
Selective Disclosure Credential Sets

Jason E. Holt (isrl@lunkwill.org)
Kent E. Seamons (seamons@cs.byu.edu) ∗

Internet Security Research Lab
Brigham Young University

http://isrl.byu.edu/

Abstract

We describe a credential system similar to the electronic cash system described by Chaum, Fiat and

Naor. Our system uses bit commitments to create selective disclosure credentials which limit what portions

of a credential the holder must reveal. We show how credentials from separate issuers can be linked to the

same person in order to prevent users from pooling credentials to obtain services no one user could obtain

alone. We also describe how to use a blinding technique described by Laurie which may not violate the

patents on blind signatures.

Keywords: digital credentials, selective disclosure, credential pooling, blind signatures.

1 Overview

Alice wishes to obtain a service from Steve, a server.
Steve will only provide the service if Alice can demon-
strate certain attributes about herself as attested by
credential issuing authorities. Alice is willing to prove
these attributes, but doesn’t want Steve to get any
additional information about her, even if Steve works
together with the credential issuers. Steve wants to
make sure that the attributes Alice displays all be-
long to the same person, and weren’t accumulated by
Alice and Bob pooling their credentials.

To this end, Alice first creates a Credential Set Re-
quest, which contains a matrix of blinded documents.
Each row of the matrix contains documents to be

∗With thanks to Adam Back, Stefan Brands, Ben Lau-
rie, Hilarie Orman, Rich Schroeppel, Robert Sherwood, Mike
Stay, Ting Yu, sci.crypt and the Cypherpunks. This research
was supported by DARPA through AFRL contract number
F33615-01-C-0336 and through Space and Naval Warfare Sys-
tems Center San Diego grant number N66001-01-18908.

signed by the same issuer, and the documents in each
column all share a common credential ID which Alice
will use to prove to Steve that the documents in the
matrix belong together. To prove that she’s honest,
Alice includes information about certain columns of
the matrix and sends the Credential Set Request to
each of the issuers of her credentials. Each issuer in-
spects the request then blindly signs the unrevealed
columns of his row in the matrix. Alice then removes
the blinding factors, leaving her with a valid set of
credentials (where each row constitutes an individual
credential).

Credentials in credential sets are built from selective-
disclosure certificates. These are certificates in which
the normal attribute values have been replaced with
a bit commitment of the true value. If Alice doesn’t
choose to reveal the value of a selective disclosure
field, Steve doesn’t learn anything about that value.
But if she does choose to reveal such a field, Steve
can verify that she isn’t lying about its value.

1

When Alice shows some subset of the credentials to
Steve, Steve checks that all the IDs match, ensuring
that all the credentials were in fact issued to the same
person. Alice also reveals the preimages of the selec-
tive disclosure attributes in each credential which she
wishes to show to Steve.

If Alice later shows credentials from the same set to
someone else, that person could collude with Steve
and determine that they both were dealing with
the same person. Thus for maximum privacy Alice
should obtain many instances of her credential set,
and use each instance in only one transaction.

Revocable anonynimity can optionally be obtained
by including a uniquely identifying document in the
certificate which can only be decrypted by the coop-
eration of a quorum of auditing authorities.

2 Related work

Several types of credential schemes have been de-
scribed in the literature. Some of them are, like our
system, designed as equivalents to traditional creden-
tials like driver’s licences. Some are designed to al-
low users to develop digital pseudonyms online, while
many others are aimed at providing the digital equiv-
alent of cash.

In 1988, Chaum, Fiat and Naor[5] developed a digital
cash system which uses blind signatures and the cut
and choose protocol in almost exactly the way our
system does, and defines a matrix of values almost
identical to the certificate matrix described in section
4.1. Our credential sets could be considered a vari-
ant of their system accomodating selective disclosure
credentials, associating them with a single identity,
and optionally using a different blinding technique.

Chaum’s blind signature techniques[7, 8] made it pos-
sible to obtain a certified value from an issuer and
show it to a server without the possibility of the
server and issuer correlating the issuing and show-
ing events. In 1985, Chaum presented a credential
system based on blind signatures[6] in which users
establish a different pseudonym with each potential

server and issuer, and can transfer credentials is-
sued under one pseudonym to other pseudonyms they
hold. In his system, the exponent used in signing a
pseudonym defines the type and value of the creden-
tial. His system allows demonstration of mathemat-
ical relationships between attributes (such as AND,
OR and GREATER THAN). One awkward require-
ment of Chaum’s proposal is that a trusted author-
ity is needed to facilitate the relationship between
issuers, users and servers. A particular server and is-
suer would have to establish a relationship with this
authority before users could even obtain credentials
from the issuer to show to the server.

Brands[1, 2] presented a system with a raft of fea-
tures. His book describes how to use his credentials
to satisfy boolean expressions as in Chaum’s system,
discourage lending of credentials, limit the number
of times a credential may be shown, renew creden-
tial certification anonymously, implement revocable
anonymity, etc. Pages 193 and 210 describe a feature
of his credentials which might allow an implementa-
tion of pooling prevention as we describe. Brands
obtained several patents on his system.

Camenisch and Lysyanskaya[3] proposed a system al-
lowing a credential to be shown multiple times with-
out allowing showing instances to be linked. Their
system focuses on limiting the information revealed
to servers during the showing protocol rather than
restricting what information the issuer gets during
the signing process. Revocable anonymity is possi-
ble along with several other desirable features. Their
system provides many of the features of previous sys-
tems without using blinding a la Chaum, but relies
heavily on proofs of knowledge like Brands’ system.
Credentials are issued to a user relative to their pub-
lic key, so their system could also be used to prevent
users from pooling credentials.

3 Preliminaries

This section establishes the primitives necessary to
implement our system. Blind signatures and cut and
choose are well known techniques. Laurie’s blinding

2

technique and the form of selective disclosure cre-
dentials presented here are relatively obscure, while
noninteractive cut and choose is completely new, as
far as the authors are aware.

3.1 Credentials and Certificates

Our definition of a certificate is a document contain-
ing various attributes and their values. Certificates
are issued by issuers (often called certificate author-
ities) to users (often called subjects). X.509v3 cer-
tificates have a number of standard fields such as the
issuer and subject names, and “extensions” which can
specify arbitrary other kinds of information about the
user.

A user typically creates a certificate to be signed,
called a certificate request, and sends it to the issuer.
The issuer signs the request by hashing the document
with a collision-resistant one-way function and sign-
ing the hash with his private key. Later the user can
show the signed certificate to a verifier, who verifies
that the certificate is valid. In an “on-line” system,
this verification takes place with the help of a cen-
tral authority. In an “off-line” system, the server can
verify a certificate (or more generally, a credential)
without outside help.

We use the term “credential” when we wish to speak
of attribute demonstrating information in general. A
credential is something which establishes one or more
attributes of its owner. Credential sets use multi-
ple X.509v3-like certificates together to form a single
credential. Proper X.509v3 certificates signed in the
traditional way could also be considered credentials.

3.1.1 Selective disclosure credentials

A selective disclosure credential has several at-
tributes. When the user shows the credential to a
verifier, she can choose to reveal only some of the
attributes to the verifier.

Credential sets accomplish this with the help of bit
commitment. Bit commitment allows our user, Alice,
to commit to a value without revealing it. One way

to do this is with the help of collision-resistant one-
way functions. Alice’s commitment c is the output of
a one-way function oneway() operating on her secret
value s and a random string r:

c = commit(s) = oneway(s . r)

(. denotes concatenation). Alice first sends c to Vic-
tor the verifier. If she chooses not to reveal the value,
Victor can’t determine what the value was. If she
does choose to reveal her secret, she sends Victor s
and r, who runs them through oneway() and checks
that the result equals c. If oneway() is collision-
resistant, Alice can’t easily find any other values for
s and r which will produce c as output. Brands[2]
mentions this technique on pages 27 and 184 of his
book.

A normal certificate can easily be made into a se-
lective disclosure certificate by replacing actual at-
tribute values with commitments to those values.
Victor can verify that the certificate is valid in the
usual way, but gains no information about the selec-
tive disclosure values unless Alice reveals the value
and random string used in the commitment function.

Selective disclosure credentials are even more power-
ful when used in conjunction with blind signatures.
If Izzy (a credential issuer) blindly signs a creden-
tial for Alice, she can show it to Steve (a server who
provides a service after verifying a credential) with-
out revealing all the selective disclosure fields. Steve
can pass the credential back to Izzy, but unless Alice
has revealed enough information to uniquely identify
herself, Izzy won’t be able to determine what the un-
revealed fields were, even though he signed the cre-
dential.

3.2 Blind signatures

Chaum introduced the idea of blind signatures. Blind
signatures allow Izzy, the issuer, to sign a document
without knowing its contents. To accomplish this,
Alice applies a blinding factor to her document be-
fore submitting it to Izzy for signing. Izzy signs the

3

blinded document and returns it to Alice. Alice can
then remove the blinding factor without invalidating
the signature. Anyone can verify that the signature
is valid, but Izzy can’t prove any association between
the blinded document he signed and the one Alice
presents unless he knows the blinding factor Alice
used.

Since Chaum has a patent on blind signatures un-
til 2005, we’ll also mention an alternative which
might not be covered by his patents. Camenisch[4]
described blind signature systems based on other
public-key cryptosystems which might also be useful
for implementing credential sets.

3.2.1 Cut and choose

Since Izzy is unwilling to sign documents without
knowing what they contain, Alice uses the well known
cut and choose protocol to demonstrate that the cre-
dentials she wants signed are valid. Alice creates n
blinded copies of a certificate, and allows Izzy to ex-
amine some of them. In a simple implementation,
Izzy examines n-1 of the certificates, and signs the
remaining one unexamined. Alice has a 1 in n chance
of successfully cheating by guessing which certificate
he won’t examine. This implementation can be useful
if there are strong penalties for trying to cheat, but
isn’t suitable for the noninteractive version of the pro-
tocol we present in the next section, since Alice can
attempt to cheat without communicating with any
other parties.

So instead, Alice will allow Izzy to examine n/2 of the
certificates. He’ll sign the other n/2 copies. Alice can
unblind them and show them to Steve, who will ex-
amine them to ensure that they’re all consistent. Al-
ice can only cheat by guessing which n/2 copies Izzy
won’t examine, and falsifying exactly those. Now she
has a 1 in (n choose n/2) chance of successfully cheat-
ing.

To use blind signatures with cut and choose in our
system, Alice creates n equivalent copies of the certifi-
cate and hashes each one with oneway(). She blinds
each hash with a different blinding factor. If the doc-

uments were normal certificates, each copy would be
completely identical (and blinding wouldn’t serve any
useful purpose – the issuer would know that the doc-
uments revealed were byte-for-byte identical to the
unrevealed documents). If we use selective disclo-
sure certificates, however, each certificate will have
the same actual attribute values, but the commit-
ments to those values which go into the certificate
will be different because of the random strings used in
commit(). Since Izzy won’t know the random strings,
he won’t know what the actual attribute values are
if he later sees the signed documents.

Alice makes all n blinded hashes available to Izzy,
and n/2 of them are selected at random. In order for
Izzy to verify that the corresponding n/2 certificates
are correct, Alice reveals the blinding factors for the
n/2 selected hashes, as well as the random strings
used in the commit() function when constructing the
selective disclosure fields Izzy needs to see. Izzy uses
oneway() on the values and random strings to ver-
ify the selective disclosure fields. Then he hashes the
certificates and blinds them with the supplied blind-
ing factors to see if they match the blinded values. If
Alice hasn’t tried to cheat, he multiplies the remain-
ing n/2 hashes together, signs the result and returns
it to Alice.

Alice unblinds the signed product, and can show it
to Victor as the signature for the certificates. To re-
veal a selective disclosure attribute to Victor, Alice
must send the true attribute value along with the
random string used by commit() in each of the n/2
certificates. Victor verifies that the oneway() func-
tion returns the proper value for each copy of the
certificate. If any of the values are different, Victor
knows Alice was trying to cheat.

Alice has only a 1 in (n choose n/2) chance that she
can successfully defeat the cut and choose mecha-
nism. To do this, she must get Izzy to sign n/2 docu-
ments all consistent with each other and all different
from the n/2 valid documents which he inspects.

This application of blind signatures and cut and
choose, excluding our use of bit commitments, is al-
most identical to the scheme proposed by Chaum,
Fiat and Naor.

4

3.2.2 Noninteractive cut and choose

Borrowing a concept from noninteractive zero knowl-
edge proofs 1, we can use a collision-resistant one way
function to select the n/2 documents to be revealed
in the cut and choose protocol. The oneway() func-
tion is called on the concatenation of the n blinded
documents described above, and its output it used to
select which n/2 documents Alice must reveal. Izzy
can also hash the n documents to verify that Alice
properly applied oneway().

The following algorithm can be used to select the
n/2 columns: Use the output of oneway() to seed
a suitable pseudorandom number generator. Di-
vide the PRNG’s output into strings which are each
ceil(log2n) bits long and use each string as the index
of an ID to reveal, until n/2 IDs have been selected.

3.2.3 Chaum blinding

Chaum’s blinding is simple. Here’s how we can
blindly compute an RSA signature using Izzy’s RSA
secret key d, public key e and public modulus n. Alice
chooses a random blinding value b, raises it to Izzy’s
public exponent and multiplies it with her document
h (h since we typically sign the hash of a message,
not the message itself):

r = hbe (mod n)

Izzy signs r by raising it to his secret exponent d and
returns rd (mod n) to Alice. Alice can now remove
the blinding factor to obtain hd, the signature for her
document. Note that (be)d is equivalent to encrypting
then decrypting b: (be)d = b (mod n).

rd = hdbed (mod n)

= hdb (mod n)

hd = hdb
b (mod n)

1Applied Cryptography[10], pp.106-107.

Alice is left with a normal RSA signature on h
which anyone can verify if they know Izzy’s public
key. Thus, if credential sets are implemented using
Chaum’s scheme, verifiers will be able to verify the
validity of credentials off-line, without Izzy’s help.

This technique works with our cut and choose algo-
rithm. In this case, Alice has a collection of hashed
certificates h1...hn, and chooses corresponding blind-
ing factors b1...bn.

rk = hkbe
k (mod n)

Izzy signs the product of r1...rn, and Alice unblinds
as before:

(h1h2...)
d =

hd
1b

ed
1 hd

2b
ed
2 ...

b1b2...
(mod n)

Alice is left with the product of the signatures of the
hashes.

3.2.4 Laurie blinding

Laurie[9] (who in turn credits David Wagner, Ian
Goldberg, David Molnar, Paul Barreto and “various
Anonymouses”) proposed an alternative to Chaum’s
blinding technique in an effort to avoid the patent on
blind signatures. In Laurie’s system, issuers still sign
documents blindly, but signatures can only be verified
by the signer himself. To prove that he isn’t trying
to cheat when producing such a signature, the issuer
proves its validity to the user in zero knowledge.

Since the end result is not a signature which can be
verified by a third party, it might not be covered by
Chaum’s patent.

The straightforward application of Laurie’s approach
requires that the issuer help in the credential verifi-
cation process. Such an implementation must be an
on-line system so that the verifier and issuer can work
together to verify credentials.

Another option2 involves Alice returning her blindly
signed credentials to the issuer at a later time. He

2Suggested in an anonymous post to the Coderpunks e-mail
list on 14 Dec 1999.

5

checks that the signature is valid (but, like any other
person she could show credentials to, doesn’t learn
anything about the selective disclosure attributes).
Then he signs the document with his RSA key. Now
Alice has a traditionally signed credential, just as she
would have obtained had she used Chaum’s blinding
technique. Thus, this approach may not be as im-
mune to Chaum’s patents.

In Laurie’s system, Alice blinds her values with a
blinding factor which she removes after signing by the
issuer, as in Chaum’s system. But since signatures
in Laurie’s system can only be verified by the signer
himself, he uses a zero-knowledge proof to show that
the signature contains no hidden identifying informa-
tion.

To use Laurie’s blinding techniques (as described in
sections 2.1 and 4.1 of his paper), Izzy creates public
values p, g and gk (mod p) such that:

p is prime
p− 1

2
is prime

g2 6= 1 (mod p)

g(p−1)/2 ≡ 1 (mod p)

k lies in [2, (p− 1)/2)

k is Izzy’s secret exponent.

To blind a value h, Alice chooses a blinding exponent
b to use with g:

r = hgb (mod p)

For completeness, we also specify that:

r(p−1)/2 ≡ 1 (mod p)

Alice sends r to Izzy for signing, and he responds with
several values which allow Alice to both construct a
signature on r and verify its validity. Izzy chooses a
random integer x such that

x lies in [(loggp) + 1, (p− 1)/2− (loggp)− 1]

He also calculates:

t = k
x (mod

p− 1

2
)

c = rx (mod p)

d = gx (mod p)

He sends the values c and d to Alice. Alice requests
x or t at random, and Izzy sends it to her. If she
requested x, she checks that:

c = rx (mod p)

and

d = gx (mod p)

If she requested t, she verifies that:

dt = gxt = gk (mod p)

and

ct = rxt = rk (mod p)

They repeat this protocol n times to show that Izzy
has a probability of cheating of 1 in 2n. When the
protocol terminates, Alice takes one of the values:

ct = rk (mod p)

= (hgb)k (mod p)

and unblinds it to produce hk (mod p), Izzy’s signa-
ture on her document:

(hgb)k = hkgbk (mod p)

= hkgkb (mod p)

hk = hkgkb

gkb (mod p)

6

Since gk is a public value, it’s easy for her to compute
gkb. Working with the product of hashes works just
as in Chaum’s system:

(r1r2r3...)
k = hk

1gb1khk
2gb2k... (mod p)

hk
1hk

2 ... =
hk

1gb1khk
2gb2k...

gkb1gkb2 ...
(mod p)

Note that only Izzy can verify if his signature is cor-
rect, since only he knows k.

4 Credential Sets

Alice may have several credentials issued by differ-
ent issuers. For example, the state might issue her
driver’s license, while her school issues her student
identification. In certain circumstances she may have
to demonstrate attributes about herself that reside
on different credentials. To prevent Alice and Bob
from pooling their credentials to obtain services nei-
ther could obtain alone, we require that certificates
shown together must have been issued as part of a
credential set. Credentials in a set can be issued by
different issuers, but will all be provably linked. As
long as the issuers are trustworthy in following the
issuing protocol, proof of set membership is sufficient
to show that the credentials were issued to the same
person.

Alice will build a credential set request (CSR) to show
the issuers of each of her credentials. Issuers sign the
portions of the CSR that correspond to the creden-
tials they issue. Alice can then unblind the creden-
tials and show them to obtain services. The CSR and
showing protocol provide probabilistic evidence that
Alice has properly created the credentials she wishes
to have signed, and that the credentials were issued
to the same person.

The certificate matrix portion of the CSR is almost
identical to the matrix described in section 4 of
Chaum, Fiat and Naor’s scheme. But while their sys-
tem uses it to create a blacklist for misbehaving users,

our system uses the linking information to prove cre-
dential set membership.

4.1 The Credential Set Request

Alice first obtains an identity document, defined as
any document sufficient to identify Alice to all her is-
suers. This could be a selective disclosure certificate,
but there’s no reason to have it signed blindly since
its purpose is to identify its owner. The purpose of
the credential set is to prove that all the elements of
the set were issued to the person owning the identity
document (even though that identity need not be re-
vealed when the credentials are shown). The identity
document might include different forms of identifica-
tion - for example, a social security number as well as
a driver’s licence number. Different issuers can use
different elements of the identity document to ver-
ify Alice’s identity, so it’s important that the issuer
of the identity document ensure that Alice can’t get
Bob’s SSN included in her identity document.

She also generates a random value, and obtains a
random value from each of her issuers. The output
of oneway() given the identity document and random
values becomes the Master ID for the credential set.
The random values ensure that the Master ID is dif-
ferent for every CSR she creates. This is necessary
to prevent attacks which would allow Alice to reuse
a Master ID in a subsequent credential set. Later,
each issuer will check that Alice used the random
value that issuer gave her. Since the issuer doesn’t
reuse random values, he knows that at least part of
the input to oneway() was unique, and therefore that
the Master ID is also (with overwhelming probabil-
ity) unique.

Alice uses commit() with the Master ID and n differ-
ent random strings to produce credential IDs. That
is, Alice generates id1...idn such that every idk =
commit(master id . k). Appending k to the Mas-
ter ID ensures that each credential ID, and therefore
each valid certificate, will be different3. Otherwise,
Alice could maliciously use the same random values

3Dr. Stefan Brands pointed out the need for this require-
ment.

7

Notes:

1. The identity document is the

basis for membership in the

credential set. The session

random values make the master

ID unique for each issuing session.

2. Credential IDs descend from

the master ID. Commitments to

the IDs are included in the proof

material. The credential ID appears

in each certificate in a column.

3. Half of the columns in the

certificate matrix are used to

prove the accuracy of the CSR.

The other half will be signed by

the issuers. A real certificate matrix

would have many more columns than

are shown here.

4. All the proof material together

feeds oneway(), just as in a

noninteractive zero knowledge proof,

to determine which columns Alice

must reveal.

5. Alice includes the certificates and

blinding factors used to create the

columns of the certificate matrix to be

revealed.

6. Alice must also reveal the selective

disclosure values for each certificate

and the random strings used in

commit() so that the issuers can

verify the attributes in each certificate.

oneway()

Name: Alice
SSN: 123-45-6789
Address: 123 Maple...
...

CA

Identity Document

Alice random: a4v80vw2...
Issuer 1 random: 1va39v...
Issuer 2 random: 18vd02...
...

Master ID: 3le37...

Obscured Credential
ID: b92jh...

Obscured Credential
ID: mn2f9...

Obscured Credential
ID: ee82h...

Credential ID:
23ffx...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
23ffx...

Age: XX
...

NRA Member
Credential ID:

23ffx...
Class: XXXX
...

Credential ID:
bj028...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
bj028...

Age: XX
...

NRA Member
Credential ID:

bj028...
Class: XXXX
...

Credential ID:
0jg88b...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
0jg88b...

Age: XX
...

NRA Member
Credential ID:

0jg88b...
Class: XXXX
...

Credential ID:
ib93g...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
ib93g...

Age: XX
...

NRA Member
Credential ID:

ib93g...
Class: XXXX
...

Session Random Values

credential_id = commit(3le37...)
/* Credential ID is 23ffx... */
obscured_credential_id =

commit(credential_id)

Obscured Credential
ID: 2d20d...

Credential IDs: bj028..., 0jg88b., ...
Blinding factors: 9318...,1386..., ...

Revealed Columns: 2,3,...

Credential ID:
bj028...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
bj028...

Age: XX
...

NRA Member
Credential ID:

bj028...
Class: XXXX
...

Credential ID:
0jg88b...

Major: XXXX
...

BYU Student

US Citizen

Credential ID:
0jg88b...

Age: XX
...

NRA Member
Credential ID:

0jg88b...
Class: XXXX
...

Selective Disclosure Values

Major: {CS, 20v92...}, Major: {CS,e8r8b...}
...

Age: {19,28b2l...}, Age: {19,b892x...}
...

Class: {Gold,z0893...}, Class: {Gold,09gn3...}
...

oneway()

Proof Material

Proof

Key:

Procedure

Data

Blinded data

1

6

2

3

4

5

The Credential Set Request

Cert i f icate

Ma t r i x

a y b a b t u

8

in commit() to create the same credential ID for each
column, which would in turn allow her to create iden-
tical certificates for all columns in a row (except for
a single malicious entry). The issuer’s signature on
that row could then be manipulated to produce sig-
natures on arbitrary documents. Appending k to the
Master ID serves the same purpose as the value i in
calculating yi in the Chaum, Fiat and Naor scheme.

Alice then calls commit() again to commit
to each credential ID. That is, she calcu-
lates vk such that vk = commit(idk) =
commit(commit(master id . k)). The first call
to commit() prevents anyone seeing a credential ID
from knowing what Master ID it descends from.
The second call prevents the issuer from being able
to associate credential IDs Alice reveals during the
showing protocol with the unrevealed commitments
in her CSR.

Next she creates n certificates (which are actually
more closely related to the common notion of certifi-
cate requests) which will be used together to create
a single credential, just as we described in the cut
and choose protocol. The certificates 1...n include
the credential IDs 1...n.

Alice repeats the process for each of the m creden-
tials she wishes to have in her credential set. The
mxn blinded certificates can be thought of as an m
by n matrix, where each row represents a single cre-
dential. Each column consists of one element of each
credential, all with the same credential ID. Alice uses
the same blinding factor for each certificate in a col-
umn.

The identity document, random values, Master ID,
obscured credential IDs and blinded certificates are
combined to form the proof material of a Credential
Set Request. Alice uses this proof material as input
to the one-way function used in the noninteractive
cut and choose protocol.

The output of the one-way function selects n/2 of the
columns of the matrix which Alice must reveal. To
wit, she appends the credential IDs for each column
and the commit() preimages which prove that they
descend from the Master ID and produce the values

in the proof material, and the blinding factors for
the columns of the matrix to be revealed. All of this
information forms a complete Credential Set Request.

4.2 Issuing

In the issuing protocol, Alice sends her CSR to each
of the issuers of her credentials. Each issuer will ex-
amine the CSR to verify its accuracy, then sign his
row(s) of the certificate matrix. Alice can then un-
blind the signature and use it along with the corre-
sponding certificates as a valid, signed credential.

Alice sends the following to each issuer:

• the Credential Set Request

• the certificates which form the preimages of the
blinded hashes in the revealed columns and row
corresponding to the credential to be issued

• the preimages of the selective disclosure fields in
each revealed certificate which the server needs
to verify

The issuer verifies the following:

• the random value Alice included was actually is-
sued by that issuer for the current transaction

• the revealed credential IDs were properly gener-
ated

• the certificates are of the proper form (i.e., each
attribute value is accurate, and the ID in each
certificate matches the credential ID for its col-
umn)

• the certificates hash to the value obtained by un-
blinding the corresponding element of the matrix

It then multiplies the remaining blinded hashes in
the row together, signs the product and returns the
signature to Alice. Alice can divide the blinding fac-
tors out of the issuer’s signature to obtain the sig-
nature for the product of hashes of the certificates.

9

The certificates and signature together form a proper
credential.

Alice repeats the process for each issuer.

Each issuer has now signed documents it has never
seen, but whose values are almost certainly (for large
enough n) either:

• correct, or

• inconsistent among the elements of the row (and
the showing protocol states that any such incon-
sistency invalidates the credential.)

4.3 Proving ownership of credentials

Traditionally, certificates contain a public key whose
corresponding private key is known to the rightful
certificate owner. This allows Alice to show a certifi-
cate to Steve and prove her ownership of it. Steve
can keep a copy of the certificate, but can’t claim
ownership unless he can discover Alice’s secret key.

With credential sets, Alice still needs to prove own-
ership of her credentials, but doesn’t want to reveal
uniquely identifying information about herself in the
process. She can do this by creating a new key pair
whose public key will be included in each credential
in her set. She stores it as a selective disclosure value
in her credentials so that Izzy doesn’t see it when
signing them. Later she’ll reveal it to Steve when he
demands that she prove ownership of her credentials.

4.4 Showing

Alice now has a signed credential set, and can show
a subset of these credentials to Steve in order to ob-
tain a service. She sends the credentials to Steve,
who verifies the issuer signatures on them, possibly
with the issuers’ help. She also may choose to reveal
the values of selective disclosure fields. Steve veri-
fies that the credentials are properly constructed and
challenges Alice’s ownership of them.

Remember that each credential is comprised of n/2
selective disclosure certificates and the signature on

the product of their hashes. Steve must verify the sig-
nature as well as that the n/2 certificates are equiv-
alent (the final step of the cut and choose protocol).

If Chaum’s blind signatures were used in the issuing
process, Steve verifies the credential signature just
as for any other RSA signature, by raising the sig-
nature to the issuer’s public exponent (modulo its
public modulus) and checking that the value equals
the product of certificate hashes.

If Laurie’s alternative blinding technique was used
without the option of returning the credential to the
issuer for conventional signing (as mentioned in sec-
tion 3.2.4), Steve forwards the product of hashes and
the signature to the issuer for verification. Note that
this product of hashes does not reveal the creden-
tials themselves to the issuer, and thus preserves the
privacy of both Alice and Steve.

Steve also checks that the preimages Alice sent for
each selective disclosure field specify the same value
for each certificate in the row and that they hash to
the values in the certificates. This means that he
must run oneway() on n/2 preimages for every se-
lective disclosure field of every credential which Alice
wishes to reveal.

Next Steve verifies that the presented rows came from
the same credential set by verifying that the creden-
tial ID is the same for all certificates in a column.

Finally, Steve challenges Alice’s ownership of the set
by means of the public key included in each creden-
tial.

4.4.1 Credential re-use

All the credentials issued during the issuing process
have the same credential IDs so that Alice can prove
they belong together in the set. These IDs are dif-
ferent for each instance of the issuing protocol, how-
ever. Alice loses some privacy if she shows credentials
from the same set more than once, since the people
she shows them to could compare the credential IDs
and determine that they were dealing with the same
person.

10

........

.....
..
...
.....

........

.....
..
...
.....

........

.....
..
...
.....

........

.....
..
...
.....

........

.....
..
...
.....

...
CA

US Citizen

Credential ID: 23ffx...
Name: e20g8...
Age: m029f...
DOB: o398g...
...

US Citizen

Credential ID: ib93g...
Name: v93kh...
Age: p9hj4...
DOB: l29fm...
...

Us Citizen:
Age: {19,t092g...} Age: {19,nl82g...} Age: {19,uzlq8...} Age: {19,t38gb...} ...

BYU Student:
Major: {CS,2i09g...} Major: {CS, 10vj3...} Major: {CS,g81lg...} Major: {CS,10g93j...} ...
Year: {Senior,r209h...} Year: {Senior,x83hg...} Year: {Senior,pk91k...} Year: {Senior,01kvb...} ...

Selective Disclosure Values

........

.....
..
...
.....

........

.....
..
...
.....

........

.....
..
...
.....

........

.....
..
...
.....

........

.....
..
...
.....

...
CA

BYU Student

Credential ID: 23ffx...
Name: w821jg...
Major: q81kv...
Year: ce83m...
...

BYU Student

Credential ID: ib93g...
Name: y28bk...
Major: y82hb...
Year: 9wkv8...
...

Notes:

After the issuers sign Alice's credentials, she removes the
blinding factors on the signature. She sends Steve the
unblinded signature, the certificates which were signed, and
the values for the selective disclosure fields she wishes to
reveal (along with the random strings used in commit()).

Steve checks to make sure that the Credential IDs match for
all the credentials Alice presents. In this example, the ID for
the first column is 23ffx... and the ID for the second column
(originally the 4th column in the CSR) is ib93g....

For each certificate, Steve runs the actual value and random
string provided for each selective disclosure field through
oneway() and checks that the result is identical
to the value in the certificate. In this example,
he would begin by checking the age field, verifying that
oneway(19 . t092g...) == m029f..., then that
oneway(19 . nl82g...) == p9hj4..., etc.

Showing Protocol

a y b a b t u

For maximum privacy, then, Alice should go through
the issuing protocol with her issuers multiple times
and obtain many instances of her credential set. After
showing any credential from her set, she discards that
entire instance of the set. Credentials from differ-
ent instances of the issuing protocol can’t be linked,
except by the attribute values Alice reveals during
the showing process. That is, Alice can obviously be
traced if she always reveals the social security number
field of her credentials, since that attribute is unique
to her. But if she reveals only that her hair is brown
to both Steve and Sam, they can’t tell whether they
were dealing with the same person.

4.5 Security

There are several ways Alice might try to pool her
credentials with Bob to obtain services neither could
obtain alone, or to get an issuer to sign an untrue
credential.

Alice could attempt to create a Credential Set Re-
quest with fake uninspected columns. Abusing the

noninteractive cut and choose protocol, Alice can
spend as long as she wishes constructing different
Credential Set Requests in which half the columns of
the credential matrix have bogus certificates. Each
attempt has a 1 in (n choose n/2) chance that the
output of oneway() will select just the valid columns
of the matrix for inspection, leaving the issuer to sign
an untrue credential. She can perform this attack of-
fline, without interacting with any other entities. The
probability of success can be reduced to an acceptable
level by choosing a sufficiently large n.

Alice could try to get a signature on a single mali-
cious column whose value is the product of hashes
of a bogus row of credentials. She throws away the
CSR and starts over if oneway() selects that column
for inspection (which it will do with 50% probabil-
ity). After the issuer signs the row, she isolates the
signature on just that value. Isolating individual sig-
natures is the hard part, as long as each document is
different and she can’t otherwise derive the signature
for the valid columns. Here she has no better chance
of success than the issuer would in trying to deter-

11

mine the blinding factor applied to a document to be
signed.

Bob could tell Alice the Credential IDs for a cre-
dential set of his so that Alice can attempt to in-
clude those same Credential IDs in a CSR of her
own. However, she can’t determine before creating
the CSR what columns will be required for inspec-
tion by oneway(). As in the first example, she has
only a 1 in (n choose n/2) chance of success with each
attempt.

5 Revocable anonymity

In revocable anonymity, the server and a quorum of
authorities can agree to discover additional informa-
tion about the presenter of a credential.

Revocable anonymity can be implemented by requir-
ing that a field of a credential be a piece of encrypted
personally identifying information. For instance, Al-
ice could encrypt her social security number using
the public keys of several different government agen-
cies and include the ciphertext as a field of each cre-
dential. To prove the field’s validity to an issuer as
required during the credential set issuing protocol,
Alice sends the issuer the SSN and random padding
used during encryption. The issuer verifies the value
by encrypting with the same keys Alice used and en-
suring the values are equal.

If Steve suspects Alice of wrongdoing, he can forward
the credentials she revealed to him to the government.
All the agencies would then have to cooperate in de-
crypting the encrypted identifying information in the
credential to discover Alice’s identity.

6 Performance

Here are some size and performance estimates for is-
suing and showing a CSR with 3 credentials, using
n = 256 columns and Chaum-style blinding. We
assume each certificate in the matrix is 1k bytes in
length, and has 8 selective disclosure fields whose ac-

tual values are relatively short. The random strings
used in commit() are each 20 bytes.

The entire CSR contains 3 ∗ 256 = 768 certificates
totalling 768k bytes. Their blinded hashes (which
populate the certificate matrix) will each be approx-
imately as large as the modulus of the issuer’s sign-
ing key. For a 1024 bit key, this would come to
768 ∗ 128 = 96k bytes. Each certificate requires
8∗20 = 160 bytes to store its selective disclosure ran-
dom strings, for a total of another 768 ∗ 160 = 120k
bytes. Including the rest of the CSR overhead (in-
cluding the identity document, random strings, blind-
ing factors, etc.), the client needs to store about a
megabyte of data for the CSR and all its auxiliary
information.

During the issuing protocol, Alice will need to send
each issuer the CSR and half the certificates for his
row, which comes to a little over half a megabyte of
network traffic. To verify the CSR, each issuer must
verify, hash and blind the revealed certificates for his
row, and sign the unrevealed columns. Checking the
selective disclosure fields (assuming they examine all
8) requires 128 ∗ 8 = 3k calls to oneway() per issuer.
Hashing, blinding and signing require an additional
128 calls to oneway(), 128 blinding operations (each
consisting of a modular multiplication and exponen-
tiation), and another 128 multiplications plus a single
signing operation to generate the signature. To un-
blind each signature, Alice must then perform 128
modular divisions.

During the issuing protocol, assuming Alice wants to
show Steve all three of her credentials, Alice has to
send 3∗128 = 384 certificates plus the three credential
signatures, for a little over 384k bytes of network traf-
fic. If she discloses all the selective disclosure fields
in each credential, she’ll also have to send him the
384 ∗ 8 = 3k random values totalling 3k ∗ 16 = 48k
bytes. Steve will have to call oneway() for each of
the 3k fields, then once for each certificate. Verifying
the signature on each credential requires him to do
128 modular multiplications and one modular expo-
nentiation using the issuer’s public key.

This is a rather expensive system by today’s stan-
dards, especially when using credential sets only once

12

as we recommend. Personal computers with broad-
band network connections shouldn’t have too much
trouble with the storage and computational require-
ments, but they’re probably prohibitive for embedded
systems such as PDAs and smart cards.

7 Conclusions and future work

The noninteractive cut and choose protocol is a new
primitive, and may find application in other areas of
cryptography.

Though credential sets can be rather expensive com-
putationally, they achieve their goal of protecting
user privacy while solving the problem of credential
pooling. Our credentials individually behave much
like traditional X.509v3 certificates, making it fea-
sible to adapt existing certificate systems to work
with credential sets. Our selective disclosure tech-
nique gives users control over disclosure of sensitive
personal attributes, and blind issuing protects user
privacy with respect to certificate issuers. Work has
begun on a simple free software implementation of
the system presented here. We plan to make it avail-
able as a completely patent-free solution.

Future work on this system may focus on improving
efficiency and adding features present in other cre-
dential systems. Preventing a credential from being
shown more than once should be a simple addition, as
it already exists in the Chaum, Fiat and Naor system.
Adding flexibility to the selective disclosure mecha-
nism is a possibility, and there are several possible
ways of reducing the computational demands of our
system.

We sincerely hope that our work will encourage the
spread of free privacy-protecting security systems.
The work of Camenisch and Lysyanskaya is also
promising, though quite a different approach from
our own. Our systems prevent one of the major forms
of credential misuse, making privacy attainable with-
out compromising security.

References

[1] Stefan Brands. A technical in-
troduction to digital credentials.
http://www.xs4all.nl/ brands/overview.pdf.

[2] Stefan Brands. Rethinking Public Key Infras-

tructures and Digial Certificates — Building in

Privacy. MIT Press, 2000.

[3] Jan Camenisch and Anna Lysyanskaya.
An efficient system for non-transferable
anonymous credentials with optional
anonymity revocation. Lecture Notes

in Computer Science, 2045:93–118, 2001.
http://citeseer.nj.nec.com/camenisch01efficient.html.

[4] Jan L. Camenisch, Jean-Marc Piveteau, and
Markus A. Stadler. Blind signatures based
on the discrete logarithm problem. Lecture

Notes in Computer Science, 950:428–432, 1995.
http://citeseer.nj.nec.com/camenisch94blind.html.

[5] D. Chaum, A. Fiat, and M. Naor. Untraceable
electronic cash (extended abstract). Advances

in Cryptology - CRYPTO ’88 Proceedings, pages
319–327, 1989.

[6] David Chaum. Security without identification:
transaction systems to make big brother obso-
lete. Communications of the Association for

Computing Machinery, 28(10):1030–1044, Octo-
ber 1985.

[7] David Chaum. Blind signature systems. US

Patent 4,759,063, July 1988.

[8] David Chaum. Blind unanticipated signature
systems. US Patent 4,759,064, July 1988.

[9] Ben Laurie. Lucre: Anony-
mous electronic tokens.
http://anoncvs.aldigital.co.uk/lucre/theory2.pdf.

[10] Bruce Schneier. Applied Cryptography: Proto-

cols, Algorithms, and Source Code in C. John
Wiley & Sons, second edition, 1996.

13

