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Abstract

We describe a block-cipher mode of operation, EMD, that builds a strong pseudorandom per-
mutation (PRP) on nm bits (m ≥ 2) out of a strong PRP on n bits (i.e., a block cipher). The
constructed PRP is also tweaked (in the sense of [10]): to determine the nm-bit ciphertext block
C = E

T
K(P ) one provides, besides the key K and the nm-bit plaintext block P , an n-bit tweak T . The

mode uses 2m block-cipher calls and no other complex or computationally expensive steps (such as
universal hashing). Encryption and decryption are identical except that encryption uses the forward
direction of the underlying block cipher and decryption uses the backwards direction. We suggest
that EMD provides an attractive solution to the disk-sector encryption problem, where one wants
to encipher the contents of an nm-bit disk sector in a way that depends on the sector index and is
secure against chosen-plaintext/chosen-ciphertext attack.

Key words: block-cipher usage, cryptographic standards, disk encryption, EMD mode, modes of
operation, provable security, symmetric encryption.

Note (added Feb 2003): the modes in this paper are wrong

The modes described in this note are wrong: there are simple attacks that distinguish
EMD/EME oracles and their inverses from a random permutation and its inverse. The
proof in this paper for EMD has a bug in the final case analysis in Appendix A.3. The
attacks were found by Antoine Joux, “Cryptanalysis of the EMD Mode of Operation”, to
appear at Eurocrypt 2003.

This note was not published anywhere, and my first inclination was to withdraw it from
ePrint as well. But that would leave Joux with a Eurocrypt paper attacking a scheme
that is described nowhere. This seemed undesirable. So I’m going to leave this buggy
manuscript up on ePrint, unchanged apart from this note, at least for a while.

A new version of this paper, “A Tweakable Enciphering Mode”, has been written and will
be distributed soon. The paper is joint with Shai Halevi. In the new paper Shai and I fix
the buggy mode and its proof.

∗ Department of Computer Science, University of California, Davis, California, 95616, USA; and Department of Com-
puter Science, Faculty of Science, Chiang Mai University, 50200 Thailand. E-mail: rogaway@cs.ucdavis.edu WWW:
www.cs.ucdavis.edu/∼rogaway/



1 Introduction

Motivation. Suppose you want to encipher each 512-byte sector on a disk. A plaintext disk sector P
having index T is to be replaced by a ciphertext disk sector C = E

T
K(P ) where K is a secret key. It is

necessary that C have the same length as P ; a block cipher E, and not a semantically-secure encryption
scheme, is what we want. But block-cipher E, with a blocksize of 512 bytes, should be built a standard
block-cipher E that has, say, 16-byte blocks. How should this be done?

The attack-model envisages a chosen-plaintext/chosen-ciphertext attack: the adversary can learn the
ciphertext C for any plaintext P and “tweak” T that it chooses, and it can learn the plaintext P for any
ciphertext C and tweak T . Any change in a plaintext should give a completely unpredictable ciphertext,
and any change in the ciphertext should give a completely unpredictable plaintext. Identical plaintexts
with different tweaks should encrypt to unrelated ciphertexts, and identical ciphertexts with different
tweaks should decrypt to unrelated plaintexts. Slightly more formally, we want a strong, tweaked,
pseudorandom permutation (PRP): for a random key K, each permutation E

T
K and its inverse D

T
K

should be indistinguishable from random permutation ΠT and its inverse ∐T .
Conventional modes, like CBC with an IV of T , don’t solve this problem. They can’t by their very

structure: the first block of ciphertext doesn’t even depend on all of the blocks of plaintext. The most
reasonable known approach to construct the desired kind of object is to follow Naor and Reingold [15, 16],
who give a general method for turning a block cipher into a long-blocksize block-cipher. Their papers
were our starting point.

EMD Mode. In this paper we propose a new mode of operation, EMD mode. Given a block cipher
E: K × {0, 1}n → {0, 1}n and a number m ≥ 2, EMD mode provides a tweaked block-cipher E =
EMD[E, m] = EMD-E where E: K × {0, 1}n × {0, 1}nm → {0, 1}nm. We call n the block length (and it
is also the tweak length in our construction) and nm is the sector length (in bits) and m is the blocks
per sector. As a tweaked block-cipher, each E

T
K(·) = E(K, T, ·) is permutation on {0, 1}nm. We denote

the inverse of this permutation by D
T
K .

EMD has the following characteristics: (1) It uses exactly 2m block-cipher calls. (2) It uses no other
costly operations (in particular, EMD uses no universal hashing). (3) It uses just the one key K for
the underlying block cipher—no additional key material is needed. (4) Encryption by E uses only the
forward direction of the block cipher E, while decryption by D uses only the backward direction of the
block cipher, D = E−1. (5) The mode is completely symmetric: encryption is identical to decryption
except for using D in place of E. (6) The mode is as cache-efficient as one can hope for in a strong PRP.
(7) The method is simple to understand and easy to implement. The above set of characteristics make
EMD-E attractive in both hardware and software as long as E is. We emphasize that EMD does not
change the internals of any cryptographic primitive; that the inclusion of a tweak T adds considerable
versatility and ease of correct use; and that the mode is fully specified—there are no missing pieces (like
a universal hash function) left to fill in.

The name “EMD” is meant to suggest Encrypt–Mask–Decrypt. Namely, to encipher with EMD
one encrypts the plaintext P to form an intermediate value PPP ; then one computes a mask MASK
from PPP and the tweak T and xors MASK with PPP to give an intermediate value CCC ; finally, one
decrypts CCC to form the ciphertext C. For a preview, see Figures 1 and 2.

Provable security of EMD. We prove EMD-E secure, in the sense of a strong (tweaked) PRP,
assuming that E itself is secure as a strong PRP. The actual results are quantitative, showing that an
adversary that attacks E = EMD-E can be turned into one for attacking E with the usual quadratic
degradation in security (namely, proven security falls off in 5m2q2/2n where q is the number of queries
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to E or D and and m is the number of blocks per sector and n is the block size.) The proof uses the
game-substitution approach found in works like [9], reducing the analysis of EMD to the computation
that a flag bad is set in a particular probabilistic program.

Origin of this paper. Our work on this topic grew out of a request for algorithms from the IEEE
Security in Storage Working Group (SISWG) [8]. The working group chair, Jim Hughes, described the
problem directly to the author, leading to the current work.

Prior work. Naor and Reingold give an elegant approach for making a strong PRP on N bits
from a block cipher on n < N bits [15, 16]. Their method involves applying to the input a K1-keyed
permutation from N bits to N bits, then enciphering the result (say in ECB mode) using a second
key K2, and then applying to the result the inverse of a K3-keyed permutation from N bits to N bits.
Their work stops short of fully specifying a mode of operation, but in [15] they come closer, showing
how to make the keyed permutations out of xor-universal hash-functions. It is certainly possible to give
a practical and fully specified realization of [15, 16], and to add in a tweak as well. Indeed our first
approach was to do exactly that. Our work evolved in a different direction when we could not find a
realization of NR mode that as simple and efficient as something resembling two passes of CBC.

Another construction for a long blocksize strong PRP appears in unpublished work of [5]. No proof
of correctness was offered and the scheme uses about 3m block-cipher calls—the same as [15] with an
xor-universal hash-function built from CBC. Yet another long block-size block-cipher is constructed
by [3], but it does not yield a strong PRP.

The notion of a tweaked block-cipher is due to Liskov, Rivest and Wagner [10]. Earlier work by
Schroeppel describes an innovative block cipher that was already designed to incorporate a tweak [19].
Pseudorandom permutations (PRPs) were first defined and constructed by Luby and Rackoff [11, 12],
who also considered strong (“super”) PRPs and offered the viewpoint of modeling blocks ciphers as
PRPs. The concrete-security treatment of PRPs begins in [2].

An ad. hoc suggestion we have seen for disk-sector encryption [8] is forward-then-backwards PCBC
mode [14]. The mode is easily broken in the sense of a strong PRP. A completely different approach
for disk-sector encryption is to build a wide-blocksize block-cipher from scratch. Such attempts include
block ciphers BEAR, LION, and Mercy [1, 6]. A non-block-cipher primitive designed for disk-sector
encryption is the pseudorandom function SEAL [18].

Concurrent work. Shai Halevi has been working on the same problem and has invented modes of
his own [7]. We haven’t seen a writeup and don’t yet know the details.

Publication note. This note is an early version of a paper that is still evolving. It is being released
now as a service to the IEEE SISWG. Though the EMD algorithm will not change, additional material
will be added to this paper prior to its publication.

2 Specification of EMD

Notation. Fix a block cipher E: K × {0, 1}n → {0, 1}n. This means that n ≥ 1 and K is a finite
nonempty set and E(K, ·) = EK(·) is a permutation on {0, 1}n for each K ∈ K. We denote by D = E−1

the inverse of block cipher E, namely, X = DK(Y ) if EK(X) = Y . In practice, a typical choice for E
will be AES128, whence n = 128.

A tweaked block-cipher is a function E: K×T × {0, 1}n → {0, 1}n where K is a finite nonempty set
and T is a nonempty set and n ≥ 1 and E(K, T, ·) = ET

K(·) is a permutation on {0, 1}n. We denote
by D = E

−1 the inverse of a tweaked block-cipher E: X = D
T
K(Y ) if E

T
K(X) = Y .
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Let GF(2n) denote the field with 2n points. We interchangeably think of a point S in GF(2n) as
an abstract point in the field, as an n-bit string Sn−1 . . . S1S0 ∈ {0, 1}n, or as as the formal polynomial
S(x) = Sn−1x

n−1 + · · ·+ S1x + S0 with binary coefficients. To add two points, S ⊕ T , take their bitwise
xor. To multiply two points we must fix an irreducible polynomial pn(x) having binary coefficients
and degree n: say the lexicographically first polynomial among the irreducible degree-n polynomials
having a minimum number of nonzero coefficients. For n = 128, the indicated polynomial is p128(x) =
x128 + x7 + x2 + x + 1. It is easy to multiply S = an−1 · · · a1a0 by x, which we denote multx (S) or S · x.
We illustrate the process for for n = 128, in which case

multx (S) =

{
S<<1 if msb(S) = 0
(S<<1) ⊕ const87 if msb(S) = 1

where const87 is 012010000111. Here S<<1 is the left shift of S = Sn−1 . . . S1S0 by one bit, namely,
S<<1 = Sn−2Sn−3 · · ·S1S0 0 and msb(S) is the first bit of S (that is, Sn−1).

Specification. Fix a constant m ≥ 2. We construct from block cipher E: K × {0, 1}n → {0, 1}n a
tweaked block-cipher E: K × {0, 1}n × {0, 1}mn → {0, 1}mn. We specify in Figure 1 both the forward
direction of our construction, E = EMD[E, m], and its inverse D. In that figure, all capitalized variables
except for K are n-bit strings. Key K is an element of K. An illustration of EMD-mode is given in
Figure 2.

Algorithm E
T
K(P1 · · ·Pm)

110 PPP0 ← 0n

111 for i ← 1 to m do
112 PP i ← Pi ⊕ PPP i−1

113 PPP i ← EK(PP i)

120 Mask ← multx (PPP1 ⊕ PPPm) ⊕ T
121 for i ∈ [1 .. m] do CCC i ← PPPm+1−i ⊕ Mask

130 CCC 0 ← 0n

131 for i ∈ [1 .. m] do
132 CC i ← EK(CCC i)
132 Ci ← CC i ⊕ CCC i−1

140 return C1 · · ·Cm

Algorithm D
T
K(C1 · · ·Cm)

210 CCC 0 ← 0n

211 for i ← 1 to m do
212 CC i ← Ci ⊕ CCC i−1

213 CCC i ← E−1
K (CC i)

220 Mask ← multx (CCC 1 ⊕ CCCm) ⊕ T
221 for i ∈ [1 .. m] do PPP i ← CCCm+1−i ⊕ Mask

230 PPP0 ← 0n

231 for i ∈ [1 .. m] do
232 PP i ← E−1

K (PPP i)
232 Pi ← PP i ⊕ PPP i−1

240 return P1 · · ·Pm

Figure 1: EMD mode in the encipher direction (left) and in the decipher direction (right).

We refer to X ∈ {0, 1}n a block and we call X ∈ {0, 1}nm a sector. Thus we call m the blocks per sector.
We refer to n as the block size, while nm the sector size measured in bits and nm/8 is the sector size
measured in bytes and m is the sector size measured in blocks.

3 Definitions

In this section we recall definitions for the security of block ciphers and tweaked block-ciphers. The
definitions are adapted from [2, 10, 12].

For n ≥ 1 is a number, let Perm(n) denote the set of all permutations π: {0, 1}n → {0, 1}n. For n ≥ 1
a number and T a nonempty set, let PermT (n) denote the set of all functions π: T × {0, 1}n → {0, 1}n

where π(T, ·) ∈ Perm(n) for all T ∈ T . Let Permt(n) denote PermT (n) where T = {0, 1}t. A block
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C4

MaskMask

CCC 4 CCC 3 CCC 1CCC 2

CC 4 CC 1CC 2CC 3

PPP4PPP3PPP2PPP1

PP1 PP4PP3PP2

MaskMask

P2P1 P3 P4

C1C2C3

Figure 2: EMD mode for a message of m = 4 blocks. The boxes represent the block cipher E. We set Mask =
multx (PPP1 ⊕ PPPm) ⊕ T . This value can also be computed as multx (CCC 1 ⊕ CCCm) ⊕ T .

cipher is a map E: K × {0, 1}n → {0, 1}n where K is a finite, nonempty set, n ≥ 1 is a number, and
EK(·) = E(K, ·) ∈ Perm(n) for all K ∈ K. A tweaked block-cipher is a map E: K×T ×{0, 1}N → {0, 1}N

where K is a finite, nonempty set, T is a nonempty set, N ≥ 1 is a number, and E
T
K(·) = E(K, T, ·) ∈

Perm(N) for all K ∈ K and T ∈ T . Note that we can consider Perm(n) as a block cipher (one key K
names each permutation π ∈ Perm(n)) and we can consider PermT (N) as a tweaked block-cipher (one
key K names the permutation for each tweak T ). The inverse of a block cipher E is the block cipher
D = E−1 defined by DK(Y ) = X iff EK(X) = Y . The inverse of a tweaked block-cipher E is the
tweaked block-cipher D = E

−1 defined by D
T
K(Y ) = X iff E

T
K(X) = Y .

An adversary A is an algorithm with access to zero or more oracles, which we denote Af g ···. When
we write Af g it is only a matter of viewpoint if A has two oracles or one (the one oracle taking an
extra, initial, argument to indicate if the query is directed to f or to g). Let E: K × {0, 1}n → {0, 1}n

be a block cipher and let A be an adversary. We define security in the sense of a strong PRP using

Adv±prp
E (A) = Pr[K $←K : AEK(·) E−1

K (·) ⇒ 1 ] − Pr[π $← Perm(n) : Aπ(·) π−1(·) ⇒ 1 ]

The notation shows an experiment to the left of the colon and an event to the right of the colon and
we are looking at the probability of that event after performing the specified experiment. By AO ⇒ 1
we mean the event that A (with oracle O) returns the bit 1. We will sometimes simplify the notation,
when the context is sufficient, by omitting the experiment or the placeholder-arguments of the oracle.

Similarly, if E: K×T × {0, 1}n → {0, 1}n is a tweaked block-cipher and A is an adversary we define
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security in the sense of a strong, tweaked PRP using

Adv±p̃rp
E

(A) = Pr[K $←K : AEK(·,·) E
−1
K (·,·) ⇒ 1 ] − Pr[π $← PermT (n) : Aπ(·,·) π−1(·,·) ⇒ 1 ]

There is no loss of generality in the definitions above to assume that regardless of responses that A
might receive from an arbitrary pair of oracles, it never repeats a query (T, P ) to its left oracle, never
repeats a query (T, C) to its right oracle, never asks its right oracle a query (T, C) if it earlier received
a response of C to a query (T, P ) from its left oracle, never asks its left oracle a query (T, P ) if it earlier
received a response of P to a query (T, C) from its right oracle. We call such queries purposeless because
the adversary “knows” the answer that it should receive. A query is called valid if it is well-formed
and not purposeless. A sequence of queries and their responses is valid if every query is the sequence is
valid. We henceforth assume that adversaries ask only valid queries.

For E a block cipher we let Adv±prp
E (q) be the maximal value of Adv±prp

E (A) over adversaries
that ask at most q oracle queries. Define Adv±prp

E (t, q) in the same way except that the adversary is
also limited to running time of at most t. By convention, running time includes description size. We
similarly define Adv±p̃rp

E
(q) and Adv±p̃rp

E
(t, q) for a tweaked block cipher E.

4 Security Theorem

The information-theoretic statement of security is as follows. The proof is given in Appendix A.

Theorem 1 Fix numbers n ≥ 1 and m ≥ 2. Then

Adv±p̃rp
EMD[Perm(n),m](q) ≤

5m2q2

2n
�

As usual, one can easily pass to the corresponding, complexity-theoretic assertion. The assumption
needed of the underlying block cipher is that it be secure in the sense of a strong PRP.

5 Extensions

In this section we sketch some forthcoming extensions.

Variable input lengths. A tweaked, variable-input-length (VIL) cipher is a map E: K×T ×M → M
where M ⊆ {0, 1}∗ may have strings of various lengths and E

T
K(·) is a permutation and |M | = |EK(M)|

for all M ∈ M [3]. It is straightforward to adapt the notion of a strong, tweaked PRP to give a notion of
security for VIL ciphers. Interestingly, EMD, with no changes at all, is already secure as a VIL cipher.
The domain of messages M = {0, 1}2n({0, 1}n)∗ is all strings having two or more blocks.

Dealing with message of arbitrary lengths. It is possible to extend the domain of EMD not
only to {0, 1}2n({0, 1}n)∗ but to all of {0, 1}≥2n. Our approach for dealing with short final blocks is a
general one. First the plaintext P is partitioned into P ′P ′′ where |P ′| is a multiple of n and |P ′′| < n.
Next one enciphers P ′ to C ′ using the VIL cipher but augmenting the given tweak by P ′′. Then C ′ is
partitioned into C∗C ′′ where |C ′′| + |P ′′| = n. Next one enciphers C ′′ ‖ P ′′ using some bits from C∗ as
a tweak, thus getting C∗∗. The ciphertext is C∗C∗∗.

A parallelizable, pinelineable realization. We describe a different way of instantiating the
Encrypt–Mask–Decrypt approach, motivated by an exchange with Shai Halevi [7]. Let E: K×{0, 1}n →
{0, 1}n be a block cipher. For L ∈ {0, 1}n and i ∈ [0 .. 2n−1] let iL be the n-bit string which is the
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product, in GF(2n), of L and the binary string that represents i. (Multiplication of strings is defined
using a customary representation of field points, say the one used in [4, 17].) Let P = P1 · · ·Pm

be the message we wish to encrypt, and assume that m is even. Then realize Encrypt() by way of
PPP = EncryptK(P ) = EK(P1 ⊕ L) ‖ EK(P2 ⊕ 2L) ‖ · · · ‖ EK(Pm ⊕ mL) where L = EK(0n); realize
Mask() by way of xoring each block PPP i with Mask = multx (PPP1 ⊕ · · · ⊕ PPPm) ⊕ T ; and realize
Decrypt() as the inverse of Encrypt() except, as with EMD, we prefer to Decrypt() under the reverse
orientation of the block cipher. The pseudocode for the resulting mode, which we call EME, is given
in Figure 3. Note that because m is even we have that PPP1 ⊕ · · · ⊕ PPPm = CCC 1 ⊕ · · · ⊕ CCCm

which is what allows Mask to be computed for both E and D. Standard tricks make computing the
sequence of offsets L, 2L, 3L, . . . an easy task.

Algorithm E
T
K(P1 · · ·Pm)

100 L ← EK(0n)

110 for i ∈ [1 .. m] do
111 PP i ← Pi ⊕ iL
112 PPP i ← EK(PP i)

120 Mask ← multx (PPP1 ⊕ · · · ⊕ PPPm) ⊕ T
121 for i ∈ [1 .. m] do CCC i ← PPP i ⊕ Mask

130 for i ∈ [1 .. m] do
131 CC i ← EK(CCC i)
132 Ci ← CC i ⊕ iL

140 return C1 · · ·Cm

Algorithm D
T
K(C1 · · ·Cm)

200 L ← EK(0n)

210 for i ∈ [1 .. m] do
211 CC i ← Ci ⊕ iL
212 CCC i ← E−1

K (CC i)

220 Mask ← multx (CCC 1 ⊕ · · · ⊕ CCCm) ⊕ T
221 for i ∈ [1 .. m] do PPP i ← CCC i ⊕ Mask

230 for i ∈ [1 .. m] do
231 PP i ← E−1

K (PPP i)
232 Pi ← PP i ⊕ iL

240 return P1 · · ·Pm

Figure 3: EME mode in the encipher direction (left) and in the decipher direction (right).

Though we do not include a proof with the current writeup, we believe that it is straightforward to
adapt the proof of EMD in order to prove security of EME, and with essentially the same bounds as
those of Theorem 1.
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A Proof of Theorem 1

We break the proof into three parts: (1) specifying the Adv$ $
E

-measure for security of a T -tweaked
PRP E; (2) doing a game-playing analysis in order to reduce the analysis of EMD to the analysis of a
simpler probabilistic game; and (3) analyzing that game.

A.1 Distinguishability from Random Bits as a Measure of a Tweaked Strong PRP

Let E: K× T × {0, 1}N → {0, 1}N be a tweaked block-cipher. Define the advantage of distinguishing E

from random bits, Adv$ $
E

, by

Adv$ $
E

(A) = Pr[K $←K : AEK(·,·) E
−1
K (·,·) ⇒ 1 ] − Pr[A$(·,·) $(·,·) ⇒ 1 ]

where $(·, ·) is the oracle that returns a random N -bit string in response to each query. We insist that A
makes no purposeless queries (defined at the end of Section 3) regardless of oracle responses. We extend
the definition in the usual way to its resource-bounded versions. We have the following:

Proposition 2 Let E: K×T ×{0, 1}N → {0, 1}N be a tweaked block-cipher and let A be an adversary
that makes at most q total oracle queries. Then

|Adv±p̃rp
E

(A) − Adv$ $
E

(A)| ≤ q(q − 1)/2N+1 �

The proof follows the well-known argument relating PRP-security to PRF-security [2]. Namely, let A
be an adversary that interacts with an oracle F F ′. Assume that A makes no purposeless queries and at
most q queries overall. Let X be the multiset of strings which are either asked to F or answered by F ′,
and let Y be the multiset of strings which are either asked to F ′ or answered by F . When F F ′ = $ $
let C be the event that some string in X appears twice or some string in Y appears twice, and let Ci be
the event that a collision occurs between the ith item added to sets X and Y and items already in those
sets. Then |Adv±p̃rp

E
(A) − Adv$ $

E
(A)| = |Pr[AEK DK ⇒ 1 ] − Pr[Aπ π−1 ⇒ 1 ] − Pr[AEK DK ⇒ 1 ] +

Pr[A$ $ ⇒ 1 ]| = |Pr[A$ $ ⇒ 1 ] − Pr[Aπ π−1 ⇒ 1 ]| = |Pr[A$ $ ⇒ 1 |C] Pr[C] + Pr[A$ $ ⇒ 1 |¬C](1 −
Pr[C]) − Pr[Aπ π−1 ⇒ 1 ]| ≤ |zy + x(1 − y) − x| = |y(z − x)| ≤ y where x = Pr[Aπ π−1 ⇒ 1 ]| and
y = Pr[C] and z = Pr[A$ $ ⇒ 1 |C]. Now y = Pr[C] ≤

∑q
i=1 Pr[Ci] ≤ (1+ · · · (q−1))/2n ≤ q(q−1)/2N+1

as the ith query will cause Ci with probability at most (i − 1)/2N .

A.2 The Game-Substitution Sequence

Let n, m, q all be fixed. Let A be an adversary that asks q oracle queries (none purposeless), each
of nm bits. Our goal in this subsection is to show that Adv$ $

EMD[Perm(n)(A) ≤ Pr[ NON3 sets bad ] +
q2m2/2n where NON3 is some probability space and “ NON3 sets bad ” is an event defined there. Later,
in Section A.3, we bound Pr[ NON3 sets bad ], and, putting that together with Proposition 2, we will
get Theorem 1.

Game NON3 is obtained by a game-substitution argument, as carried out in works like [9]. The
goal is to simplify the rather complicated setting of A adaptively querying oracle Eπ Dπ where E =
EMD[Perm(n), m] and D = E

−1 and π
$← Perm(n). We want to arrive at a simpler setting where there

is no adversary and no interaction—just a program that flips coins and a flag bad that does or does not
get set.
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Initialization:

000 π
$← Perm(n)

To respond to an oracle query Enc(T, P1 · · ·Pm):
110 PPP0 ← CCC 0 ← 0n

111 for i ← 1 to m do
112 PP i ← Pi ⊕ PPP i−1; PPP i ← π(PP i)

120 Mask ← multx (PPP1 ⊕ PPPm) ⊕ T
121 for i ∈ [1 .. m] do CCC i ← PPPm+1−i ⊕ Mask

130 for i ← 1 to m do
131 CC i ← π(CCC i); Ci ← CC i ⊕ CCC i−1

140 return C1 · · ·Cm

To respond to an oracle query Dec(T, C1 · · ·Cm):
210 CCC 0 ← PPP0 ← 0n

211 for i ← 1 to m do
212 CC i ← Ci ⊕ CCC i−1; CCC i ← π−1(CC i)

220 Mask ← multx (CCC 1 ⊕ CCCm) ⊕ T
221 for i ∈ [1 .. m] do PPP i ← CCCm+1−i ⊕ Mask

230 for i ← 1 to m do
231 PP i ← π−1(PPP i); Pi ← PP i ⊕ PPP i−1

240 return C1 · · ·Cm

Figure 4: Game EMD1, above, mimics the definition of EMD-mode to provide a perfect realization of an Eπ Dπ oracle

where E = EMD[Perm(n),m] and D = E
−1 and π

$← Perm(n).

Game EMD1 We begin by defining a game—specifically, the behavior of a probabilistic and state-
ful oracle—that exactly captures what A sees when interacting with an oracle Eπ Dπ where E =
EMD[Perm(n), m] and D = E

−1 and π
$← Perm(n). When describing games we will denotes A’s or-

acle by Enc Dec. That means that the adversary’s queries are tagged with a type, Enc or Dec, and
the queries get answered using a mechanism associated that type. Game EMD1, described in Figure 4,
specifies how to answer Enc and Dec queries in a way that exactly mimics the definition of EMD mode.
Because it so closely follows the definition of EMD an inspection of that game makes clear that A
receives an identical view if interacting with Eπ Dπ (for a random permutation π) or with the oracle of
game EMD1. Thus, in particular, we have that

Pr[AEπ Dπ ⇒ 1 ] = Pr[AEMD1 ⇒ 1 ] (1)

Game RND1 For completeness and to help further establish our notation we also specify as a game
the oracle Enc Dec which coincides with the oracle $ $ used to define Adv$ $. We write out the oracle
in Figure 5. We have immediately that

Pr[A$ $ ⇒ 1 ] = Pr[ARND1 ⇒ 1 ] (2)

Combining Equations 1 and 2 we know that

Adv$ $
EMD[Perm(n),m] = Pr[AEπ Dπ ⇒ 1 ] − Pr[A$ $ ⇒ 1 ]

= Pr[AEMD1 ⇒ 1 ] − Pr[ARND1 ⇒ 1 ] (3)
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To respond to oracle query Enc(T, P1 · · ·Pm):

100 for i ← 1 to m do Ci
$←{0, 1}n

101 return C1 · · ·Cm

To respond to oracle query Dec(T, C1 · · ·Cm):

200 for i ← 1 to m do Pi
$←{0, 1}n

201 return P1 · · ·Pm

Figure 5: Game RND1 realizes the defining experiment for a $ $ oracle for an nm-bit block cipher.

Game EMD2 We now make some changes in the way that game EMD1 is played. These changes don’t
effect anything an adversary can see. Such changes are said to give an adversarially indistinguishable
game—the new game and the old one provide to any adversary an identical distribution on views.
The new game, denoted EMD2, is shown in Figure 6. Rather than choosing the random permutation
π

$← Perm(n) up front, we fill in its values as needed. Initially, the partial function π: {0, 1}n → {0, 1}n

is everywhere undefined. When we need π(x) and π isn’t yet defined at x we choose this value randomly
among the unassigned range values. When we need π−1(y) and there is no x for which π(x) has been
assigned y we likewise choose x at random from the unassigned domain values. As we fill in π its domain
and its range thus grows. At a given point in time we let Domain(π) = {x ∈ {0, 1}n : π(i) �= undef}
denote the current domain and we let Range(π) = {y ∈ {0, 1}n : π(x) = y for some x ∈ {0, 1}n} denote
the current range. We let Domain(π) and Range(π) be the complement of these sets relative to {0, 1}n.

Actually, instead of directly sampling from Range(π) we sample y from {0, 1}n and then re-sample,
this time from Range(π), if the initially chosen sample y was already in the range of π. We behave
analogously when we sample from Domain(π). Whenever we are forced to re-sample we set a flag bad.
The flag bad is never seen by the adversary A that interacts with the EMD2 oracle; it is only present
to facilitate the subsequent analysis. We also set bad under some additional circumstances (lines 114,
133, 214, and 233), as shown in the game.

As we run Game EMD2 we maintain sets P and C for the plaintext sectors and ciphertext sectors
that have already been asked of Enc and Dec, respectively. Using these sets we know that certain values
of π have already been filled in.

Game EMD2 is adversarially indistinguishable from game EMD1. We therefore have that

Pr[AEMD1 ⇒ 1 ] = Pr[AEMD2 ⇒ 1 ] (4)

Game EMD3 We now make a small, adversarially-invisible, change to game EMD2. Looking at
line 131 of game EMD2, note that we first choose CC i at random and then define Ci from it, according
to Ci ← CC i ⊕ CCC i−1. It is equivalent to choose Ci at random and then define CC i from it, according
to CC i ← Ci ⊕ CCC i−1. The analogous comments apply to line 231 of game EMD2; we could just as
well have chosen Pi at random and defined PP i using it. Thus, in game EMD3, we make this and only
this change, modifying only lines 131 and 231. An adversary given EMD2 or EMD3 is provided an
identical view and so, in particular,

Pr[AEMD2 ⇒ 1 ] = Pr[AEMD3 ⇒ 1 ] (5)
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Initialization:
000 bad ← false; P ← C ← ∅; for X ∈ {0, 1}n do π(X) ← undef

To respond to an oracle query Enc(T, P1 · · ·Pm):
110 Let u be the largest value in [0 .. m] s.t. P1 · · ·Pu is a prefix of a string in P
111 PPP0 ← CCC 0 ← 0n; for i ← 1 to u do PP i ← Pi ⊕ PPP i−1, PPP i ← π(PP i)
112 for i ← u + 1 to m do
113 PPP i

$←{0, 1}n; if PPP i ∈ Range(π) then bad ← true, PPP i
$← Range(π)

114 PP i ← Pi ⊕ PPP i−1; if PP i ∈ Domain(π) then bad ← true, PPP i ← π(PP i)
115 π(PP i) ← PPP i

120 Mask ← multx (PPP1 ⊕ CCC 1) ⊕ T ; for i ∈ [1 .. m] do CCC i ← PPPm+1−i ⊕ Mask

130 for i ← 1 to m do
131 CC i

$←{0, 1}n; Ci ← CC i ⊕ CCC i−1

132 if CC i ∈ Range(π) then bad ← true, CC i
$← Range(π), Ci ← CC i ⊕ CCC i−1

133 if CCC i ∈ Domain(π) then bad ← true, CC i ← π(CCC i), Ci ← CC i ⊕ CCC i−1

134 π(CCC i) ← CC i

140 P ←P ∪ {P1 · · ·Pm}; C ← C ∪ {C1 · · ·Cm}
141 return C1 · · ·Cm

To respond to an oracle query Dec(T, C1 · · ·Cm):
210 Let u be the largest value in [0 .. m] s.t. C1 · · ·Cu is a prefix of a string in C
211 CCC 0 ← PPP0 ← 0n; for i ← 1 to u do CC i ← Ci ⊕ CCC i−1, CCC i ← π−1(CC i)
212 for i ← u + 1 to m do
213 CCC i

$←{0, 1}n; if CCC i ∈ Domain(π) then bad ← true, CCC i
$← Domain(π)

214 CC i ← Ci ⊕ CCC i−1; if CC i ∈ Range(π) then bad ← true, PPP i ← π−1(CC i)
215 π(CCC i) ← CC i

220 Mask ← multx (CCC 1 ⊕ CCCm) ⊕ T ; for i ∈ [1 .. m] do PPP i ← CCCm+1−i ⊕ Mask

230 for i ← 1 to m do
231 PP i

$←{0, 1}n; Pi ← PP i ⊕ PPP i−1

232 if PP i ∈ Domain(π) then bad ← true, PP i
$← Domain(π), Pi ← PP i ⊕ PPP i−1

233 if PPP i ∈ Range(π) then bad ← true, PP i ← π(PPP i), Pi ← PP i ⊕ PPP i−1

234 π(PP i) ← PPP i

240 C ← C ∪ {C1 · · ·Cm}; P ←P ∪ {P1 · · ·Pm}
241 return P1 · · ·Pm

Figure 6: Game EMD2 is adversarially indistinguishable from Game EMD1 but works a little differently, filling in π as
needed.
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Initialization:
000 bad ← false; P ← C ← ∅; for X ∈ {0, 1}n do π(X) ← undef

To respond to an oracle query Enc(T, P1 · · ·Pm):
110 Let u be the largest value in [0 .. m] s.t. P1 · · ·Pu is a prefix of a string in P
111 PPP0 ← CCC 0 ← 0n; for i ← 1 to u do PP i ← Pi ⊕ PPP i−1, PPP i ← π(PP i)
112 for i ← u + 1 to m do
113 PPP i

$←{0, 1}n; if PPP i ∈ Range(π) then bad ← true, PPP i
$← Range(π)

114 PP i ← Pi ⊕ PPP i−1; if PP i ∈ Domain(π) then bad ← true, PPP i ← π(PP i)
115 π(PP i) ← PPP i

120 Mask ← multx (PPP1 ⊕ PPPm) ⊕ T ; for i ∈ [1 .. m] do CCC i ← PPPm+1−i ⊕ Mask

130 for i ← 1 to m do
131 Ci

$←{0, 1}n; CC i ← Ci ⊕ CCC i−1

132 if CC i ∈ Range(π) then bad ← true, CC i
$← Range(π), Ci ← CC i ⊕ CCC i−1

133 if CCC i ∈ Domain(π) then bad ← true, CC i ← π(CCC i), Ci ← CC i ⊕ CCC i−1

134 π(CCC i) ← CC i

140 P ←P ∪ {P1 · · ·Pm}; C ← C ∪ {C1 · · ·Cm}
141 return C1 · · ·Cm

To respond to an oracle query Dec(T, C1 · · ·Cm):
210 Let u be the largest value in [0 .. m] s.t. C1 · · ·Cu is a prefix of a string in C
211 CCC 0 ← PPP0 ← 0n; for i ← 1 to u do CC i ← Ci ⊕ CCC i−1, CCC i ← π−1(CC i)
212 for i ← u + 1 to m do
213 CCC i

$←{0, 1}n; if CCC i ∈ Domain(π) then bad ← true, CCC i
$← Domain(π)

214 CC i ← Ci ⊕ CCC i−1; if CC i ∈ Range(π) then bad ← true, PPP i ← π−1(CC i)
215 π(CCC i) ← CC i

220 Mask ← multx (CCC 1 ⊕ CCCm) ⊕ T ; for i ∈ [1 .. m] do PPP i ← CCCm+1−i ⊕ Mask

230 for i ← 1 to m do
231 Pi

$←{0, 1}n; PP i ← Pi ⊕ PPP i−1

232 if PP i ∈ Domain(π) then bad ← true, PP i
$← Domain(π), Pi ← PP i ⊕ PPP i−1

233 if PPP i ∈ Range(π) then bad ← true, PP i ← π(PPP i), Pi ← PP i ⊕ PPP i−1

234 π(PP i) ← PPP i

240 C ← C ∪ {C1 · · ·Cm}; P ←P ∪ {P1 · · ·Pm}
241 return P1 · · ·Pm

Figure 7: Game EMD3 is adversarially indistinguishable from Game EMD2 but works a little differently, choosing
random return values in lines 131 and 231 instead of choosing random values to assign to π.

12



Initialization:
000 bad ← false; P ← C ← ∅; for X ∈ {0, 1}n do π(X) ← undef

To respond to an oracle query Enc(T, P1 · · ·Pm):
110 Let u be the largest value in [0 .. m] s.t. P1 · · ·Pu is a prefix of a string in P
111 PPP0 ← CCC 0 ← 0n; for i ← 1 to u do PP i ← Pi ⊕ PPP i−1, PPP i ← π(PP i)
112 for i ← u + 1 to m do
113 PPP i

$←{0, 1}n; if PPP i ∈ Range(π) then bad ← true
114 PP i ← Pi ⊕ PPP i−1; if PP i ∈ Domain(π) then bad ← true
115 π(PP i) ← PPP i

120 Mask ← multx (PPP1 ⊕ PPPm) ⊕ T ; for i ∈ [1 .. m] do CCC i ← PPPm+1−i ⊕ Mask

130 for i ← 1 to m do
131 Ci

$←{0, 1}n; CC i ← Ci ⊕ CCC i−1

132 if CC i ∈ Range(π) then bad ← true
133 if CCC i ∈ Domain(π) then bad ← true
134 π(CCC i) ← CC i

140 P ←P ∪ {P1 · · ·Pm}; C ← C ∪ {C1 · · ·Cm}
141 return C1 · · ·Cm

To respond to an oracle query Dec(T, C1 · · ·Cm):
210 Let u be the largest value in [0 .. m] s.t. C1 · · ·Cu is a prefix of a string in C
211 CCC 0 ← PPP0 ← 0n; for i ← 1 to u do CC i ← Ci ⊕ CCC i−1, CCC i ← π−1(CC i)
212 for i ← u + 1 to m do
213 CCC i

$←{0, 1}n; if CCC i ∈ Domain(π) then bad ← true
214 CC i ← Ci ⊕ CCC i−1; if CC i ∈ Range(π) then bad ← true
215 π(CCC i) ← CC i

220 Mask ← multx (CCC 1 ⊕ CCCm) ⊕ T ; for i ∈ [1 .. m] do PPP i ← CCCm+1−i ⊕ Mask

230 for i ← 1 to m do
231 Pi

$←{0, 1}n; PP i ← Pi ⊕ PPP i−1

232 if PP i ∈ Domain(π) then bad ← true
233 if PPP i ∈ Range(π) then bad ← true
234 π(PP i) ← PPP i

240 C ← C ∪ {C1 · · ·Cm}; P ←P ∪ {P1 · · ·Pm}
241 return P1 · · ·Pm

Figure 8: Game RND2 is obtained from game EMD3 by dropping statements that immediately follow the setting of
bad. This makes the game adversarially indistinguishable from game RND1.
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Game RND2 We next modify game EMD3 by omitting the statement which immediately follow the
setting of bad to true. (This is the usual trick under the game-substitution approach.) See Figure 8 for
the definition of this new game, which we call RND2.

First note that in game RND2 we return, in response to any Enc-query, nm random bits, C1 · · ·Cm.
Similarly, we return, in response to any Dec-query, nm random bits, P1 · · ·Pm. Thus RND2 provides
an adversary with an identical view to RND1 and we know that

Pr[ARND1 ⇒ 1 ] = Pr[ARND2 ⇒ 1 ] (6)

From a different angle, EMD3 and RND2 are syntactically identical apart from what happens after the
setting of the flag bad to true. Once the flag bad is set to true the subsequent behavior of the game
does not impact the probability that an adversary A interacting with the game can set the flag bad to
true. This is exactly the setup used in the game-substitution method to conclude that

Pr[AEMD3 ⇒ 1 ] − Pr[ARND2 ⇒ 1 ] ≤ Pr[ARND2 sets bad ] (7)

Combining Equations 3, 4, 5, 6, and 7, we thus have that

Adv$ $
EMD[Perm(n),m](A) = Pr[AEMD1 ⇒ 1 ] − Pr[ARND1 ⇒ 1 ]

= Pr[AEMD3 ⇒ 1 ] − Pr[ARND2 ⇒ 1 ]
≤ Pr[ARND2 sets bad ] (8)

Our task is thus to bound Pr[ARND2 sets bad ].

Game RND3 We now make a “cosmetic” change in game RND2 which will help set the notation for
future accounting. The change is simply to tag each variable by the query number s associated to that
variable. Clearly

Pr[ARND2 sets bad ] = Pr[ARND3 sets bad ] (9)

Game RND4 Next we reorganize game RND3 so as to separate out the random values that are
returned to the adversary. We already remarked, when showing that games RND2 and RND1 were
adversarially indistinguishable, that game RND2 returned a nm-bit string in response to each adversary
query. Of course this remains true in game RND3. Now, in game RND4, shown in Figure 10, we make
that even more clear by choosing the necessary Cs = Cs

1 · · ·Cs
m or P s = P 1 · · ·Pm response just as

soon as the s-th Enc or Dec query is made, respectively. Nothing else is done at that point except for
recording if the adversary made an Enc query or a Dec query. Only when the adversary finishes all
of its oracle queries and halts do we execute the “finalization” step of game RND4. That part of the
game determines the value of flag bad. The procedure is designed to set bad under exactly the same
conditions as in game RND4—indeed the game is identical to game RND3 except for the reordering of
statements for which there is no dependency. The following is thus clear:

Pr[ARND3 sets bad ] = Pr[ARND4 sets bad ] (10)
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Initialization:
000 bad ← false; for X ∈ {0, 1}n do π(X) ← undef

To respond to the s-th oracle query Enc(T s, P s
1 · · ·P s

m):
110 Let u[s] be the largest value in [0 .. m] s.t. P s

1 · · ·P s
u[s] = P r

1 · · ·P r
u[s] for some r ∈ [1 .. s−1]

111 PPPs
0 ← CCC s

0 ← 0n; for i ← 1 to u[s] do PPs
i ← P s

i ⊕ PPPs
i−1, PPPs

i ← π(PPs
i )

112 for i ← u[s] + 1 to m do
113 PPPs

i
$←{0, 1}n; if PPPs

i ∈ Range(π) then bad ← true
114 PPs

i ← P s
i ⊕ PPPs

i−1; if PPs
i ∈ Domain(π) then bad ← true

115 π(PPs
i ) ← PPPs

i

120 Masks ← multx (PPPs
1 ⊕ PPPs

m) ⊕ T s; for i ∈ [1 .. m] do CCC s
i ← PPPs

m+1−i ⊕ Masks

130 for i ← 1 to m do
131 Cs

i
$←{0, 1}n; CC s

i ← Cs
i ⊕ CCC s

i−1

132 if CC s
i ∈ Range(π) then bad ← true

133 if CCC s
i ∈ Domain(π) then bad ← true

134 π(CCC s
i ) ← CC s

i

140 return Cs
1 · · ·Cs

m

To respond to the s-th oracle query Dec(T s, Cs
1 · · ·Cs

m):
210 Let u[s] be the largest value in [0 .. m] s.t. Cr

1 · · ·Cr
u[s] = Cs

1 · · ·Cs
u[s] for some r ∈ [1 .. s−1]

211 CCC s
0 ← PPPs

0 ← 0n; for i ← 1 to u[s] do CC s
i ← Cs

i ⊕ CCC s
i−1, CCC s

i ← π−1(CC s
i )

212 for i ← u[s] + 1 to m do
213 CCC s

i
$←{0, 1}n; if CCC s

i ∈ Domain(π) then bad ← true
214 CC s

i ← Cs
i ⊕ CCC s

i−1; if CC s
i ∈ Range(π) then bad ← true

215 π(CCC s
i ) ← CC s

i

220 Masks ← multx (CCC s
1 ⊕ CCC s

m) ⊕ T s; for i ∈ [1 .. m] do PPPs
i ← CCC s

m+1−i ⊕ Masks

230 for i ← 1 to m do
231 P s

i
$←{0, 1}n; PPs

i ← P s
i ⊕ PPPs

i−1

232 if PPs
i ∈ Domain(π) then bad ← true

233 if PPPs
i ∈ Range(π) then bad ← true

234 π(PPs
i ) ← PPPs

i

240 return P s
1 · · ·P s

m

Figure 9: Game RND3, a notational change from game RND2, adds a superscript s to variables associated to the s-th
query.
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To respond to the s-th oracle query Enc(T s, P s
1 · · ·P s

m):
010 tys ← Enc

011 Cs
1 · · ·Cs

m
$←{0, 1}nm

012 return Cs
1 · · ·Cs

m

To respond to the s-th oracle query Dec(T s, Cs
1 · · ·Cs

m):
020 tys ← Dec

021 P s
1 · · ·P s

m
$←{0, 1}nm

022 return P s
1 · · ·P s

m

Finalization:
050 bad ← false; for X ∈ {0, 1}n do π(X) ← undef
051 for s ← 1 to q do

100 if tys = Enc then
110 Let u[s] be the largest value in [0 .. m] s.t. P s

1 · · ·P s
u[s] = P r

1 · · ·P r
u[s] for some r ∈ [1 .. s−1]

111 PPPs
0 ← CCC s

0 ← 0n; for i ← 1 to u[s] do PPs
i ← P s

i ⊕ PPPs
i−1, PPPs

i ← π(PPs
i )

112 for i ← u[s] + 1 to m do
113 PPPs

i
$←{0, 1}n; if PPPs

i ∈ Range(π) then bad ← true
114 PPs

i ← P s
i ⊕ PPPs

i−1; if PPs
i ∈ Domain(π) then bad ← true

115 π(PPs
i ) ← PPPs

i

120 Masks ← multx (PPPs
1 ⊕ PPPs

m) ⊕ T s; for i ∈ [1 .. m] do CCC s
i ← PPPs

m+1−i ⊕ Masks

130 for i ← 1 to m do
131 CC s

i ← Cs
i ⊕ CCC s

i−1

132 if CCs
i ∈ Range(π) then bad ← true

133 if CCCs
i ∈ Domain(π) then bad ← true

134 π(CCC s
i ) ← CC s

i

200 else (tys = Dec)
210 Let u[s] be the largest value in [0 .. m] s.t. Cr

1 · · ·Cr
m = Cs

1 · · ·Cs
u[s] for some r ∈ [1 .. s−1]

211 CCC s
0 ← PPPs

0 ← 0n; for i ← 1 to u[s] do CC s
i ← Cs

i ⊕ CCC s
i−1, CCC s

i ← π−1(CC s
i )

212 for i ← u[s] + 1 to m do
213 CCC s

i
$←{0, 1}n; if CCC s

i ∈ Domain(π) then bad ← true
214 CC s

i ← Cs
i ⊕ CCC s

i−1; if CC s
i ∈ Range(π) then bad ← true

215 π(CCC s
i ) ← CC s

i

220 Masks ← multx (CCC s
1 ⊕ CCC s

m) ⊕ T s; for i ∈ [1 .. m] do PPPs
i ← CCC s

m+1−i ⊕ Masks

230 for i ← 1 to m do
231 PPs

i ← P s
i ⊕ PPPs

i−1

232 if PPs
i ∈ Domain(π) then bad ← true

233 if PPPs
i ∈ Range(π) then bad ← true

234 π(PPs
i ) ← PPPs

i

Figure 10: Game RND4 is adversarially indistinguishable from game RND3 but defers the setting of bad until all
queries have been asked and answered.
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000 bad ← false; for X ∈ {0, 1}n do π(X) ← undef
001 for s ← 1 to q do

100 if tys = Enc then
110 Let u[s] be the largest value in [0 .. m] s.t. Ps

1 · · ·Ps
u[s] = Pr

1 · · ·Pr
u[s] for some r ∈ [1 .. s−1]

111 PPPs
0 ← CCC s

0 ← 0n; for i ← 1 to u[s] do PPs
i ← Ps

i ⊕ PPPs
i−1, PPPs

i ← π(PPs
i )

112 for i ← u[s] + 1 to m do
113 PPPs

i
$←{0, 1}n; if PPPs

i ∈ Range(π) then bad ← true
114 PPs

i ← Ps
i ⊕ PPPs

i−1; if PPs
i ∈ Domain(π) then bad ← true

115 π(PPs
i ) ← PPPs

i

120 Masks ← multx (PPPs
1 ⊕ PPPs

m) ⊕ T s; for i ∈ [1 .. m] do CCCm
i ← PPPs

m+1−i ⊕ Masks

130 for i ← 1 to m do
131 CC s

i ← Cs
i ⊕ CCC s

i−1

132 if CC s
i ∈ Range(π) then bad ← true

133 if CCC s
i ∈ Domain(π) then bad ← true

134 π(CCC s
i ) ← CC s

i

200 else (tys = Dec)
210 Let u[s] be the largest value in [0 .. m] s.t. Cr

1 · · ·Cr
m = Cs

1 · · ·Cs
u[s] for some r ∈ [1 .. s−1]

211 CCC s
0 ← PPPs

0 ← 0n; for i ← 1 to u[s] do CC s
i ← Cs

i ⊕ CCC s
i−1, CCC s

i ← π−1(CC s
i )

212 for i ← u[s] + 1 to m do
213 CCC s

i
$←{0, 1}n; if CCC s

i ∈ Domain(π) then bad ← true
214 CC s

i ← Cs
i ⊕ CCC s

i−1; if CC s
i ∈ Range(π) then bad ← true

215 π(CCC s
i ) ← CC s

i

220 Masks ← multx (CCC s
1 ⊕ CCC s

m) ⊕ T s; for i ∈ [1 .. m] do PPPs
i ← CCC s

m+1−i ⊕ Masks

230 for i ← 1 to m do
231 PPs

i ← Ps
i ⊕ PPPs

i−1

232 if PPs
i ∈ Domain(π) then bad ← true

233 if PPPs
i ∈ Range(π) then bad ← true

234 π(PPs
i ) ← PPPs

i

Figure 11: Game NON1 is based on game RND4 but now (ty,T,P,C) are fixed, valid constants, where ty =
(ty1, . . . , tyq) and T = (T1, . . . ,Tq) and C = (C1, . . . ,Cq) and P = (P1, . . . ,Pq) and Cs = Cs

1 · · ·Cs
m and Ps =

Ps
1 · · ·Ps

m. There is no longer any adversary—it has been absorbed by universal quantification over (ty,T,P,C).
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Game NON1 So far we have not changed the structure of the games at all: it has remained an
adversary asking q questions to an oracle, our answering those questions, and the internal variable bad
either ending up true or false. The next step, however, actually gets rid of the adversary, as well as all
interaction in the game.

We want to bound the probability that bad gets set to true in game RND4. We may assume that
the adversary is deterministic, and so the probability is over the random choices made at lines 011,
021, 113, and 213. We will now eliminate the coins associated to lines 011 and 021. Recall that the
adversary asks no purposeless queries.

We would like to make the stronger statement that for any set of values that might be returned by
the adversary at lines 011 and 021, and for any set of queries (none purposeless) associated to them, the
Finalization step of game RND4 rarely sets bad. However, this statement isn’t quite true. Notice, in
particular, that if the r-th and s-th queries (r < s) are Enc queries that return strings beginning Cr

1 and
Cs

1 where Cr
1 = Cs

1 , then the flag bad will get set at line 132 when we process the Cs
1 . Similarly, if the r-th

and s-th queries (r < s) are Dec queries that return strings beginning P r
1 and P s

1 where P r
1 = P s

1 , then
the flag bad will get set at line 232 when we process the P s

1 . We call such collisions immediate collisions.
Clearly the probability of an immediate collision is at most (1+2+ · · ·+(q− 1))/2n+1 = q(q− 1)/2n+1.

We make from the Finalization part of game RND4 a new game, game NON1 (for “noninteractive”).
This game silently depends on constants ty = (ty1, · · · , tyq), T = (T1, · · · , Tq), and P = (P1, · · · , Pq),
and C = (C1, · · · , Cq) where tys ∈ {Enc, Dec}, Ts ∈ {0, 1}n, Ps = Ps

1 · · ·Ps
m, and Cs = Cs

1 · · ·Cs
m, for

|Pr
i | = |Cr

i | = n. Constants (ty,T,P,C) may not specify any immediate collisions or purposeless query;
we call such a set of constants valid. Saying that (ty,P,C) is valid means, with the notation above,
that if tys = Enc then Ps �= Pr for any r < s, and if tys = Dec then Cs �= Cr for any r < s. Now fix
a worst set of valid constants (ty,T,P,C), meaning one for which Pr[ NON1 sets bad ] is maximized.
Then we have that

Pr[ARND4 sets bad ] ≤ Pr[ NON1 sets bad ] + 0.5 q(q − 1)/2n (11)

Game NON2 We now re-write game NON1 so as to eliminate the variable π. Notice that in
game NON1 the variable π was used in a quite restricted way: apart from lines 111 and 211, which
are easily re-coded without use of π, we didn’t actually use π to keep track of the association between
domain points and range points; all we were really using π for was to keep track of which points are in
its domain and which points were in its range. We could just as well have kept that information as two
multisets, X and Y. In game NON2, shown in Figure 12, that is exactly what is done. We keep track
of what was the growing domain and range of π in multisets X and Y. Instead of setting π(X) ← Y
we put X into X and Y into Y. Before we were always checking, just before the assignment to π, if it
would cause a collision in its domain or range. Now we do the exact same check using X and Y, but
we defer it to game’s end. Games NON1 and NON2 set bad under exactly the same condition, so

Pr[ANON1 sets bad ] ≤ Pr[ NON2 sets bad ] (12)

Game NON3 We now re-write game NON2 so as to eliminate the intermediate variable Mask. See
Figure 13. Since games NON2 and NON3 are adversarially indistinguishable, We have that

Pr[ANON2 sets bad ] ≤ Pr[ NON3 sets bad ] (13)
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000 X ←Y ← ∅ (multisets)
001 for s ← 1 to q do

100 if tys = Enc then
110 Let u[s] be the largest value in [0 .. m] s.t. Ps

1 · · ·Ps
u[s] = Pr

1 · · ·Pr
u[s] for some r ∈ [1 .. s−1]

111 PPPs
0 ← CCC s

0 ← 0n; for i ← 1 to u[s] do PPs
i ← Ps

i ⊕ PPPs
i−1, PPPs

i ← PPPr
i

112 for i ← u[s] + 1 to m do
113 PPPs

i
$←{0, 1}n

114 PPs
i ← Ps

i ⊕ PPPs
i−1

115 X ←X ∪ {PPs
i}; Y ←Y ∪ {PPPs

i}
120 Masks ← multx (PPPs

1 ⊕ PPPs
m) ⊕ T s; for i ∈ [1 .. m] do CCC s

i ← PPPs
m+1−i ⊕ Masks

130 for i ← 1 to m do
131 CC s

i ← Cs
i ⊕ CCC s

i−1

132 X ←X ∪ {CCC s
i}; Y ←Y ∪ {CC s

i}

200 else (tys = Dec)
210 Let u[s] be the largest value in [0 .. m] s.t. Cr

1 · · ·Cr
m = Cs

1 · · ·Cs
u[s] for some r ∈ [1 .. s−1]

211 CCC s
0 ← PPPs

0 ← 0n; for i ← 1 to u[s] do CC s
i ← Cs

i ⊕ CCC s
i−1, CCC s

i ← CCC r
i

212 for i ← u[s] + 1 to m do
213 CCC s

i
$←{0, 1}n

214 CC s
i ← Cs

i ⊕ CCC s
i−1

215 X ←X ∪ {CCC s
i}; Y ←Y ∪ {CC s

i}
220 Masks ← multx (CCC s

1 ⊕ CCC s
m) ⊕ T s; for i ∈ [1 .. m] do PPPs

i ← CCC s
m+1−i ⊕ Masks

230 for i ← 1 to m do
231 PPs

i ← Ps
i ⊕ PPPs

i−1

232 X ←X ∪ {PPs
i}; Y ←Y ∪ {PPPs

i}

300 bad ← (there is a collision in X ) or (there is a collision in Y)

Figure 12: Game NON2 is like game NON1 but eliminates the function π, doing equivalent bookkeeping with the
multisets X and Y. This is the game that, finally, we can analyze.
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000 X ←Y ← ∅ (multisets)
001 for s ← 1 to q do

100 if tys = Enc then
101 Let u[s] be the largest value in [0 .. m] s.t. Ps

1 · · ·Ps
u[s] = Pr

1 · · ·Pr
u[s] for some r ∈ [1 .. s−1]

102 PPPs
0 ← 0n; for i ← 1 to u[s] do PPs

i ← Ps
i ⊕ PPPs

i−1, PPPs
i ← PPPr

i

110 PPPs
i

$←{0, 1}n for each i ∈ [u[s]+1 .. m]
111 PPs

i ← PPPs
i−1 ⊕ Ps

i for each i ∈ [u[s]+1 .. m]
112 X ←X ∪ {PPs

i}, Y ←Y ∪ {PPPs
i} for each i ∈ [u[s]+1 .. m]

120 CCC s
i ← (PPPs

1 ⊕ PPPs
m) · x ⊕ PPPs

m+1−i ⊕ Ts for each i ∈ [1 .. m]
121 CC s

1 ← Cs
1

122 CC s
i ← (PPPs

1 ⊕ PPPs
m) · x ⊕ PPPs

m+2−i ⊕ Ts ⊕ Cs
i for each i ∈ [2 .. m]

123 X ←X ∪ {CCC s
i}, Y ←Y ∪ {CC s

i} for each i ∈ [1 .. m]

200 else (tys = Dec)
201 Let u[s] be the largest value in [0 .. m] s.t. Cr

1 · · ·Cr
m = Cs

1 · · ·Cs
u[s] for some r ∈ [1 .. s−1]

202 CCC s
0 ← 0n; for i ← 1 to u[s] do CC s

i ← Cs
i ⊕ CCC s

i−1, CCC s
i ← CCC r

i

210 CCC s
i

$←{0, 1}n for each i ∈ [u[s]+1 .. m]
211 CC s

i ← CCC s
i−1 ⊕ Cs

i for each i ∈ [u[s]+1 .. m]
212 X ←X ∪ {CCC s

i}, Y ←Y ∪ {CC s
i} for each i ∈ [u[s]+1 .. m]

220 PPPs
i ← (CCC s

1 ⊕ CCC s
m) · x ⊕ CCC s

m+1−i ⊕ Ts for each i ∈ [1 .. m]
221 PPs

1 ← Ps
1

222 PPs
i ← (CCC s

1 ⊕ CCC s
m) · x ⊕ CCC s

m+2−i ⊕ Ts ⊕ Ps
i for each i ∈ [2 .. m]

223 X ←X ∪ {PPs
i}; Y ←Y ∪ {PPPs

i} for each i ∈ [1 .. m]

300 bad ← (there is a collision in X ) or (there is a collision in Y)

Figure 13: Game NON3 is adversarially indistinguishable from game NON2 but, among other cosmetic changes, writes
out the assignments to X and Y without the use of auxiliary variables Mask, MaskP, and MaskC .
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A.3 Analysis of the Final Game

We now turn to the analysis of game NON3. We upper bound the probability of a collision in X , and
the probability of a collision in Y.

Points are added to the multiset X at lines 112, 123, 212, and 223. Points augment the multiset Y
at the same lines. We will show that for every pair of points X, X ′ that are added to X , the probability
that they collide is at most 2−n. Since there are a total of 2mq points placed in X we get that the
probability that there is some collision in X is at most

(
2mq

2

)
· 2−n = 2mq(mq − 1)/2n. The same

statement holds for Y. So from the sum bound the probability that bad gets set to true in game INT3
is at most 4mq(mq − 1)/2n. Combining with the results of the previous two subsections we know that

Adv$ $
EMD[Perm(n),m](q) ≤ 4mq(mq − 1)/2n + 0.5q(q − 1)/2n (14)

and so

Advprp
EMD[Perm(n),m](q) ≤ 4mq(mq − 1)/2n + 0.5q(q − 1)/2n + 2−mn (15)

≤ 5m2q2/2n (16)

It remains to verify that collisions among points in the multiset X and Y occur with probability at
most 2−n.

In game NON3 the random strings chosen during the game’s execution are all of the form PPPs
i or

CCC s
i . However, not every PPPs

i is random and not every CCC s
i is random. The random strings are

exactly the PPPs
i where i ∈ [u[s] + 1 .. m] along with the CCC s

i where i ∈ [u[s] + 1 .. m]. The other
PPPs

i values are simply copies of PPPr
i values for r < s while the the other CCC s

i values are copies
of CCC r

i values for r < s. For i ∈ [1 .. m] let us write PPPs
i to mean (P-value, i, r) where r is the

smallest value in [1 .. s] such that Pr
1 · · ·Pr

i = Ps
1 · · ·Ps

i . One can think of PPPs
i as the formal symbol

PPPr
i whose value is copied into PPPs

i . Define CCCs
i similarly. We emphasize that PPPr

i and CCCr
i are

constants associated to game NON3; they are not random variables.
By the structure of game NON3 every PPPs

i and every CCC s
i is a uniform random value. Fur-

thermore, every PPPs
i is independent of CCC t

j and every PPPs
i is independent of PPPs

j when i �= j

and PPPs
i is independent of PPP t

i when PPPs
i �= PPPt

i and CCC s
i is independent of CCC t

i when
CCCs

i �= CCCt
i.

Following game NON3, there are five kinds of points added to X , as given in the following table.

X1 PPPs
i−1 ⊕ Ps

i i ∈ [u[s]+1 .. m]

X2 (PPPs
1 ⊕ PPPs

m) · x ⊕ PPPs
m+1−i ⊕ Ts i ∈ [1 .. m]

X3 CCC s
i i ∈ [u[s]+1 .. m]

X4 Ps
1

X5 (CCC s
1 ⊕ CCC s

m) · x ⊕ CCC s
m+2−i ⊕ Ts ⊕ Ps

i i ∈ [2 .. m]

We must consider the possibility of a collision among two distinct points of any kind. This requires a
case analysis, as follows.

Consider 1–1 collisions, meaning that PPPs
i−1 ⊕ Ps

i = PPP t
j−1 ⊕ Pt

i. Since these are two distinct
points in the multiset, either i �= j or s �= t. If i �= j then Pr[PPPs

i−1 ⊕ Ps
i = PPP t

j−1 ⊕ Pt
j ] = 2−n

because i − 1 �= j − 1 and differently subscripted PPP values are independent. Otherwise we are
considering Pr[PPPs

i−1 ⊕ Ps
i = PPP t

i−1 ⊕ Pt
i]. If PPPs

i−1 �= PPPt
i−1 then the probability in question is
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2−n because PPPs
i−1 and PPP t

i−1 are uniform and independent. Otherwise PPPs
i−1 = PPP t

i−1 and the
probability in question becomes Pr[Ps

i = Pt
i]. But this probability is zero because i ≥ u[s] + 1. Namely,

PPPs
i = PPPt

i implies that Ps
1 · · ·Ps

i−1 = Pt
1 · · ·Pt

i−1 and if, in addition, Ps
i = Pt

i then Ps
1 · · ·Ps

i = Pt
1 · · ·Pt

1

and so u[t] ≥ i, a contradiction.
Consider 1–2 collisions. This kind of collision can only occur with probability 2−n because the

random variable PPPs
m in X2 is independent of the expression in X1.

Consider 1–3, 1–4, and 1–5 collisions. All of these occur with probability 2−n because none of X3,
X4, or X5 depend on PPPs

i−1.
Consider 2–2 collisions, namely, a collision between (PPPs

1 ⊕ PPPs
m) · x ⊕ PPPs

m+1−i ⊕ Ts and
(PPP t

1 ⊕ PPP t
m) · x ⊕ PPP t

m+1−j ⊕ Tt. Here we have a number of cases to consider. If PPPs
m �= PPPt

m

then the independence of PPPs
m and (PPP t

1 ⊕ PPP t
m) · x ⊕ PPP t

m+1−j ⊕ Tt. results in a collision prob-
ability to be 2−n. If PPPs

m = PPPt
m then the probability in question reduces to Pr[PPPs

m+1−i ⊕ Ts =
Pr[PPP t

m+1−j ⊕ Tt]. Now if i �= j then this value is 2−n by the independence of PPPs
m+1−i and

Pr[PPP t
m+1−j . And if i = j then we must have that Ts �= Tt (by the validity of the constants associ-

ated to game NON3) and so the probability is 0.
Consider 2–3, 2–4, and 2–5 collisions. All of these occur with probability 2−n by the presence of

PPPs
1, say, in the expression for X2.

Cases 3–3 and 3–4 are again obvious. For 3–5 collisions, if CCCs
i �= CCCt

1 then use the randomness
of the latter to get a collision bound of 2−n. Otherwise, when CCCs

i = CCCt
1, use he randomness of

CCC s
m to get a collision bound of 2−n.

Collisions of type 4–4 can not occur, by our assumption of validity, and collisions of type 4–5 clearly
occur with probability 2−n.

For collisions of type 5–5, argue exactly as with collisions of type 2–2.
This completes the argument that points from the multiset X collide with probability at most 2−n.

To prove that points in the multiset Y collide with probability at most 2−n, first inspect the types of
points which are placed in Y.

Y 1 CCC s
i−1 ⊕ Cs

i i ∈ [u[s]+1 .. m]

Y 2 (CCC s
1 ⊕ CCC s

m) · x ⊕ CCC s
m+1−i ⊕ Ts i ∈ [1 .. m]

Y 3 PPPs
i i ∈ [u[s]+1 .. m]

Y 4 Cs
1

Y 5 (PPPs
1 ⊕ PPPs

m) · x ⊕ PPPs
m+2−i ⊕ Ts ⊕ Cs

i i ∈ [2 .. m]

The points are identical to those that are in X except for the renaming of variables: one simply
swaps the characters C and P, C and P. So the bound shown for collisions in X applies equally well for
collisions in Y. And this completes the proof of the theorem.

A.4 Comments

We have effectively double-counted type 4–4 collisions. By counting just slightly more carefully the
bound is reduced to 4m2q2/2n.

The “core” of the proof, Section A.3, is case analysis that depends strongly on the details of the
scheme. The lengthy game-substitution portion, Section A.2, seems comparatively independent of the
details of the algorithm. Still, we know of know way to eliminate the argument and retain rigor. Perhaps
the approach of Maurer [13] might be useful.
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