
An Attack on the
Isomorphisms of Polynomials Problem

with One Secret

Willi Geiselmann1, Willi Meier2, and Rainer Steinwandt1

1 IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth,
Fakultät für Informatik, Universität Karlsruhe,

Am Fasanengarten 5, 76 131 Karlsruhe, Germany
2 Fachhochschule Aargau,

Klosterzelgstrasse, 5210 Windisch, Switzerland

Abstract. At EUROCRYPT ’96 J. Patarin introduced the Isomor-
phisms of Polynomials (IP) problem as a basis of authentication and
signature schemes [4, 5]. We describe an attack on the secret key of IP
with one secret and demonstrate its efficiency through examples with
realistic parameter sizes. To prevent our attack, additional restrictions
on the suggested parameters should be imposed.

Keywords: cryptanalysis, multivariate polynomials

1 Introduction

At EUROCRYPT ’96 J. Patarin introduced the problem of Isomorphisms
of Polynomials (IP) and demonstrated how to use this problem for con-
structing an authentication scheme and an asymmetric signature scheme.
Besides being of interest in their own, IP-based schemes are also of interest
with regard to other cryptographic schemes using multivariate polynomi-
als: as explained in [4, 5], an efficient algorithm for IP would yield a new,
more powerful, attack on the Matsumoto-Imai algorithm [3], and it would
have strong implications on the design and security of HFE [4, 5].

There are different variants of the IP problem, and in [6, 7] several
techniques for solving the so-called IP with two secrets are explained.
From these results the authors conclude that “when IP is used for au-
thentication or signature . . . it might be suggested to use IP with one
secret instead of IP with two secrets . . . , despite the fact that there is
only one affine change of variables, such a problem might be more diffi-
cult than the IP with two secrets.” As evidence for the hardness of the IP
problem with one secret, in [6, 7] it is shown that this problem is as least
as hard as the graph isomorphism problem. Namely, it is shown that for

solving a graph isomorphism problem with n vertices, it is sufficient to
solve IP with one secret on a set of O(n3) quadratic equations.

In this contribution we focus on the one secret variant of IP and
demonstrate that the parameter choices considered in [4, 5] do not guar-
antee cryptographic security: after recalling the specification of the IP
problem we introduce a “column-wise” attack on the secret key of IP
with one secret. We demonstrate that for several suggested parameter
choices of the IP problem it is possible to reveal the secret key by means
of a computer algebra system and rather modest hardware.

2 The IP problem

First we recall the specification of the IP problem introduced in [4, 5]; for
sake of completeness we give the definition of both IP with two secrets
and IP with one secret. By Fq we denote a finite field with q elements
and by Fq[x] := Fq[x1, . . . , xn] the polynomial ring in the indeterminates
x = x1, . . . , xn over Fq.

2.1 IP with two secrets

Let u > 1 be an integer and A,B ∈ Fq[x]u such that all polynomials in
A = (a1(x), . . . , au(x)) and B = (b1(x), . . . , bu(x)) are of total degree 2.
Then we call A and B isomorphic if there are matrices SL ∈ GLn(Fq),
TL ∈ GLu(Fq) and column vectors SC ∈ Fnq , TC ∈ Fuq satisfying

b1(x)
...

bu(x)

 = TL ·


a1(SL · (x1, . . . , xn)t + SC)

...

au(SL · (x1, . . . , xn)t + SC)

+ TC . (1)

Writing S, T for the map z 7→ SL ·z+SC and z 7→ TL ·z+TC respectively,
and ◦ for functional composition we can summarize Equation (1) as

B = T ◦A ◦ S.

The IP problem with two secrets can be stated as follows: given isomorphic
A,B ∈ Fq[x]u as above, find an isomorphism (S, T) from A to B.

Note: for q = 2 it makes a difference whether Equation (1) holds over
Fq[x] or Fq[x]/(xq1 − x1, . . . , x

q
n − xn): in the latter case qth powers of the

variables can be reduced. From the description in [4, 5] it is not clear which
definition is intended. Below we will see that an analogous distinction in
IP with one secret is quite relevant for the attack considered in the sequel,
and we will handle the two cases separately.

2

2.2 IP with one secret

Let u > 0 be an integer and A,B ∈ Fq[x]u such that one of the following
conditions holds:

– u = 1 and A,B consist of a polynomial of total degree 3 each
– u ≥ 2 and A,B consist of polynomials of total degree 2 each

Then we call A and B isomorphic if there is a matrix SL ∈ GLn(Fq) and
a column vector SC ∈ Fnq satisfying

b1(x)
...

bu(x)

 =


a1(SL · (x1, . . . , xn)t + SC)

...

au(SL · (x1, . . . , xn)t + SC)

 . (2)

Writing S for the map z 7→ SL · z + SC and ◦ for functional composition
we can summarize Equation (2) as

B = A ◦ S.

The IP problem with one secret can be stated as follows: given isomorphic
A,B ∈ Fq[x]u as above, find an isomorphism S from A to B.

Note: similarly as in the case of two secrets, for q ≤ 3 it makes a difference
whether Equation (2) holds over Fq[x] or Fq[x]/(xq1 − x1, . . . , x

q
n − xn):

in the latter case qth powers of the variables can be reduced. From the
description in [4, 5] it is not clear which definition is intended. For the
attack described in the next section this distinction will be of importance.

2.3 Cryptographic schemes using IP

In [4, 5] it has been shown how the IP problem can be used for deriving an
authentication scheme and an asymmetric signature scheme. We do not
recall these constructions here, as our attack aims at the underlying IP
problem itself which in an IP-based scheme is assumed to be difficult. Of
course, in the experimental examples we focus on parameter choices for
IP which have been considered for cryptographic applications. Namely,
we focus on the following parameter choices—taken from [4, 5]—for IP
with one secret:

– q = 2 and n ≥ 16 (with the remark “n ≥ 12 might be sufficient. . . ”)
– q = 16 and n = 6
– q

√
2·n3/2

> 264

3

3 Attacking IP “column-wise”

The above parameter sizes do not prevent the possibility of an iteration
over the qn possible choices of one column of SL. To see how we can exploit
this, we assume for the moment that the affine part SC of S is known
already. The question of how to find SC will be discussed in Section 4.

For our attack we distinguish two cases. First, we consider the case
where q is greater than the degrees of the polynomials in A, i. e., if A
consists of a cubic polynomial, then we have q ≥ 4; for A containing
several quadratic polynomials we require q ≥ 3.

3.1 Finding a column for q ≥ 4

The assumption q ≥ 4 resp. q ≥ 3 for quadratic polynomials ensures that
Equation (2) holds over Fq[x]. We want to exploit this fact by evaluating
the two sides of Equation (2) at points with coordinates lying in a suitable
Fq-algebra: if our guess for (parts of) the secret key (SL, SC) was correct,
then we must obtain the same values for the left- and for the right-hand
side of Equation (2). On the other hand, if the obtained values are different
then our guess was incorrect.

Why using evaluations over Fq-algebras and not simply over Fq? The
ground field Fq can be quite small, and so the number of possible results
(a subset of Fuq) when evaluating the polynomials in A or B can be rather
small. In order to to decrease the chance for “random hits”, we pass
to evaluation points over a suitable Fq-algebra. For avoiding potentially
harmful algebraic dependencies among the coordinates, it is tempting to
choose the non-zero coordinates of the evaluation points as new transcen-
dental (over Fq) elements. Experimentally this means that for evaluating
the polynomials in A and B one makes use of (slow) arithmetics in a
polynomial ring over Fq. For sake of efficiency we decided to use a differ-
ent approach: in our experiments we used the computer algebra system
Magma [2] where arithmetics in finite extension fields Fqm of Fq is pretty
efficient, as long as qm is of moderate size (say ≤ 220). So in our experi-
ments we used evaluation points over an extension field Fqm of Fq which
is large enough for making the chance of “random hits” small, but where
the available arithmetics in Magma is still fast.

Now assume that some vector v ∈ Fnqm with coordinates in an ex-
tension field Fqm of Fq has been fixed. Then we know that evaluating
a polynomial bl ∈ B at v and evaluating the corresponding polynomial
al ∈ A at S(v) = SL · vt + SC must yield the same value. In particular

4

this holds for all vectors vα,i := (0, . . . , 0, α, 0, . . . , 0)1≤j≤n ∈ Fnqm with a
single non-zero entry α ∈ F×qm := Fqm \ {0} at the ith position and zero
entries everywhere else.

For computing S(vα,i) it is sufficient to know the constant part SC
and the ith column of SL. Moreover, if S′ is an affine map z 7→ S′L ·z+SC
where the ith columns of SL and S′L differ, then for Fqm being “not too
small”, one can expect that evaluating a polynomial al(x) in A at S′(vα,i)
“typically” yields a value different from bl(vα,i). In other words, we have
a criterion for excluding some c ∈ Fnq from the list of candidates for the
ith column of SL: if for any α ∈ F×qm , l ∈ {1, . . . , u} the values bl(vα,i) and
al(α · c+ SC) are different, then the ith column of SL cannot equal c.

To get an idea of the practical use of this simple criterion, let us
consider an example with realistic parameter sizes (as indicated above,
for the computations we used the computer algebra system Magma):

Example 1. Let q = 7 and n = 7, i. e., q
√

2·n3/2 ≈ 273.5 > 264 as required.
For A := (a1(x)) we choose at random a polynomial of total degree 3 from
F7[x1, . . . , x7] and fix—also at random—the linear part SL ∈ GL7(F7) and
the affine part SC ∈ F7

7 of the secret affine map S.
Assuming SC to be known and choosing for the non-zero coordinate α

of the evaluation points vα,i a primitive element of F77 , experimentally we
typically obtain ≈ 211.2 possible candidates (instead of originally ≈ 219.7)
per column.

By applying the above criterion to the n columns of SL, we can compute
n subsets C1, . . . , Cn ⊆ Fnq where Ci contains the candidates for the ith

column of SL. Now assume that there are two indices 1 ≤ i1 < i2 ≤ n
such that the cardinality of Ci1 × Ci2 is “not too large”.

Then using a brute-force search over Ci1×Ci2 we can proceed similarly
as above to reduce the number of possible candidates (c1, c2) ∈ Ci1 ×Ci2
for the ist1 and ind

2 column of SL. Namely, we use evaluation points of the
form vα1,i1 + vα2,i2 ∈ Fnqm containing precisely two non-zero entries and
exploit the equality

al(SL · (vα1,i1 + vα2,i2) + SC) = bl(vα1,i1 + vα2,i2) (1 ≤ l ≤ u) . (3)

Evaluating the right-hand side of Equation (3) is trivial, and for evaluat-
ing the left-hand side it is clearly sufficient to know SC and the columns
no. i1, i2 of SL. As above, it seems sensible to assume that if we make an
incorrect guess (c1, c2) ∈ Ci1 × Ci2 for the columns no. i1, i2 of SL—i. e.,
c1 does not coincide with the ist1 column of SL and/or c2 does not coincide

5

with the ind
2 column of SL—then evaluating the two sides of Equation (3)

often yields different values.
If the resulting set of candidates for the columns i1, i2 of SL is “not

too big” we can of course iterate the above procedure and attack a third
column, say column no. i3: for this we consider evaluation points of the
form vα1,i1 + vα2,i2 + vα3,i3 , i. e., we allow three non-zero coordinates.
For each candidate for the columns no. i1, i2 we check which candidates
c3 ∈ Ci3 for the ird3 column of SL are in accordance with the condition

al(SL·(vα1,i1+vα2,i2+vα3,i3)+SC) = bl(vα1,i1+vα2,i2+vα3,i3) (1 ≤ l ≤ u).

Of course, one now hopes that after this step there are “not too many”
candidates left for the columns no. i1, i2, i3 of SL, because then one can
continue in the same way. If the number of candidates for the already
considered columns never becomes “too large”, then in this manner finally
all columns of SL (possibly along with other isomorphisms from A to B)
can be found.

Intuitively, one would expect that the most critical part of the above
attack is the beginning, when only very few columns of the secret matrix
are involved. Once the evaluation points contain comparatively many non-
zero coordinates, “random hits” seem not to be very likely. In the practical
experiment this conjecture turns out to be true. In fact, for the suggested
parameters the number of candidates obtained in the first steps often
remains quite modest, and the above attack turns out to work quite nicely:

Example 2. Let q = 7, n = 7 as above, and let A = (a1(x)) consist
of a (randomly chosen) polynomial from Fq of total degree 3. Assuming
the affine part SC to be known and using evaluations over F77 , in such
an example we obtained ≈ 211.3 candidates for the first column of SL
and ≈ 214 candidates for the first two columns. Then for the first three
columns we obtained ≈ 28.3 and for the first four columns 2 candidates.
In each of the remaining rounds only one candidate was left.

On an 800 MHz Linux PC with the computer algebra system Magma,
revealing the complete matrix SL took less than two hours.

Example 3. Let q = 16, n = 6 and A = (a1(x), a2(x)) consist of two
(randomly chosen) quadratic polynomials from Fq. Again, we assume the
affine part SC to be known and for the evaluations we use elements from
F165 . Using these parameters, we could recover the (randomly chosen)
matrix SL in less than 1.5 hours with the computer algebra system Magma
on a 1.3 GHz Linux PC.

6

So far in our attack we did not really exploit the condition q ≥ 4
(resp. q ≥ 3 for quadratic equations). What we actually made use of is
the fact that Equation (2) holds over Fq[x]. This equality allowed us to
compare the values of the public polynomials at evaluation points with
coordinates in an extension field of Fq. But if q ≤ 3 and Equation (2) is
only valid over Fq[x]/(xq1 − x1, . . . , x

q
n − xn)—i. e., possibly qth powers of

the variables have been reduced—then the above approach is no longer
valid: for Fq (Fqm a proper field extension and α ∈ Fqm \ Fq we have
αq 6= α. In the next section we look at the question of how to deal with
this situation.

3.2 Finding a column for q ≤ 3

As mentioned above already, for the attack described in the previous
section it is not vital that the evaluations took place over an extension
field of Fq: let vα1,i1 + · · · + vαr,ir (1 ≤ r ≤ n) be an evaluation point
used throughout the attack. Then we could as well have used an evalu-
ation point vθ1,i1 + · · · + vθr,ir where θ1, . . . , θr are new indeterminates.
Besides requiring (potentially slow) computations in Fq[θ1, . . . , θr], eval-
uation points of the latter form are fine for our purposes.

Now assume that Equation (2) holds over Fq[x]/(xq1−x1, . . . , x
q
n−xn),

and denote by Xi a representative of the residue class of xi modulo the
ideal (xq1 − x1, . . . , x

q
n − xn) ⊆ Fq[x] (1 ≤ i ≤ n). Then evaluating a

polynomial bl(x) in B at

vX1,i1 + · · ·+ vXr,ir ∈ (Fq[x]/(xq1 − x1, . . . , x
q
n − xn))n,

i. e., a point with Xj at the coordinate no. ij (1 ≤ j ≤ r) and zeros ev-
erywhere else, must yield the same value as evaluating the corresponding
al(x) at S(vX1,i1 + · · ·+ vXr,ir).

For computing effectively in Fq[x]/(xq1 − x1, . . . , x
q
n − xn) we can, e. g.,

compute in the polynomial ring Fq[x] and reduce all occurring polynomi-
als modulo the Gröbner basis {xq1−x1, . . . , x

q
n−xn} (cf. [1, Lemma 5.66],

for instance). In summary, we can try to mount the same attack as in the
previous section by using evaluation points whose non-zero coordinates
are equal to Xi for some 1 ≤ i ≤ n.

When the public tuples A,B consist of u ≥ 2 polynomials, this ap-
proach experimentally turns out to be quite promising:

Example 4. Let q = 2, n = 16, and let A = (a1(x), . . . , a6(x)) consist of
six polynomials. Moreover, assume that the affine part SC is known.

7

In a (random) example with these parameters, using Magma on a
1.3 GHz Linux PC, the complete matrix SL could be revealed in 2.5 hours.

Example 5. Let q = 2, n = 16, and let A = (a1(x), . . . , a7(x)) consist of
seven polynomials. Moreover, assume that the affine part SC is known.

In a (random) example with these parameters, using Magma on a
1.3 GHz Linux PC, the complete matrix SL could be revealed in 17 min-
utes.

So far in our attacks we assumed the affine part SC to be known
already. The straightforward approach for extending the above attack to
an attack on the complete secret key is to iterate over all qn possible
affine parts and to apply to each candidate for SC the above attack.
Having in mind that different affine parts can be checked in parallel and
that all of the above timings were obtained by means of a computer
algebra system on “rather moderate” hardware platforms, for some of the
proposed parameters this approach can indeed be feasible. Nevertheless,
in the next section we demonstrate that the additional effort for revealing
SC is often significantly smaller than one might expect.

4 Attacking the affine part

In a first step, possible affine parts have to be checked for consistency with
qn candidates for one column, which means a search through q2n pairs.
In examples with small parameters we made the following observations:

– There are only very few affine parts to match any first column.
– For small q nearly all qn candidates for the first column had a matching

affine part.
– For larger q only very few matching pairs for a first column and an

affine part were found.

Therefore we tried two different heuristics to avoid the search through
q2n candidates in a first step.

4.1 Finding the affine part for q ≥ 4

If we choose for the evaluation vector v (as described in Section 3.1) vec-
tors v1,i := (0, . . . , 0, 1, 0, . . . , 0)1≤j≤n ∈ Fnq with the single non-zero entry
equal to 1 ∈ Fq in the ground field, our test for consistency (“bl(v1,i) =
al(SL · vt

1,i + SC) =: al(w)”) eliminates all qn pairs (SL · vt
1,i, SC) with

(SL · vt
1,i +SC) = w in case of failure. For the sums w remaining after the

8

test, all qn possible separations of w into SL ·vt
1,i+SC have to be checked

as described in Section 3.

Example 6. For q = 16, various choices for n and the number u of poly-
nomials in A and B have been tested. In the following table “#sums”
gives the number of sums w = SL ·vt

1,1 +SC remaining after the test from
the originally qn candidates for w, and “#pairs” is the number of pairs
(SL · vt

1,1, SC) left after testing all separations of w. (In the case n = 6
and u = 3 the number of pairs is estimated after separating ≈ 8% of the
sums w.)

n u #sums #pairs
3 2 18 3
4 2 251 167
5 3 16 16
6 4 279 3
6 3 4 181 ≈ 3 756

In a (random) example with q = 16, n = 6, and four polynomials the
complete matrix SL and the affine part SC have been found in about 58
hours, using Magma on an 800 MHz Linux PC.

Example 7. In another (more lucky) random example with q = 16, n = 6,
and u = 3, the complete secret key has been found in less than 7.2 hours
on a 400 MHz Linux PC.

4.2 Finding the affine part for q ≤ 3

In this case there remain too many candidates for the pairs (SL · vt
1,1, SC)

after the consistency test, so that most sums occur, and the previous
approach results in testing nearly q2n candidates. In all our examples
(where n ≤ 16 and u ≤ 8) the number of possible affine parts c0 ∈ Fnq
turned out to be quite small, but the number of matching first columns
c1 ∈ Fnq of SL to be quite large. Thus the following probabilistic algorithm
is quite promising:

1) Choose a candidate c1 ∈ Fnq for the first column at random, and test
all affine parts c0 ∈ Fnq for consistency.

2) If a (new) candidate c0 for the affine part is found, test it according
to Section 3.

3) If no matching matrix SL is found, then return to Step 1).

The efficiency of this algorithm is illustrated in the next examples:

9

Example 8. Let q = 2, n = 16, and let A = (a1(x), . . . , a8(x)) consist of
eight polynomials.

With these parameters we performed four runs of the algorithm above
and found SC after testing 24, 129, 153, and 234 candidates for the affine
part. Completely revealing the matrix SL and the affine part SC took
about 11 hours (for the worst case), using Magma on a 1.3 GHz Linux
PC.

Example 9. Let q = 3, n = 10, i. e., q
√

2n3/2 ≈ 270.9 > 264, and let A
consist of three polynomials. In a random example with these parameters
the complete secret key could be found in less than 8.1 hours on an
800 MHz Linux PC.

The following table, that is based on the experimental data from Ex-
ample 8, justifies our assumption made at the beginning of this section:

#cand. first col. #hits affine part #affine parts
100 97 90
200 204 157
300 314 195
400 439 228
500 561 251

This table is to be interpreted as follows: after testing “#cand. first col.”
candidates for the first column, we found “#hits affine part” affine parts
matching any of the first columns examined. After eliminating duplicates
from the list we ended up with “#affine parts” candidates.

There is an obvious slow-down in finding new candidates for the affine
part in the end; probably we are close to having found all of them. In other
words, from the 216 potential affine parts, probably only ≈ 300 have to be
checked in more detail (as described in Section 3). The total number of
first columns matching the 251 affine parts (mentioned in the above table)
was 41 621. Thus, our probabilistic algorithm worked perfectly well.

With a decrease of the number u of polynomials the number of affine
parts to test increased, e.g. to 290 for seven polynomials and to 618 for
six polynomials. Testing one of these affine parts took 17 minutes and 1.5
hours respectively (on a 1.3 GHz Linux PC).

This growth in the computing time might suggest a level of security
for a smaller number of polynomials that does not necessarily exist. In
our algorithms there is still a lot of optimization possible: using addi-
tional conditions for the consistency test (other columns, combinations

10

of columns, . . .) might reduce the number of candidates to be checked
significantly.

Furthermore, for a small number of polynomials not only the number
of candidates to be checked to find SL and SC increases, but there might
be more valid solutions of Equation (2) (“fake” keys). In smaller examples,
with two public polynomials, where a complete search was possible with
our equipment, we found 16 solutions for SL and SC with q = 2, n = 7,
and 128 solutions for q = 2, n = 8.

5 Limits of the attack

We have demonstrated that for several suggested parameter choices of the
IP problem our attack works quite fine. However, there are clearly limits
of the method presented here: if a brute-force search over a single column
of SL is not feasible, then the attack fails. Moreover, in our experiments
examples with several public polynomials and/or q ≥ 4 turned out to be
more vulnerable than examples where both u = 1 and q = 2 (with applied
relations x2

1 − x1, . . . , x
2
n − xn).

Consequently, a parameter choice with u = 1, q = 2 (with the relations
xqi−xi applied), and n sufficiently large seems to be quite resistant against
our attack. Of course, a larger column size qn also results in larger keys,
which may reduce the practicality of cryptographic schemes based on the
difficulty of IP.

6 Conclusion

We have described a “column-wise” attack on IP with one secret. The
attack has been applied successfully against several instances of IP whose
parameters have been considered as suitable for cryptographic applica-
tions. The attack can be defeated by using larger keys where a brute-force
search over one column of the secret matrix is infeasible, but such param-
eter choices also reduce the attractivity of IP-based schemes for practical
applications.

References

1. T. Becker and V. Weispfenning, Gröbner Bases: A Computational Approach to
Commutative Algebra, vol. 141 of Graduate Texts in Mathematics, Springer, New
York, 1993. In cooperation with Heinz Kredel.

2. W. Bosma, J. Cannon, and C. Playoust, The Magma Algebra System I: The
User Language, Journal of Symbolic Computation, 24 (1997), pp. 235–265.

11

3. T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Effi-
cient Signature-Verification and Message-Encryption, in Advances in Cryptology—
EUROCRYPT ’88; Workshop on the Theory and Application of Cryptographic
Techniques, C. G. Günther, ed., vol. 330 of Lecture Notes in Computer Science,
Springer, 1988, pp. 419–453.

4. J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms, in Advances in Cryptology —
EUROCRYPT ’96, U. Maurer, ed., vol. 1070 of Lecture Notes in Computer Science,
Springer, 1996, pp. 33–48.

5. , Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
Two New Families of Asymmetric Algorithms. Extended version of [4]. At the
time of writing available electronically at the URL http://www.cp8.com/sct/uk/

partners/page/publi/eurocrypt96b.ps.
6. J. Patarin, L. Goubin, and N. Courtois, Improved Algorithms for Isomorphisms

of Polynomials, in Advances in Cryptology — EUROCRYPT ’98, K. Nyberg, ed.,
vol. 1403 of Lecture Notes in Computer Science, Springer, 1998, pp. 184–200.

7. , Improved Algorithms for Isomorphisms of Polynomials. Extended version
of [6]. At the time of writing available electronically at the URL http://www.

minrank.org/ip6long.ps.

12

