M [2]

��
�

E�K
�

�
��

�

M [3] 10i︸ ︷︷ ︸
��
�

E�K
�

T

�HL(Cst2)

Fig. 4. Illustration of OMAC-family.

The algorithm of OMAC-family is described in Fig. 3 and illustrated in Fig. 4,
where padn(·) is defined in (1).

The key space K of OMAC-family is K = KE . It takes a key K ∈ KE and a
message M ∈ {0, 1}∗, and returns a string in {0, 1}n.

4 Proposed Specification

In this section, we present two specifications of OMAC-family: OMAC1 and
OMAC2. We use OMAC as a generic name for OMAC1 and OMAC2.

In OMAC1 we let Cst = 0n, HL(x) = L·x, Cst1 = u and Cst2 = u2, where “·”
denotes multiplication over GF(2n). Equivalently, L = EK(0n), HL(Cst1) = L·u
and HL(Cst2) = L · u2. OMAC2 is the same as OMAC1 except for Cst2 =
u−1 instead of Cst2 = u2. Equivalently, L = EK(0n), HL(Cst1) = L · u and
HL(Cst2) = L · u−1.

Note that L · u, L · u−1 and L · u2 = (L · u) · u can be computed efficiently by
one shift and one conditional XOR from L, L and L · u, respectively as shown
in (2) and (3). It is easy to see that the conditions in Sec. 3 are satisfied for
ε1 = · · · = ε6 = 2−n in OMAC1 and OMAC2.

OMAC1 and OMAC2 are described in Fig. 5 and illustrated in Fig. 2.

6

Algorithm OMAC1K(M) Algorithm OMAC2K(M)
L← EK(0n) L← EK(0n)
Y [0] ← 0n Y [0]← 0n

Partition M into M [1] · · ·M [m] Partition M into M [1] · · ·M [m]
for i← 1 to m− 1 do for i← 1 to m− 1 do

X[i]←M [i] ⊕ Y [i − 1] X[i]←M [i] ⊕ Y [i − 1]
Y [i]← EK(X[i]) Y [i]← EK(X[i])

X[m]← padn(M [m])⊕ Y [m− 1] X[m]← padn(M [m]) ⊕ Y [m− 1]
if |M [m]| = n if |M [m]| = n

then X[m]← X[m]⊕ L · u then X[m]← X[m] ⊕ L · u
else X[m]← X[m] ⊕ L · u2 else X[m]← X[m] ⊕ L · u−1

T ← EK(X[m]) T ← EK(X[m])
return T return T

Fig. 5. Description of OMAC1 and OMAC2.

5 Security of OMAC-Family

5.1 Security Definitions

Let Perm(n) denote the set of all permutations on {0, 1}n. We say that P is a
random permutation if P is randomly chosen from Perm(n).

The security of a block cipher E can be quantified as Advprp
E (t, q), the max-

imum advantage that an adversary A can obtain when trying to distinguish
EK(·) (with a randomly chosen key K) from a random permutation P (·), when
allowed computation time t and q queries to an oracle (which is either EK(·) or
P (·)). This advantage is defined as follows.



Advprp

E (A) def=
∣∣∣Pr(K R← KE : AEK(·) = 1)− Pr(P R← Perm(n) : AP (·) = 1)

∣∣∣
Advprp

E (t, q) def= max
A
{Advprp

E (A)}

We say that a block cipher E is secure if Advprp
E (t, q) is sufficiently small.

Similarly, a MAC algorithm is a map F : KF × {0, 1}∗ → {0, 1}n, where KF

is a set of keys and we write FK(·) for F (K, ·). We say that an adversary AFK(·)

forges if A outputs (M, FK(M)) where A never queried M to its oracle FK(·).
Then we define the advantage as


Advmac

F (A) def= Pr(K R← KF : AFK(·) forges)

Advmac
F (t, q, µ) def= max

A
{Advmac

F (A)}

where the maximum is over all adversaries who run in time at most t, make at
most q queries, and each query is at most µ bits. We say that a MAC algorithm
is secure if Advmac

F (t, q, µ) is sufficiently small.
Let Rand(∗, n) denote the set of all functions from {0, 1}∗ to {0, 1}n. This

set is given a probability measure by asserting that a random element R of

7

Rand(∗, n) associates to each string M ∈ {0, 1}∗ a random string R(M) ∈
{0, 1}n. Then we define the advantage as



Advviprf

F (A) def=
∣∣∣Pr(K R← KF : AFK(·) = 1)− Pr(R R← Rand(∗, n) : AR(·) = 1)

∣∣∣
Advviprf

F (t, q, µ) def= max
A

{
Advviprf

F (A)
}

where the maximum is over all adversaries who run in time at most t, make at
most q queries, and each query is at most µ bits. We say that a MAC algorithm
is pseudorandom if Advviprf

F (t, q, µ) is sufficiently small (viprf stands for Variable-
length Input PseudoRandom Function).

Without loss of generality, adversaries are assumed to never ask a query
outside the domain of the oracle, and to never repeat a query.

5.2 Theorem Statements

We first prove that OMAC-family is pseudorandom if the underlying block cipher
is a random permutation P (information-theoretic result). This proof is much
harder than the previous works because of the reuse of L as explained Sec. 1.2.

Lemma 5.1 (Main Lemma for OMAC-family). Suppose that H, Cst1 and
Cst2 satisfy the conditions in Sec. 3 for some sufficiently small ε1, . . . , ε6, and
let Cst be an arbitrarily n-bit constant. Suppose that a random permutation
P ∈ Perm(n) is used in OMAC-family as the underlying block cipher. Let A be
an adversary which asks at most q queries, and each query is at most nm bits
(m is the maximum number of blocks in each query). Assume m ≤ 2n/4. Then

∣∣∣Pr(P R← Perm(n) : AOMAC-familyP (·) = 1)

−Pr(R R← Rand(∗, n) : AR(·) = 1)
∣∣∣ ≤ q2

2
·
(

7m2 + 2
2n

+ 3m2ε

)
,

(4)

where ε = max{ε1, . . . , ε6}.

A proof is given in the next section.
The following results hold for both OMAC1 and OMAC2. First, we obtain

the following lemma by substituting ε = 2−n in Lemma 5.1.

Lemma 5.2 (Main Lemma for OMAC). Suppose that a random permuta-
tion P ∈ Perm(n) is used in OMAC as the underlying block cipher. Let A be
an adversary which asks at most q queries, and each query is at most nm bits.
Assume m ≤ 2n/4. Then

∣∣∣Pr(P R← Perm(n) : AOMACP (·) = 1)

−Pr(R R← Rand(∗, n) : AR(·) = 1)
∣∣∣ ≤ (5m2 + 1)q2

2n
.

8

We next show that OMAC is pseudorandom if the underlying block cipher E
is secure. It is standard to pass to this complexity-theoretic result from Lemma
5.2. (For example, see [1, Section 3.2] for the proof technique. In [1, Section 3.2],
it is shown that a complexity-theoretic advantage of the CBC MAC is obtained
from its information-theoretic advantage.)

Corollary 5.1. Let E : KE × {0, 1}n → {0, 1}n be the underlying block cipher
used in OMAC. Then

Advviprf
OMAC(t, q, nm) ≤ (5m2 + 1)q2

2n
+ Advprp

E (t′, q′) ,

where t′ = t + O(mq) and q′ = mq + 1.

Finally we show that OMAC is secure as a MAC algorithm from Corollary 5.1
in the usual way. (For example, see [1, Proposition 2.7] for the proof technique. In
[1, Proposition 2.7], it is shown that pseudorandom functions are secure MACs.)

Theorem 5.1. Let E : KE × {0, 1}n → {0, 1}n be the underlying block cipher
used in OMAC. Then

Advmac
OMAC(t, q, nm) ≤ (5m2 + 1)q2 + 1

2n
+ Advprp

E (t′, q′) ,

where t′ = t + O(mq) and q′ = mq + 1.

5.3 Proof of Main Lemma for OMAC-family

Let H , Cst1 and Cst2 satisfy the conditions in Sec. 3 for some sufficiently small
ε1, . . . , ε6, and Cst be an arbitrarily n-bit constant. For a random permutation
P ∈ Perm(n) and a random n-bit string Rnd ∈ {0, 1}n, define




Q1(x) def= P (x) ⊕ Rnd, Q2(x) def= P (x⊕ Rnd)⊕ Rnd,

Q3(x) def= P (x⊕ Rnd⊕HL(Cst1)), Q4(x) def= P (x⊕ Rnd⊕HL(Cst2)),
Q5(x) def= P (x⊕HL(Cst1)) and Q6(x) def= P (x⊕HL(Cst2)),

(5)

where L = P (Cst). See Fig. 6 for illustrations.
We first show that Q1(·), Q2(·), Q3(·), Q4(·), Q5(·), Q6(·) are indistinguish-

able from a pair of six independent random permutations P1(·), P2(·), P3(·),
P4(·), P5(·), P6(·).
Lemma 5.3. Let A be an adversary which asks at most q queries in total. Then∣∣∣Pr(P R← Perm(n); Rnd R← {0, 1}n : AQ1(·),...,Q6(·) = 1)

−Pr(P1, . . . , P6
R← Perm(n) : AP1(·),...,P6(·) = 1)

∣∣∣ ≤ 3q2

2
·
(

1
2n

+ ε

)
,

where ε = max{ε1, . . . , ε6}.

9

x

�
P

���Rnd
�

Q1(x)

x

���Rnd

�
P

���Rnd
�

Q2(x)

x

���Rnd
⊕HL(Cst1)�

P

�
Q3(x)

x

���Rnd
⊕HL(Cst2)�

P

�
Q4(x)

x

���HL(Cst1)
�

P

�
Q5(x)

x

���HL(Cst2)
�

P

�
Q6(x)

Fig. 6. Illustrations of Q1, Q2 Q3, Q4, Q5 and Q6. Note that L = P (Cst).

A proof is given in Appendix B.
Next we define MOMAC (Modified OMAC). It uses six independent random

permutations P1, P2, P3, P4, P5, P6 ∈ Perm(n). The algorithm MOMACP1,...,P6(·)
is described in Fig. 7 and illustrated in Fig. 8 and Fig. 9.

We prove that MOMAC is pseudorandom.

Lemma 5.4. Let A be an adversary which asks at most q queries, and each
query is at most nm bits. Assume m ≤ 2n/4. Then∣∣∣Pr(P1, . . . , P6

R← Perm(n) : AMOMACP1,...,P6 (·) = 1)

−Pr(R R← Rand(∗, n) : AR(·) = 1)
∣∣∣ ≤ (2m2 + 1)q2

2n
.

A proof is given in Appendix C.
The next lemma shows that OMAC-familyP (·) and MOMACP1,...,P6(·) are

indistinguishable.

Lemma 5.5. Let A be an adversary which asks at most q queries, and each
query is at most nm bits. Assume m ≤ 2n/4. Then∣∣∣Pr(P R← Perm(n) : AOMAC-familyP (·) = 1)

−Pr(P1, . . . , P6
R← Perm(n) : AMOMACP1,...,P6 (·) = 1)

∣∣∣ ≤ 3m2q2

2
·
(

1
2n

+ ε

)
.

Proof. Suppose that there exists an adversary A such that∣∣∣Pr(P R← Perm(n) : AOMAC-familyP (·) = 1)

−Pr(P1, . . . , P6
R← Perm(n) : AMOMACP1,...,P6 (·) = 1)

∣∣∣ >
3m2q2

2
·
(

1
2n

+ ε

)
.

By using A, we show a construction of an adversary BA such that:

– BA asks at most mq queries, and
–

∣∣∣Pr(P R← Perm(n) : BQ1(·),...,Q6(·)
A = 1)

−Pr(P1, . . . , P6
R← Perm(n) : BP1(·),...,P6(·)

A = 1)
∣∣∣ >

3m2q2

2
·
(

1
2n

+ ε

)
,

10

Algorithm MOMACP1,P2,P3,P4,P5,P6(M)
Partition M into M [1] · · ·M [m]
if m ≥ 2 then

X[1] ←M [1]
Y [1]← P1(X[1])
for i← 2 to m− 1 do

X[i]←M [i] ⊕ Y [i − 1]
Y [i]← P2(X[i])

X[m]← padn(M [m])⊕ Y [m− 1]
if |M [m]| = n then T ← P3(X[m])

else T ← P4(X[m])
if m = 1 then

X[m]← padn(M [m])
if |M [m]| = n then T ← P5(X[m])

else T ← P6(X[m])
return T

Fig. 7. Definition of MOMAC.

M [1]

�
P1

�
�

��
�

M [2]

��
�

P2

�
�

��
�

M [3]

��
�

P3

�
T

M [1]

�
P1

�
�

��
�

M [2]

��
�

P2

�
�

��
�

M [3] 10i︸ ︷︷ ︸
��
�

P4

�
T

Fig. 8. Illustration of MOMAC for |M | > n.

M

�
P5

�
T

M 10i︸ ︷︷ ︸
�

P6

�
T

Fig. 9. Illustration of MOMAC for |M | ≤ n.

which contradicts Lemma 5.3.
Let O1(·), . . . ,O6(·) be BA’s oracles. The construction of BA is given in

Fig. 10.
When A asks M (r), then BA computes T (r) = MOMACO1,...,O6(M (r)) as if

the underlying random permutations are O1, . . . ,O6, and returns T (r). When A
halts and outputs b, then BA outputs b.

Now we see that:

– BA asks at most mq queries to its oracles, since A asks at most q queries,
and each query is at most nm bits.

– Pr(P1, . . . , P6
R← Perm(n) : BP1(·),...,P6(·)

A = 1)

= Pr(P1, . . . , P6
R← Perm(n) : AMOMACP1,...,P6 (·) = 1),

11

Algorithm BO1,...,O6
A

1: When A asks its r-th query M (r):

2: T (r) ←MOMACO1,...,O6(M (r))

3: return T (r)

4: When A halts and outputs b:
5: output b

Fig. 10. Algorithm BA. Note that for 1 ≤ i ≤ 6, Oi is either Pi or Qi

M [1]

�
P
���

�
��

�

�Rnd

M [2]

���Rnd
�

P
���

�
��

�

�Rnd

M [3]

���Rnd
⊕HL(Cst1)�

P

�
T

M [1]

�
P
���

�
��

�

�Rnd

M [2]

���Rnd
�

P
���

�
��

�

�Rnd

M [3] 10i︸ ︷︷ ︸
���Rnd
⊕HL(Cst2)�

P

�
T

Fig. 11. Computation of BA when Oi = Qi for 1 ≤ i ≤ 6, and |M | > n.

M

���HL(Cst1)
�

P

�
T

M 10i︸ ︷︷ ︸
���HL(Cst2)
�

P

�
T

Fig. 12. Computation of BA when Oi = Qi for 1 ≤ i ≤ 6, and |M | ≤ n.

since BA gives A a perfect simulation of MOMACP1,...,P6(·) if Oi(·) = Pi(·)
for 1 ≤ i ≤ 6.

– Pr(P R← Perm(n) : BQ1(·),...,Q6(·)
A = 1)

= Pr(P R← Perm(n) : AOMACP (·) = 1),
since BA gives A a perfect simulation of OMACP (·) if Oi(·) = Qi(·) for
1 ≤ i ≤ 6. See Fig. 11 and Fig. 12. Note that Rnd is canceled in Fig. 11.

This concludes the proof of the lemma. ��
We finally give a proof of Main Lemma for OMAC-family.

Proof (of Lemma 5.1). By the triangle inequality, the left hand side of (4) is at
most ∣∣∣Pr(P1, . . . , P6

R← Perm(n) : AMOMACP1,...,P6 (·) = 1)

−Pr(R R← Rand(∗, n) : AR(·) = 1)
∣∣∣ (6)

+
∣∣∣Pr(P R← Perm(n) : AOMAC-familyP (·) = 1)

−Pr(P1, . . . , P6
R← Perm(n) : AMOMACP1,...,P6 (·) = 1)

∣∣∣ .
(7)

12

Lemma 5.4 gives us an upper bound on (6) and Lemma 5.5 gives us an upper
bound on (7). Therefore the bound follows since

(2m2 + 1)q2

2n
+

3m2q2

2
·
(

1
2n

+ ε

)
=

q2

2
·
(

7m2 + 2
2n

+ 3m2ε

)
.

This concludes the proof of the lemma. ��

Acknowledgement

The authors would like to thank Phillip Rogaway of UC Davis for useful com-
ments.

References

1. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. JCSS, vol. 61, no. 3, 2000. Earlier version in Ad-
vances in Cryptology — CRYPTO ’94, LNCS 839, pp. 341–358, Springer-Verlag,
1994.

2. A. Berendschot, B. den Boer, J. P. Boly, A. Bosselaers, J. Brandt, D. Chaum,
I. Damg̊ard, M. Dichtl, W. Fumy, M. van der Ham, C. J. A. Jansen, P. Landrock,
B. Preneel, G. Roelofsen, P. de Rooij, and J. Vandewalle. Final Report of RACE
Integrity Primitives. LNCS 1007, Springer-Verlag, 1995.

3. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: The three
key constructions. Advances in Cryptology — CRYPTO 2000, LNCS 1880, pp.
197–215, Springer-Verlag, 2000.

4. J. Black and P. Rogaway. Comments to NIST concerning AES modes of operations:
A suggestion for handling arbitrary-length messages with the CBC MAC. Second
Modes of Operation Workshop. Available at
http://www.cs.ucdavis.edu/~rogaway/.

5. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable
message authentication. Advances in Cryptology — EUROCRYPT 2002, LNCS
2332, pp. 384–397, Springer-Verlag, 2002.

6. FIPS 113. Computer data authentication. Federal Information Processing Stan-
dards Publication 113, U. S. Department of Commerce / National Bureau of
Standards, National Technical Information Service, Springfield, Virginia, 1994.

7. ISO/IEC 9797-1. Information technology — security techniques — data integrity
mechanism using a cryptographic check function employing a block cipher algo-
rithm. International Organization for Standards, Geneva, Switzerland, 1999. Sec-
ond edition.

8. É. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC
beyond the birthday paradox limit: A new construction. Fast Software Encryption,
FSE 2002, LNCS 2365, pp. 237–251, Springer-Verlag, 2002. Full version is avail-
able at Cryptology ePrint Archive, Report 2001/074, http://eprint.iacr.org/.

9. K. Kurosawa and T. Iwata. TMAC: Two-Key CBC MAC. Cryptology ePrint
Archive, Report 2002/092, http://eprint.iacr.org/. To appear in Cryptogra-
phers’ Track RSA Conference 2003, CT-RSA 2003.

13

10. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications,
revised edition. Cambridge University Press, 1994.

11. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. J.Cryptology,
vol. 13, no. 3, pp. 315–338, Springer-Verlag, 2000.

12. P. Rogaway. Bucket hashing and its application to fast message authentication.
Advances in Cryptology — CRYPTO ’95, LNCS 963, pp. 29–42, Springer-Verlag,
1995.

13. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: a block-cipher mode of
operation for efficient authenticated encryption. Proceedings of ACM Conference
on Computer and Communications Security, ACM CCS 2001, ACM, 2001.

14. S. Vaudenay. Decorrelation over infinite domains: The encrypted CBC-MAC case.
Communications in Information and Systems (CIS), vol. 1, pp. 75–85, 2001. Ear-
lier version in Selected Areas in Cryptography, SAC 2000, LNCS 2012, pp. 57–71,
Springer-Verlag, 2001.

A Discussions

A.1 Design Rationale

Our choice for OMAC1 is Cst = 0n, HL(x) = L · x, Cst1 = u and Cst2 = u2,
where “·” denotes multiplication over GF(2n). Similarly, our choice for OMAC2
is Cst = 0n, HL(x) = L · x, Cst1 = u and Cst2 = u−1. Below, we list reasons of
this choice.

– One might try to use Cst1 = 1 instead of Cst1 = u. In this case, the fourth
condition in Sec. 3 is not satisfied, and in fact, the scheme can be easily
attacked. Similarly, if one uses Cst2 = 1 instead of Cst2 = u2 or Cst2 = u−1,
the fifth condition in Sec. 3 is not satisfied, and the scheme can be easily
attacked. Therefore, we can not use “1” as a constant.

– For OMAC1, we adopted u and u2 as Cst1 and Cst2, since L ·u and L ·u2 =
(L · u) · u can be computed efficiently by one left shift and one conditional
XOR from L and L · u, respectively, as shown in (2). Note that this choice
requires only a left shift. This would ease the implementation of OMAC1,
especially in hardware.

– For OMAC2, we adopted u−1 instead of u2 as Cst2. It requires one right shift
to compute L ·u−1 instead of one left shift to compute (L ·u) ·u. This would
allow to compute both L · u and L · u−1 from L simultaneously if both left
shift and right shift are available (for example, the underlying block cipher
uses both shifts).

A.2 On Standard Key Separation Technique

For XCBC, assume that we want to use a single key K of E, where E is the
AES.

14

Then the following key separation technique is suggested in [4]. Let K be a
k-bit AES key. Then




K1 = the first k bits of AESK(C1a) ◦AESK(C1b),
K2 = AESK(C2), and
K3 = AESK(C3)

for some distinct constants C1a, C1b, C2 and C3. We call it XCBC+kst (key
separation technique). XCBC+kst uses one k-bit key. However, it requires addi-
tional one key scheduling of AES and additional 3 or 4 AES invocations during
the pre-processing time.

Similar discussion can be applied to TMAC. For example, we can let
{

K1 = the first k bits of AESK(C1a) ◦AESK(C1b), and
K2 = AESK(C2)

for some distinct constants C1a, C1b and C2. We call it TMAC+kst.
We note that OMAC does not need such a key separation technique since its

key length is k bits in its own form (without using any key separation technique).
This saves storage space and pre-processing time compared to XCBC+kst and
TMAC+kst.

A.3 Comparison

Let E : {0, 1}k × {0, 1}n → {0, 1}n be a block cipher, and M ∈ {0, 1}∗ be a
message. We show an efficiency comparison of CBC MAC and its variants in
Table 2, where:

– ({0, 1}n)+ denotes the set of bit strings whose lengths are positive multiples
of n.

– “K len.” denotes the key length.
– “#K sche.” denotes the number of block cipher key schedulings. For RMAC,

it requires one block cipher key scheduling each time generating a tag.
– #M denotes the number messages which the sender has MACed.
– “#E invo.” denotes the number of block cipher invocations to generate a

tag for a message M , assuming |M | > 0.
– “#E pre.” denotes the number of block cipher invocations during the pre-

processing time. These block cipher invocations can be done without the
message. For XCBC+kst and TMAC+kst, the block cipher is assumed to
be the AES.

Next, let E : {0, 1}k×{0, 1}n → {0, 1}n be the underlying block cipher used
XCBC, TMAC and OMAC. In Table 3, we show a security comparison of XCBC,
TMAC and OMAC. We see that there is no significant difference among them.
They are equally secure up to the birthday paradox limit.

15

Table 2. Efficiency comparison of CBC MAC and its variants.

Name Domain K len. #K sche. #E invo. #E pre.

CBC MAC ({0, 1}n)m k 1 |M |/n 0

EMAC ({0, 1}n)+ 2k 2 1 + |M |/n 0

RMAC {0, 1}∗ 2k 1 + #M 1 + �(|M | + 1)/n� 0

XCBC {0, 1}∗ k + 2n 1 �|M |/n� 0

TMAC {0, 1}∗ k + n 1 �|M |/n� 0

XCBC+kst {0, 1}∗ k 2 �|M |/n� 3 or 4

TMAC+kst {0, 1}∗ k 2 �|M |/n� 2 or 3

OMAC {0, 1}∗ k 1 �|M |/n� 1

Table 3. Security comparison of XCBC, TMAC and OMAC.

Name Security Bound

XCBC Adv
mac
XCBC(t, q, nm) ≤ (4m2 + 1)q2 + 1

2n
+ 3 · Advprp

E (t′, q′),

[3, Corollary 2] where t′ = t + O(mq) and q′ = mq.

TMAC Adv
mac
TMAC(t, q, nm) ≤ (3m2 + 1)q2 + 1

2n
+ Adv

prp
E (t′, q′),

[9, Theorem 5.1] where t′ = t + O(mq) and q′ = mq.

OMAC Adv
mac
OMAC(t, q, nm) ≤ (5m2 + 1)q2 + 1

2n
+ Adv

prp
E (t′, q′),

[Theorem 5.1] where t′ = t + O(mq) and q′ = mq + 1.

B Proof of Lemma 5.3

If A is a finite multiset then #A denotes the number of elements in A.
Let {a, b, c, . . .} be a finite multiset of bit strings. That is, a ∈ {0, 1}∗, b ∈

{0, 1}∗, c ∈ {0, 1}∗, . . . hold. We say “{a, b, c, . . .} are distinct” if there exists no
element occurs twice or more. Equivalently, {a, b, c, . . .} are distinct if any two
elements in {a, b, c, . . .} are distinct.

Before proving Lemma 5.3, we need the following lemma.

Lemma B.1. Let q1, q2, q3, q4, q5, q6 be six non-negative integers. For 1 ≤ i ≤ 6,
let x

(1)
i , . . . , x

(qi)
i be fixed n-bit strings such that {x(1)

i , . . . , x
(qi)
i } are distinct.

Similarly, for 1 ≤ i ≤ 6, let y
(1)
i , . . . , y

(qi)
i be fixed n-bit strings such that

– {y(1)
1 , . . . , y

(q1)
1 } ∪ {y(1)

2 , . . . , y
(q2)
2 } are distinct, and

– {y(1)
3 , . . . , y

(q3)
3 }∪{y(1)

4 , . . . , y
(q4)
4 }∪{y(1)

5 , . . . , y
(q5)
5 }∪{y(1)

6 , . . . , y
(q6)
6 } are dis-

tinct.

16

Let P ∈ Perm(n) and Rnd ∈ {0, 1}n. Then the number of (P, Rnd) which satisfies



Q1(x
(i)
1) = y

(i)
1 for 1 ≤ ∀i ≤ q1,

Q2(x
(i)
2) = y

(i)
2 for 1 ≤ ∀i ≤ q2,

Q3(x
(i)
3) = y

(i)
3 for 1 ≤ ∀i ≤ q3,

Q4(x
(i)
4) = y

(i)
4 for 1 ≤ ∀i ≤ q4,

Q5(x
(i)
5) = y

(i)
5 for 1 ≤ ∀i ≤ q5 and

Q6(x
(i)
6) = y

(i)
6 for 1 ≤ ∀i ≤ q6

(8)

is at least (2n − (q + q2/2) · (1 + ε · 2n)) · (2n − q)!, where q = q1 + · · ·+ q6 and
ε = max{ε1, . . . , ε6}.

Proof. At the top level, we consider two cases: Cst ∈ {x(1)
1 , . . . , x

(q1)
1 } and Cst �∈

{x(1)
1 , . . . , x

(q1)
1 }.

Case 1: Cst ∈ {x(1)
1 , . . . , x

(q1)
1 }. Let c be a unique integer such that 1 ≤ c ≤ q1

and Cst = x
(c)
1 . Let l be an n-bit variable. First, observe that:

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q2, x
(i)
1 = x

(j)
2 ⊕ y

(c)
1 ⊕ l} ≤ q1q2,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q3, x
(i)
1 = x

(j)
3 ⊕y

(c)
1 ⊕ l⊕Hl(Cst1)} ≤ q1q3 · ε4 ·2n,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q4, x
(i)
1 = x

(j)
4 ⊕y

(c)
1 ⊕ l⊕Hl(Cst2)} ≤ q1q4 · ε5 ·2n,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q5, x
(i)
1 = x

(j)
5 ⊕Hl(Cst1)} ≤ q1q5 · ε1 · 2n,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q6, x
(i)
1 = x

(j)
6 ⊕Hl(Cst2)} ≤ q1q6 · ε2 · 2n,

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q3, x
(i)
2 = x

(j)
3 ⊕Hl(Cst1)} ≤ q2q3 · ε1 · 2n,

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q4, x
(i)
2 = x

(j)
4 ⊕Hl(Cst2)} ≤ q2q4 · ε2 · 2n,

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q5, x
(i)
2 ⊕y

(c)
1 ⊕ l = x

(j)
5 ⊕Hl(Cst1)} ≤ q2q5 · ε4 ·2n,

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q6, x
(i)
2 ⊕y

(c)
1 ⊕ l = x

(j)
6 ⊕Hl(Cst2)} ≤ q2q6 · ε5 ·2n,

#{l | 1 ≤ ∃i ≤ q3, 1 ≤ ∃j ≤ q4, x
(i)
3 ⊕Hl(Cst1) = x

(j)
4 ⊕Hl(Cst2)} ≤ q3q4·ε3·2n,

#{l | 1 ≤ ∃i ≤ q3, 1 ≤ ∃j ≤ q5, x
(i)
3 ⊕ y

(c)
1 ⊕ l = x

(j)
5 } ≤ q3q5,

#{l | 1 ≤ ∃i ≤ q3, 1 ≤ ∃j ≤ q6, x
(i)
3 ⊕ y

(c)
1 ⊕ l ⊕Hl(Cst1) = x

(j)
6 ⊕Hl(Cst2)}
≤ q3q6 · ε6 · 2n,

#{l | 1 ≤ ∃i ≤ q4, 1 ≤ ∃j ≤ q5, x
(i)
4 ⊕ y

(c)
1 ⊕ l ⊕Hl(Cst2) = x

(j)
5 ⊕Hl(Cst1)}
≤ q4q5 · ε6 · 2n,

#{l | 1 ≤ ∃i ≤ q4, 1 ≤ ∃j ≤ q6, x
(i)
4 ⊕ y

(c)
1 ⊕ l = x

(j)
6 } ≤ q4q6,

#{l | 1 ≤ ∃i ≤ q5, 1 ≤ ∃j ≤ q6, x
(i)
5 ⊕Hl(Cst1) = x

(j)
6 ⊕Hl(Cst2)} ≤ q5q6·ε3·2n,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q3, y
(i)
1 ⊕ y

(c)
1 ⊕ l = y

(j)
3 } ≤ q1q3,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q4, y
(i)
1 ⊕ y

(c)
1 ⊕ l = y

(j)
4 } ≤ q1q4,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q5, y
(i)
1 ⊕ y

(c)
1 ⊕ l = y

(j)
5 } ≤ q1q5,

#{l | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q6, y
(i)
1 ⊕ y

(c)
1 ⊕ l = y

(j)
6 } ≤ q1q6,

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q3, y
(i)
2 ⊕ y

(c)
1 ⊕ l = y

(j)
3 } ≤ q2q3,

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q4, y
(i)
2 ⊕ y

(c)
1 ⊕ l = y

(j)
4 } ≤ q2q4,

17

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q5, y
(i)
2 ⊕ y

(c)
1 ⊕ l = y

(j)
5 } ≤ q2q5, and

#{l | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q6, y
(i)
2 ⊕ y

(c)
1 ⊕ l = y

(j)
6 } ≤ q2q6,

from the conditions in Sec. 3.
We now fix any l which is not included in any of the above twenty-three sets.

We have at least (2n−(q1q2+q1q3 ·ε4 ·2n+q1q4 ·ε5 ·2n+q1q5 ·ε1 ·2n+q1q6 ·ε2 ·2n+
q2q3 ·ε1 ·2n+q2q4 ·ε2 ·2n+q2q5 ·ε4 ·2n+q2q6 ·ε5 ·2n+q3q4 ·ε3 ·2n+q3q5+q3q6 ·ε6 ·2n+
q4q5·ε6·2n+q4q6+q5q6·ε3·2n+q1q3+q1q4+q1q5+q1q6+q2q3+q2q4+q2q5+q2q6)) ≥
(2n − q2 · ε · 2n/2− q2/2) choice of such l.

Now we let L← l and Rnd← l ⊕ y
(c)
1 . Then we have:

– the inputs to P , {x(1)
1 , . . . , x

(q1)
1 , x

(1)
2 ⊕ Rnd, . . . , x

(q2)
2 ⊕ Rnd, x

(1)
3 ⊕ Rnd ⊕

HL(Cst1), . . . , x
(q3)
3 ⊕Rnd⊕HL(Cst1), x

(1)
4 ⊕Rnd⊕HL(Cst2), . . . , x

(q4)
4 ⊕Rnd⊕

HL(Cst2), x
(1)
5 ⊕HL(Cst1), . . . , x

(q5)
5 ⊕HL(Cst1), x

(1)
6 ⊕HL(Cst2), . . . , x

(q6)
6 ⊕

HL(Cst2)}, are distinct, and
– the corresponding outputs, {y(1)

1 ⊕Rnd, . . . , y(q1)
1 ⊕Rnd, y(1)

2 ⊕Rnd, . . . , y(q2)
2 ⊕

Rnd, y
(1)
3 , . . . , y

(q3)
3 , y

(1)
4 , . . . , y

(q4)
4 , y

(1)
5 , . . . , y

(q5)
5 , y

(1)
6 , . . . , y

(q6)
6 }, are distinct.

In other words, for P , the above q1 +q2 +q3 +q4 +q5 +q6 input-output pairs are
determined. The remaining 2n−(q1+q2+q3+q4+q5+q6) input-output pairs are
undetermined. Therefore we have (2n− (q1 + q2 + q3 + q4 + q5 + q6))! = (2n− q)!
possible choice of P for any such fixed (L, Rnd).

Case 2: Cst �∈ {x(1)
1 , . . . , x

(q1)
1 }. In this case, we count the number of Rnd and L

independently. Then similar to Case 1, observe that:

#{Rnd | 1 ≤ ∃i ≤ q2, Cst = x
(i)
2 ⊕ Rnd} ≤ q2,

#{Rnd | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q2, x
(i)
1 = x

(j)
2 ⊕ Rnd} ≤ q1q2,

#{Rnd | 1 ≤ ∃i ≤ q3, 1 ≤ ∃j ≤ q5, x
(i)
3 ⊕ Rnd = x

(j)
5 } ≤ q3q5,

#{Rnd | 1 ≤ ∃i ≤ q4, 1 ≤ ∃j ≤ q6, x
(i)
4 ⊕ Rnd = x

(j)
6 } ≤ q4q6,

#{Rnd | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q3, y
(i)
1 ⊕ Rnd = y

(j)
3 } ≤ q1q3,

#{Rnd | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q4, y
(i)
1 ⊕ Rnd = y

(j)
4 } ≤ q1q4,

#{Rnd | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q5, y
(i)
1 ⊕ Rnd = y

(j)
5 } ≤ q1q5,

#{Rnd | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q6, y
(i)
1 ⊕ Rnd = y

(j)
6 } ≤ q1q6,

#{Rnd | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q3, y
(i)
2 ⊕ Rnd = y

(j)
3 } ≤ q2q3,

#{Rnd | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q4, y
(i)
2 ⊕ Rnd = y

(j)
4 } ≤ q2q4,

#{Rnd | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q5, y
(i)
2 ⊕ Rnd = y

(j)
5 } ≤ q2q5, and

#{Rnd | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q6, y
(i)
2 ⊕ Rnd = y

(j)
6 } ≤ q2q6.

We fix any Rnd which is not included in any of the above twelve sets. We
have at least (2n − (q2 + q1q2 + q3q5 + q4q6 + q1q3 + q1q4 + q1q5 + q1q6 + q2q3 +
q2q4 + q2q5 + q2q6)) ≥ (2n − q − q2/2) choice of such Rnd.

Next we see that:

18

#{L | 1 ≤ ∃i ≤ q3, Cst = x
(i)
3 ⊕ Rnd⊕HL(Cst1)} ≤ q3 · ε1 · 2n,

#{L | 1 ≤ ∃i ≤ q4, Cst = x
(i)
4 ⊕ Rnd⊕HL(Cst2)} ≤ q4 · ε2 · 2n,

#{L | 1 ≤ ∃i ≤ q5, Cst = x
(i)
5 ⊕HL(Cst1)} ≤ q5 · ε1 · 2n,

#{L | 1 ≤ ∃i ≤ q6, Cst = x
(i)
6 ⊕HL(Cst2)} ≤ q6 · ε2 · 2n,

#{L | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q3, x
(i)
1 = x

(j)
3 ⊕ Rnd⊕HL(Cst1)} ≤ q1q3 · ε1 · 2n,

#{L | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q4, x
(i)
1 = x

(j)
4 ⊕ Rnd⊕HL(Cst2)} ≤ q1q4 · ε2 · 2n,

#{L | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q5, x
(i)
1 = x

(j)
5 ⊕HL(Cst1)} ≤ q1q5 · ε1 · 2n,

#{L | 1 ≤ ∃i ≤ q1, 1 ≤ ∃j ≤ q6, x
(i)
1 = x

(j)
6 ⊕HL(Cst2)} ≤ q1q6 · ε2 · 2n,

#{L | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q3, x
(i)
2 = x

(j)
3 ⊕HL(Cst1)} ≤ q2q3 · ε1 · 2n,

#{L | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q4, x
(i)
2 = x

(j)
4 ⊕HL(Cst2)} ≤ q2q4 · ε2 · 2n,

#{L | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q5, x
(i)
2 ⊕ Rnd = x

(j)
5 ⊕HL(Cst1)} ≤ q2q5 · ε1 · 2n,

#{L | 1 ≤ ∃i ≤ q2, 1 ≤ ∃j ≤ q6, x
(i)
2 ⊕ Rnd = x

(j)
6 ⊕HL(Cst2)} ≤ q2q6 · ε2 · 2n,

#{L | 1 ≤ ∃i ≤ q3, 1 ≤ ∃j ≤ q4, x
(i)
3 ⊕HL(Cst1) = x

(j)
4 ⊕HL(Cst2)}

≤ q3q4 · ε3 · 2n,
#{L | 1 ≤ ∃i ≤ q3, 1 ≤ ∃j ≤ q6, x

(i)
3 ⊕ Rnd⊕HL(Cst1) = x

(j)
6 ⊕HL(Cst2)}
≤ q3q6 · ε3 · 2n,

#{L | 1 ≤ ∃i ≤ q4, 1 ≤ ∃j ≤ q5, x
(i)
4 ⊕ Rnd⊕HL(Cst2) = x

(j)
5 ⊕HL(Cst1)}
≤ q4q5 · ε3 · 2n,

#{L | 1 ≤ ∃i ≤ q5, 1 ≤ ∃j ≤ q6, x
(i)
5 ⊕HL(Cst1) = x

(j)
6 ⊕HL(Cst2)}

≤ q5q6 · ε3 · 2n,
#{L | 1 ≤ ∃i ≤ q1, L = y

(i)
1 ⊕ Rnd} ≤ q1,

#{L | 1 ≤ ∃i ≤ q2, L = y
(i)
2 ⊕ Rnd} ≤ q2,

#{L | 1 ≤ ∃i ≤ q3, L = y
(i)
3 } ≤ q3,

#{L | 1 ≤ ∃i ≤ q4, L = y
(i)
4 } ≤ q4,

#{L | 1 ≤ ∃i ≤ q5, L = y
(i)
5 } ≤ q5, and

#{L | 1 ≤ ∃i ≤ q6, L = y
(i)
6 } ≤ q6,

from the conditions in Sec. 3.
We now fix any L which is not included in any of the above twenty-two sets.

We have at least (2n−(q3 ·ε1 ·2n+q4 ·ε2 ·2n+q5 ·ε1 ·2n+q6 ·ε2 ·2n+q1q3 ·ε1 ·2n+q1q4 ·
ε2 ·2n+q1q5 ·ε1 ·2n+q1q6 ·ε2 ·2n +q2q3 ·ε1 ·2n+q2q4 ·ε2 ·2n+q2q5 ·ε1 ·2n+q2q6 ·ε2 ·
2n+q3q4 ·ε3 ·2n+q3q6 ·ε3 ·2n+q4q5 ·ε3 ·2n+q5q6 ·ε3 ·2n+q1+q2+q3+q4+q5+q6)) ≥
(2n − q · ε · 2n − q2 · ε · 2n/2− q) choice of such L.

Then we have:

– the inputs to P , {Cst, x(1)
1 , . . . , x

(q1)
1 , x

(1)
2 ⊕Rnd, . . . , x

(q2)
2 ⊕Rnd, x

(1)
3 ⊕Rnd⊕

HL(Cst1), . . . , x
(q3)
3 ⊕Rnd⊕HL(Cst1), x

(1)
4 ⊕Rnd⊕HL(Cst2), . . . , x

(q4)
4 ⊕Rnd⊕

HL(Cst2), x
(1)
5 ⊕HL(Cst1), . . . , x

(q5)
5 ⊕HL(Cst1), x

(1)
6 ⊕HL(Cst2), . . . , x

(q6)
6 ⊕

HL(Cst2)}, are distinct, and

– the corresponding outputs, {L, y
(1)
1 ⊕Rnd, . . . , y(q1)

1 ⊕Rnd, y(1)
2 ⊕Rnd, . . . , y(q2)

2 ⊕
Rnd, y

(1)
3 , . . . , y

(q3)
3 , y

(1)
4 , . . . , y

(q4)
4 , y

(1)
5 , . . . , y

(q5)
5 , y

(1)
6 , . . . , y

(q6)
6 }, are distinct.

19

In other words, for P , the above 1+ q1 + q2 + q3 + q4 + q5 + q6 input-output pairs
are determined. The remaining 2n− (1+ q1 + q2 + q3 + q4 + q5 + q6) input-output
pairs are undetermined. Therefore we have (2n−(1+q1+q2+q3+q4+q5+q6))! =
(2n − (1 + q))! possible choice of P for any such fixed (L, Rnd).

Completing the Proof. In Case 1, we have at least (2n−(q2/2)·(1+ε·2n))·(2n−q)!
choice of (P, Rnd) which satisfies (8).

In Case 2, we have at least (2n − q − q2/2) · (2n − q · ε · 2n − q2 · ε · 2n/2−
q) · (2n − (1 + q))! choice of (P, Rnd) which satisfies (8). This bound is at least
(2n − (q + q2/2) · (1 + ε · 2n)) · (2n − q)!.

This concludes the proof of the lemma. ��

We now prove Lemma 5.3.

Proof (of Lemma 5.3). For 1 ≤ i ≤ 6, let Oi be either Qi or Pi. The adversary
A has oracle access to O1, . . . ,O6. Since A is computationally unbounded, there
is no loss of generality to assume that A is deterministic.

There are six types of queries A can make: (Oj , x) which denotes the query
“what is Oj(x)?” For the i-th query A makes to Oj , define the query-answer pair
(x(i)

j , y
(i)
j) ∈ {0, 1}n × {0, 1}n, where A’s query was (Oj , x

(i)
j) and the answer it

got was y
(i)
j .

Suppose that we run A with oracles O1, . . . ,O6. For this run, assume that A
made qj queries to Oj(·), where q1 + · · ·+ q6 = q. For this run, we define view v
of A as

v
def= 〈(y(1)

1 , . . . , y
(q1)
1), (y(1)

2 , . . . , y
(q2)
2), (y(1)

3 , . . . , y
(q3)
3),

(y(1)
4 , . . . , y

(q4)
4), (y(1)

5 , . . . , y
(q5)
5), (y(1)

6 , . . . , y
(q6)
6)〉 .

(9)

For this view, we always have:

For 1 ≤ j ≤ 6, {y(1)
j , . . . , y

(qj)
j } are distinct.

We note that since A never repeats a query, for the corresponding queries, we
have:

For 1 ≤ j ≤ 6, {x(1)
j , . . . , x

(qj)
j } are distinct.

Since A is deterministic, the i-th query A makes is fully determined by the first
i − 1 query-answer pairs. This implies that if we fix some qn-bit string V and
return the i-th n-bit block as the answer for the i-th query A makes (instead of
the oracles), then

– A’s queries are uniquely determined,
– q1, . . . , q6 are uniquely determined,
– the parsing of V into the format defined in (9) is uniquely determined, and
– the final output of A (0 or 1) is uniquely determined.

20

Let Vone be a set of all qn-bit strings V such that A outputs 1. We let
None

def= #Vone. Also, let Vgood be a set of all qn-bit strings V such that:

For 1 ≤ ∀i < ∀j ≤ q, the i-th n-bit block of V �= the j-th n-bit block of V .

Note that if V ∈ Vgood then the corresponding parsing v satisfies:

– {y(1)
1 , . . . , y

(q1)
1 } ∪ {y(1)

2 , . . . , y
(q2)
2 } are distinct, and

– {y(1)
3 , . . . , y

(q3)
3 }∪{y(1)

4 , . . . , y
(q4)
4 }∪{y(1)

5 , . . . , y
(q5)
5 }∪{y(1)

6 , . . . , y
(q6)
6 } are dis-

tinct.

Now observe that the number of V which is not in the set Vgood is at most(
q
2

)
2qn

2n . Therefore, we have

#{V | V ∈ (Vone ∩ Vgood)} ≥ None −
(

q

2

)
2qn

2n
. (10)

Evaluation of prand. We first evaluate

prand
def= Pr(P1, . . . , P6

R← Perm(n) : AP1(·),...,P6(·) = 1)

=
#{(P1, . . . , P6) | AP1(·),...,P6(·) = 1}

{(2n)!}6 .

For each V ∈ Vone, the number of (P1, . . . , P6) such that

For 1 ≤ j ≤ 6, Pj(x
(i)
j) = y

(i)
j for 1 ≤ ∀i ≤ qj , (11)

is exactly
∏

1≤j≤6(2
n − qj)!, which is at most (2n − q)! · {(2n)!}5. Therefore, we

have

prand =
∑

V ∈Vone

#{(P1, . . . , P6) | (P1, . . . , P6) satisfying (11)}
{(2n)!}6

≤
∑

V ∈Vone

(2n − q)!
(2n)!

= None · (2
n − q)!
(2n)!

.

Evaluation of preal. We next evaluate

preal
def= Pr(P R← Perm(n); Rnd R← {0, 1}n : AQ1(·),...,Q6(·) = 1)

=
#{(P, Rnd) | AQ1(·),...,Q6(·) = 1}

(2n)! · 2n
.

Then from Lemma B.1, we have

21

preal ≥
∑

V ∈(Vone∩Vgood)

{(P, Rnd) | (P, Rnd) satisfying (8)}
(2n)! · 2n

≥
∑

V ∈(Vone∩Vgood)

(2n − q)!
(2n)!

·
(

1− (q + q2/2) · (1 + ε · 2n)
2n

)
.

Completing the Proof. From (10) we have

preal ≥
(

None −
(

q

2

)
2qn

2n

)
· (2

n − q)!
(2n)!

·
(

1− (q + q2/2) · (1 + ε · 2n)
2n

)

≥
(

prand −
(

q

2

)
2qn

2n
· (2

n − q)!
(2n)!

)
·
(

1− (q + q2/2) · (1 + ε · 2n)
2n

)
.

Since 2qn · (2n−q)!
(2n)! ≥ 1, we have

preal ≥
(

prand − q(q − 1)
2 · 2n

)
·
(

1− (q + q2/2) · (1 + ε · 2n)
2n

)

≥ prand − (2q2 + q) + (q2 + 2q) · ε · 2n

2 · 2n

≥ prand − 3q2

2
·
(

1
2n

+ ε

)
. (12)

Applying the same argument to 1− preal and 1− prand yields that

1− preal ≥ 1− prand − 3q2

2
·
(

1
2n

+ ε

)
. (13)

Finally, (12) and (13) give |preal − prand| ≤ 3q2

2 ·
(

1
2n + ε

)
. ��

C Proof of Lemma 5.4

Let S and S′ be distinct bit strings such that |S| = sn for some s ≥ 1, and
|S′| = s′n for some s′ ≥ 1. Define Vn(S, S′) def= Pr(P2

R← Perm(n) : CBCP2(S) =
CBCP2(S′)). Then the following proposition is known [3].

Proposition C.1 (Black and Rogaway [3]). Let S and S ′ be distinct bit
strings such that |S| = sn for some s ≥ 1, and |S′| = s′n for some s′ ≥ 1.
Assume that s, s′ ≤ 2n/4. Then

Vn(S, S′) ≤ (s + s′)2

2n
.

22

Now let M and M ′ be distinct bit strings such that |M | = mn for some
m ≥ 2, and |M ′| = m′n for some m′ ≥ 2. Define Wn(M, M ′) def= Pr(P1, . . . , P6

R←
Perm(n) : MOMACP1,...,P6(M) = MOMACP1,...,P6(M ′)). We note that P5 and
P6 are irrelevant in the event MOMACP1,...,P6(M) = MOMACP1,...,P6(M ′) since
M and M ′ are both longer than n bits. Also, P4 is irrelevant in the above event
since |M | and |M ′| are both multiples of n. Further, P3 is irrelevant in the above
event since it is invertible, and thus, there is a collision if and only if there is a
collision at the input to the last encryption.

We show the following lemma.

Lemma C.1 (MOMAC Collision Bound). Let M and M ′ be distinct bit
strings such that |M | = mn for some m ≥ 2, and |M ′| = m′n for some m′ ≥ 2.
Assume that m, m′ ≤ 2n/4. Then

Wn(M, M ′) ≤ (m + m′)2

2n
.

Proof. Let M [1] · · ·M [m] and M ′[1] · · ·M ′[m′] be partitions of M and M ′ re-
spectively. We consider two cases: M [1] = M ′[1] and M [1] �= M ′[1].

Case 1: M [1] = M ′[1]. In this case, Let P1 be any permutation in Perm(n), and
let S ← (P1(M [1])⊕M [2]) ◦M [3] ◦ · · · ◦M [m] and S ′ ← (P1(M ′[1])⊕M ′[2]) ◦
M ′[3] ◦ · · · ◦M ′[m′]. Observe that MOMACP1,...,P6(M) = MOMACP1,...,P6(M

′)
if and only if CBCP2(S) = CBCP2(S′), since we may ignore the last encryptions
in CBCP2(S) and CBCP2(S′). Therefore

Wn(M, M ′) ≤ Vn(S, S′) ≤ (m + m′ − 2)2

2n
.

Case 2: M [1] �= M ′[1]. In this case, we split into two cases: P1(M [1])⊕M [2] �=
P1(M ′[1])⊕M ′[2] and P1(M [1])⊕M [2] = P1(M ′[1])⊕M ′[2]. The former event
will occur with probability at most 1. The later one will occur with probability
at most 1

2n−1 , which is at most 2
2n . Then it is not hard to see that

Wn(M, M ′) ≤ 1 · Vn(S, S′) +
2
2n
≤ (m + m− 2)2

2n
+

2
2n
≤ (m + m′)2

2n

by applying the similar argument as in Case 1. ��
Let m be an integer such that m ≤ 2n/4. We consider the following four sets.




D1
def= {M |M ∈ {0, 1}∗, n < |M | ≤ mn and |M | is a multiple of n}

D2
def= {M |M ∈ {0, 1}∗, n < |M | ≤ mn and |M | is not a multiple of n}

D3
def= {M |M ∈ {0, 1}∗ and |M | = n}

D4
def= {M |M ∈ {0, 1}∗ and |M | < n}

We next show the following lemma.

23

Lemma C.2. Let q1, q2, q3, q4 be four non-negative integers. For 1 ≤ i ≤ 4, let
M

(1)
i , . . . , M

(qi)
i be fixed bit strings such that M

(j)
i ∈ Di for 1 ≤ j ≤ qi and

{M (1)
i , . . . , M

(qi)
i } are distinct. Similarly, for 1 ≤ i ≤ 4, let T

(1)
i , . . . , T

(qi)
i be

fixed n-bit strings such that {T (1)
i , . . . , T

(qi)
i } are distinct. Then the number of

P1, . . . , P6 ∈ Perm(n) such that


MOMACP1,...,P6(M
(i)
1) = T

(i)
1 for 1 ≤ ∀i ≤ q1,

MOMACP1,...,P6(M
(i)
2) = T

(i)
2 for 1 ≤ ∀i ≤ q2,

MOMACP1,...,P6(M
(i)
3) = T

(i)
3 for 1 ≤ ∀i ≤ q3 and

MOMACP1,...,P6(M
(i)
4) = T

(i)
4 for 1 ≤ ∀i ≤ q4

(14)

is at least {(2n)!}6
(
1− 2q2m2

2n

)
· 1

2qn , where q = q1 + · · ·+ q4.

Proof. We first consider M
(1)
1 , . . . , M

(q1)
1 . The number of (P1, P2) such that

MOMACP1,...,P6(M
(i)
1) = MOMACP1,...,P6(M

(j)
1) for 1 ≤ ∃i < ∃j ≤ q1

is at most {(2n)!}2·(q1
2

)· 4m2

2n from Lemma C.1. Note that P3, . . . , P6 are irrelevant
in the above event.

We next consider M
(1)
2 , . . . , M

(q2)
2 . The number of (P1, P2) such that

MOMACP1,...,P6(M
(i)
2) = MOMACP1,...,P6(M

(j)
2) for 1 ≤ ∃i < ∃j ≤ q2

is at most {(2n)!}2 · (q2
2

) · 4m2

2n from Lemma C.1.
Now we fix any (P1, P2) which is not like the above. We have at least

{(2n)!}2
(
1− (

q1
2

) · 4m2

2n −
(
q2
2

) · 4m2

2n

)
choice.

Now P1 and P2 are fixed in such a way that the inputs to P3 are distinct and
the inputs to P4 are distinct. Also, the corresponding outputs {T (1)

3 , . . . , T
(q3)
3 }

are distinct, and {T (1)
4 , . . . , T

(q4)
4 } are distinct. We know that the inputs to P5 are

distinct, and the corresponding outputs {T (1)
3 , . . . , T

(q3)
3 } are distinct. Also, the

inputs to P6 are distinct, and and the corresponding outputs {T (1)
4 , . . . , T

(q4)
4 }

are distinct. Therefore, we have at least {(2n)!}2
(
1− (

q1
2

) · 4m2

2n −
(
q2
2

) · 4m2

2n

)
·

(2n − q1)! · (2n − q2)! · (2n − q3)! · (2n − q4)! choice of P1, . . . , P6 which satisfies
(14). This bound is at least {(2n)!}6

(
1− 2q2m2

2n

)
· 1

2qn since (2n − qi)! ≥ (2n)!
2qin .

This concludes the proof of the lemma. ��
We now prove Lemma 5.4.

Proof (of Lemma 5.4). Let O be either MOMACP1,...,P6 or R. Since A is com-
putationally unbounded, there is no loss of generality to assume that A is de-
terministic.

Similar to the proof of Lemma 5.3, for the query A makes to the oracle O,
define the query-answer pair (M (i)

j , T
(i)
j) ∈ Dj × {0, 1}n, where A’s i-th query

in Dj was M
(i)
j ∈ Dj and the answer it got was T

(i)
j ∈ {0, 1}n.

24

Suppose that we run A with the oracle. For this run, assume that A made
qj queries in Dj , where 1 ≤ j ≤ 4 and q1 + · · ·+ q4 = q. For this run, we define
view v of A as

v
def= 〈(T (1)

1 , . . . , T
(q1)
1), (T (1)

2 , . . . , T
(q2)
2),

(T (1)
3 , . . . , T

(q3)
3), (T (1)

4 , . . . , T
(q4)
4)〉 .

(15)

Since A is deterministic, the i-th query A makes is fully determined by the first
i − 1 query-answer pairs. This implies that if we fix some qn-bit string V and
return the i-th n-bit block as the answer for the i-th query A makes (instead of
the oracle), then

– A’s queries are uniquely determined,
– q1, . . . , q4 are uniquely determined,
– the parsing of V into the format defined in (15) is uniquely determined, and
– the final output of A (0 or 1) is uniquely determined.

Let Vone be a set of all qn-bit strings V such that A outputs 1. We let
None

def= #Vone. Also, let Vgood be a set of all qn-bit strings V such that:

For 1 ≤ ∀i < ∀j ≤ q, the i-th n-bit block of V �= the j-th n-bit block of V .

Note that if V ∈ Vgood, then the corresponding parsing v of V satisfies that:
{T (1)

1 , . . . , T
(q1)
1 } are distinct, {T (1)

2 , . . . , T
(q2)
2 } are distinct, {T (1)

3 , . . . , T
(q3)
3 } are

distinct and {T (1)
4 , . . . , T

(q4)
4 } are distinct. Now observe that the number of V

which is not in the set Vgood is at most
(

q
2

)
2qn

2n . Therefore, we have

#{V | V ∈ (Vone ∩ Vgood)} ≥ None −
(

q

2

)
2qn

2n
. (16)

Evaluation of prand. We first evaluate

prand
def= Pr(R R← Rand(∗, n) : AR(·) = 1) .

Then it is not hard to see

prand =
∑

V ∈Vone

1
2qn

=
None

2qn
.

Evaluation of preal. We next evaluate

preal
def= Pr(P1, . . . , P6

R← Perm(n) : AMOMACP1,...,P6(·) = 1)

=
#{(P1, . . . , P6) | AMOMACP1,...,P6 (·) = 1}

{(2n)!}6 .

Then from Lemma C.2, we have

25

preal ≥
∑

V ∈(Vone∩Vgood)

{(P1, . . . , P6) | (P1, . . . , P6) satisfying (14)}
{(2n)!}6

≥
∑

V ∈(Vone∩Vgood)

(
1− 2q2m2

2n

)
· 1
2qn

.

Completing the Proof. From (16) we have

preal ≥
(

None −
(

q

2

)
2qn

2n

)
·
(

1− 2q2m2

2n

)
· 1
2qn

=
(

prand −
(

q

2

)
1
2n

)
·
(

1− 2q2m2

2n

)

≥ prand −
(

q

2

)
1
2n
− 2q2m2

2n

≥ prand − 2q2m2 + q2

2n
. (17)

Applying the same argument to 1− preal and 1− prand yields that

1− preal ≥ 1− prand − 2q2m2 + q2

2n
. (18)

Finally, (17) and (18) give |preal − prand| ≤ 2q2m2+q2

2n . ��

26

