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Abstract. The Weil and Tate pairings are a popular new gadget in cryptography and
have found many applications, including identity-based cryptography. In particular, the
pairings have been used for key exchange protocols. This paper studies the bit security of
keys obtained using protocols based on pairings (that is, we show that obtaining certain
bits of the common key is as hard as computing the entire key). These results are valuable
as they give insight into how many “hard-core” bits can be obtained from key exchange
using pairings.

1 Introduction

Let p be a prime and let Fp be the field of p elements, which we identify with the
set {0, 1, . . . , p − 1}. Let l be a prime which is coprime to p and define m to be
the smallest positive integer such that pm ≡ 1 (mod l). In this paper we consider
a non-degenerate bilinear pairing

e : G1 ×G2 −→ G ⊆ F∗pm

where G1, G2 and G are cyclic groups of order l. Such a pairing can be obtained
from the Weil or Tate pairings on elliptic curves or abelian varieties [9, 10, 17, 18,
21–23, 28].

One implementation of such a pairing which has G1 = G2 (given by Ver-
heul [28]) is to take a supersingular elliptic curve E over Fp such that l‖#E(Fp)
and such that E has a suitable “distortion map” ϕ (which is a non-Fp-rational
endomorphism on E). Let G1 = G2 be the unique subgroup of E(Fp) of order l.
The pairing e(P,Q) is defined to be the Weil (or Tate) pairing of P with ϕ(Q).
For a situation where G1 6= G2 see [17]. We note that suitable groups G1,G2 over
prime fields Fp for which m is large can be constructed using the methods of [2,
8].

Pairings have found many applications in cryptography including the tripar-
tite key exchange protocol of Joux [17] (also see the variations by Al-Riyami and
Paterson [1] and Verheul [28]) and the identity-based key exchange protocol of
Smart [27]. These protocols enable a set of users to agree a random element K
of a subgroup of F∗pm , and the “key” is then derived from K.

We recall the tripartite Diffie-Hellman protocol in the original formulation
of Joux [17]: To set up the system, three communicating parties A, B and C



choose suitable groups G1 and G2 of order l and points P ∈ G1 and Q ∈ G2 with
e(P,Q) 6= 1 ∈ F∗pm .

To create a common secret key, A, B and C choose secret numbers a, b, c ∈
[0, l − 1] and publish pairs

(aP, aQ), (bP, bQ), (cP, cQ).

Now each of them is able to compute the common key

K = e(P,Q)abc.

For example, A can compute K as follows,

e(bP, cQ)a = e(P, cQ)ab = e(P,Q)abc = K ∈ F∗pm .

Note that K is an element of order l in F∗pm .
Since pm is very large (at least 1024 bits), and since K is an element of a

subgroup, one is inclined to only use a part of the representation of K to derive
the bitstring which serves as the key. An important issue is what is meant by the
“bits” of an element of an extension field Fpm (since we usually have m > 1).

Since l ≈ p it makes sense to derive a key whose size is approximately the
same as the size of p. In this paper we consider taking the trace of K with respect
to Fpm/Fp to obtain an element of Fp. We represent elements of Fp as integers in
[0, p− 1] and obtain corresponding bitstrings in the usual way. We show that the
trace is a secure key derivation function.

The results follow from several recently established results [19, 26] on the
hidden number problem with trace in extension fields. Detailed surveys of bit
security results and discussions of their meaning and importance are given in [11,
12]; several more recent results can be found in [5–7, 13–16, 19, 25, 26].

We obtain an almost complete analogue of the results of [7, 13] for m = 2 (for
example, for the elliptic curves used by Joux [17] and Verheul [28]) and much
weaker, but nontrivial, results for m ≥ 3. For example, in the case that m = 2
and p is a 512 bit prime, our results imply that, if the bilinear-Diffie-Hellman
problem is hard, then the 128 most significant bits of the trace of K can be used
to derive a secure key.

Note that we allow all our constants to depend on m while p and l are growing
parameters. Thoughout the paper log z denotes the binary logarithm of z > 0.

2 Hidden Number Problem with Trace

We denote by

Tr(z) =
m−1∑
i=0

zp
i

and Nm(z) =
m−1∏
i=0

zp
i

the trace and norm of z ∈ Fpm to Fp, see Section 2.3 of [20].
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For an integer x we define

‖x‖p = min
a∈Z
|x− ap|

and for a given k > 0, we denote by MSBk,p(x) any integer u, 0 ≤ u ≤ p−1, such
that

‖x− u‖p ≤ p/2k+1.

Roughly speaking, a value of MSBk,p(x) gives the k most significant bits of the
residue of x modulo p. Note that in the above definition k need not be an integer.

The hidden number problem with trace over a subgroup G ⊆ F∗pm can be for-
mulated as follows: Given r elements t1, . . . , tr ∈ G ⊆ F∗pm , chosen independently
and uniformly at random, and the values MSBk,p (Tr (αti)) for i = 1, . . . , r and
some k > 0, recover the number α ∈ Fpm .

The case of m = 1 and G = F
∗
p corresponds to the hidden number problem

introduced in [7] (for the case G ⊂ F
∗
p see [13]). The case of m ≥ 2 is more

difficult because one of the crucial ingredients, a bound on exponential sums with
elements of small subgroups of Fpm , is missing. Nevertheless in some special cases
results of a comparable strength have been obtained in [19]. In other cases, an
alternative method from [26] can be used, leading to weaker results.

The following statement is a partial case of Theorem 2 of [19].
We denote by N the set of z ∈ Fpm with norm equal to 1, thus |N | =

(pm − 1)/(p− 1).

Lemma 1. Let p be a sufficiently large prime number and let G be a subgroup of
N of order l with l ≥ p(m−1)/2+ρ for some fixed ρ > 0. Then for

k =
⌈
2
√

log p
⌉

and r =
⌈
4(m+ 1)

√
log p

⌉
there is a deterministic polynomial time algorithm A as follows. For any α ∈ Fpm,
if t1, . . . , tr are chosen uniformly and independently at random from G and if
ui = MSBk,p (Tr(αti)) for i = 1, . . . , r, the output of A on the 2r values (ti, ui)
satisfies

Pr
t1,...,tr∈G

[A (t1, . . . , tr;u1, . . . , ur) = α] ≥ 1− p−1.

For smaller groups a weaker result is given by Theorem 1 of [26].

Lemma 2. Let p be a sufficiently large prime number and let G be a subgroup of
F
∗
pm of prime order l with l ≥ pρ for some fixed ρ > 0. Then for any ε > 0, let

k = d(1− ρ/m+ ε) log pe and r = d4m/εe

there is a deterministic polynomial time algorithm A as follows. For any α ∈ Fpm,
if t1, . . . , tr are chosen uniformly and independently at random from G and if
ui = MSBk,p (Tr(αti)) for i = 1, . . . , r, the output of A on the 2r values (ti, ui)
satisfies

Pr
t1,...,tr∈G

[A (t1, . . . , tr;u1, . . . , ur) = α] ≥ 1− p−1.
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3 Bit Security of Tripartite Diffie-Hellman

We have already described the tripartite Diffie-Hellman system of Joux. In that
case an adversary sees (P,Q), (aP, aQ), (bP, bQ) and (cP, cQ) and the key is de-
rived from Tr(e(P,Q)abc) ∈ {0, 1, . . . , p − 1} (if distortion maps are used then
P = Q, see [28]). In this section we study the bit security of keys obtained in this
way. Later in this section we discuss the bit security of keys obtained from the
protocols of Al-Riyami and Paterson [1].

Let ω1, . . . , ωm be a fixed basis of Fpm over Fp and let ϑ1, . . . , ϑm be the dual
basis, that is,

Tr(ϑjωi) =

{
0, if i 6= j;
1, if i = j;

see Section 2.3 of [20]. Then any element α ∈ Fpm can be represented in the basis
ω1, . . . , ωm as

α =
m∑
i=1

Tr(ϑiα)ωi.

We now assume that there is an algorithm which can provide some information
about one of the components Tr(ϑie(P,Q)abc) of the above representation and
show that it leads to an efficient algorithm to compute the whole value e(P,Q)abc

and hence the key Tr(e(P,Q)abc). It follows that the partial information about
one of the components is as hard as the whole key.

To make this precise, for every k > 0 we denote by Ok the oracle which, for
some fixed ϑ ∈ F∗pm and any a, b, c ∈ [0, l − 1], takes as input the pairs

(P,Q), (aP, aQ), (bP, bQ), (cP, cQ),

and outputs MSBk,p

(
Tr
(
ϑe(P,Q)abc)

))
.

We start with the case m = 2 for which we obtain a result of the same strength
as those known for the classical two-party Diffie–Hellman scheme over Fp, see [7,
13]. Moreover, one can prove that there are infinitely many parameter choices to
which our construction applies. Indeed, we know from [3] that there are infinitely
many primes p such that p + 1 has a prime divisor l ≥ p0.677. These arguments
can be easily adjusted to show that the same holds for primes in the arithmetic
progression p ≡ 2 (mod 3). When p ≡ 2 (mod 3), the elliptic curve given by the
Weierstrass equation Y 2 = X3 + 1 has #E(Fp) = p+ 1. Another infinite series of
examples of #E(Fp) = p+ 1 can be obtained with primes p ≡ 3 (mod 4) and the
elliptic curve given by the Weierstrass equation Y 2 = X3 +X, see [18].

Theorem 1. Assume that p is an n-bit prime (for sufficiently large n) and l is
the order of groups G1 and G2 such that gcd(l, p(p − 1)) = 1 and l ≥ p1/2+ρ for
some fixed ρ > 0. Then there exists a polynomial time algorithm which, given the
pairs

(P,Q), (aP, aQ), (bP, bQ), (cP, cQ)

for some a, b, c ∈ {0, . . . , l − 1}, makes O(n1/2) calls of the oracle Ok with k =⌈
2n1/2

⌉
and computes e(P,Q)abc correctly with probability at least 1− p−1.
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Proof. The case when ab = 0 is trivial. In the general case choose a random
d ∈ {0, . . . , l − 1} and call the oracle Ok on the pairs

(P,Q), (aP, aQ), (bP, bQ), ((c+ d)P, (c+ d)Q)

(the points (c + d)P and (c + d)Q can be computed from the values of cP , cQ
and d). Let α = ϑe(P,Q)abc be the hidden number and let t = e(P,Q)abd which
can be computed as t = e(aP, bQ)d. The oracle returns

MSBk,p

(
Tr(ϑe(P,Q)ab(c+d))

)
= MSBk,p (Tr(αt)) .

Since l is prime and ab 6≡ 0 (mod l) it follows that the “multipliers” t are uni-
formly and independently distributed in G, when the shifts d are chosen uniformly
and independently at random from {0, . . . , l− 1}. Now from Lemma 1 we derive
the result. ut

Similarly, from Lemma 2 we derive:

Theorem 2. Assume that p is an n-bit prime (for sufficiently large n) and l is
the order of groups G1 and G2 such that gcd(l, p(p− 1)) = 1 and l ≥ pρ for some
fixed ρ > 0. Then, for any ε > 0, there exists a polynomial time algorithm which,
given the pairs

(P,Q), (aP, aQ), (bP, bQ), (cP, cQ)

for some a, b, c ∈ {0, . . . , l − 1}, makes O(ε−1) calls of the oracle Ok with k =
d(1− ρ/m+ ε)ne and computes e(P,Q)abc correctly with probability at least 1 −
p−1.

We now consider the authenticated three party key agreement protocols of
Al-Riyami and Paterson [1]. In this setting, users A, B and C have public keys
aP, bP and cP and transmit ephemeral keys xP, yP and zP . The protocols TAK–
1, TAK–2 and TAK–3 of [1] construct keys of the form

e(P, P )abc+xyz, e(P, P )abz+acy+bcx, e(P, P )xyc+xzb+yza

respectively. If bitstrings are derived from these keys using the trace then results
analogous to Theorems 1 and 2 are obtained.

We sketch the details in the case of TAK–2. Suppose Ok is an oracle which,
on input (P, aP, bP, cP, xP, yP, zP ), outputs

MSBk,p(Tr(ϑe(P, P )abz+acy+bcx))

and let α = ϑe(P, P )abz+acy+bcx. Repeatedly choosing random w and calling Ok
on (P, aP, bP, cP, xP, yP, zP + wP ) yields

MSBk,p(Tr(αt)) where t = e(aP, bP )w.

It is straightforward to obtain analogues of of Theorems 1 and 2.
Al-Riyami and Paterson [1] also propose the protocol TAK–4, which is related

to the MQV protocol. It is interesting to note that we are not able to give bit
security results for keys obtained with this protocol.
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4 Bit Security of Identity-based Key Exchange

The first identity-based key exchange protocol is due to Sakai, Ohgishi and Kasa-
hara [24], but we consider the protocol of Smart [27] as it has better security
properties.

The trusted authority defines two groups G1 and G2, chooses P ∈ G2 and a
secret integer s, and publishes P and Ppub = sP . The identities of users A and
B give rise to points QA, QB ∈ G1 (see Boneh and Franklin [4] for details about
identity-based cryptography using pairings) and the trusted authority gives them
sQA and sQB respectively.

The key agreement protocol is as follows. User A chooses a random integer a
and transmits TA = aP to B. Similarly, user B transmits TB = bP to A. Both
users can compute the common key

K = e(aQB + bQA, Ppub)

for example user A computes e(aQB, Ppub)e(sQA, TB). In practice, the key is
derived from K using some key derivation function, which in this case we take to
be the trace.

The bit security of this key-exchange protocol can be studied and results
analogous to those above can be obtained. Suppose Ok is an oracle such that, for
any a, b, c ∈ [0, l − 1], on input

(P, aP, bP, cP,QA, QB)

outputs MSBk,p (Tr(ϑe(aQB + bQA, cP )) for some fixed ϑ ∈ F∗pm . Let α = ϑe(aQB+
bQA, Ppub). Repeatedly choose random d ∈ [0, l − 1] and call the oracle Ok on

(P, TA, TB + dP, Ppub, QA, QB).

The oracle responses are of the form

MSBk,p(Tr(αt)) where t = e(QA, Ppub)d

and analogues of Theorems 1 and 2 are obtained.

5 Remarks

It remains an open problem to understand the bit security of keys obtained from
the protocol TAK–4 of Al-Riyami and Paterson [1].

We remark that it would be valuable to extend our results (as well as the
results of [5–7, 13, 14, 16, 19]) to case when the oracle works correctly only on a
polynomially large fraction of all possible inputs. Unfortunately, at the moment
it is not clear how to adjust the ideas of [7], underlying all further developments
in this area, to work with such “unreliable” oracles.

It has been shown in [13] that for almost all primes p an analogue of Lemma 1
holds for subgroups G ∈ F∗p of cardinality |G| ≥ pρ, for any fixed ρ > 0. It is not
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immediately clear how to extend the underlying number theoretic techniques to
extension fields, although this question definitely deserves further attention (see
also the discussion in [26]).

Finally, we recall a different kind of bit security result (see [16]) concerning
the value of the pairing e(R, P ) for an unknown point R, in case when m = 1
(although it is quite possible that the whole approach of [16] can be generalised
to extension fields). In particular, if l ≥ p1/2+ρ is a divisor of p− 1, where ρ > 0
is fixed, then an oracle producing about (1 − ρ/5) log p most significant bits of
e(R, P ) for an unknown point R ∈ G1 and a given point P ∈ G2, can be used to
construct a polynomial time algorithm to compute e(R, P ) exactly. It would be
interesting to understand cryptographic implications of this result.
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