An extended abstract of this paper appeaBrioc. 9th ACM Conference on Computer and
Communications Security (CCS;9%Yashington DC, USA, 2002.

Asynchronous Verifiable Secret Sharing and Proactive
Cryptosystems

Christian Cachin Klaus Kursawe Anna Lysyanskaya Reto Strobf
29 August 2002

Abstract

Verifiable secret sharing is an important primitive in distributed cryptography. With the growing
interest in the deployment of threshold cryptosystems in practice, the traditional assumption of a
synchronous network has to be reconsidered and generalized to an asynchronous model. This paper
proposes the firgiractical verifiable secret sharing protocol for asynchronous networks. The proto-

col creates a discrete logarithm-based sharing and uses only a quadratic number of messages in the
number of participating servers. It yields the first asynchronous Byzantine agreement protocol in the
standard model whose efficiency makes it suitable for use in practice. Proactive cryptosystems are
another important application of verifiable secret sharing. The second part of this paper introduces
proactive cryptosystems in asynchronous networks and presents an efficient protocol for refreshing
the shares of a secret key for discrete logarithm-based sharings.

1 Introduction

The idea ofthreshold cryptographys to distribute the power of a cryptosystem in a fault-tolerant
way [12]. The cryptographic operation is not performed by a single server but by a graugeoyers,

such that an adversary who corrupts up $ervers and observes their secret key shares can neither break
the cryptosystem nor prevent the system as a whole from correctly performing the operation.

However, when a threshold cryptosystem operates over a longer time period, it may not be realistic
to assume that an adversary corrupts andgrvers during the entire lifetime of the systeRroactive
cryptosystemaddress this problem by operatingghasesthey can tolerate the corruption of upto
different servers during every phase [18]. They rely on the assumption that serveesasegata and
on a special reboot procedure to remove the adversary from a corrupted server. The idea is to proactively
reboot all servers at the beginning of every phase, and to subsequefreghthe secret key shares such
that in any phase, knowledge of shares from previous phases does not give the adversary an advantage.
Thus, proactive cryptosystems toleratmabile adversary20], which may move from server to server
and eventually corrupt every server in the system.

Since refreshing is a distributed protocol, the network model determines how to make a cryptosystem
proactively secure. For synchronous networks, where the delay of messages is bounded, many proactive
cryptosystems are known (see [6] and references therein). However, for asynchronous networks, no
proactive cryptosystem is known so far. Because of the absence of a common clock and the arbitrary
delay of messages, several problems arise: First, it is not clear how to define a proactive phase when
the servers have no common notion of time. Second, even if the notion of a common phase is somehow
imposed by external means, a message of the refresh protocol might be delayed arbitrarily across phase
boundaries, which poses additional problems. And last but not least, one needs an asynchronous share
refreshing protocol.

*IBM Research, Zurich Research Laboratory, CH-88&¢hlikon, Switzerland{cca,kku,rts}@zurich.ibm.
com.
fBrown University, Providence, RI 02912, USAnna@cs.brown.edu . Work done at IBM Zurich.

The distributed share refreshing protocols of all proactive cryptosystems relgrdiable secret
sharing Verifiable secret sharing is a fundamental primitive in distributed cryptography [11] that has
found numerous applications to secure multi-party computation, Byzantine agreement, and threshold
cryptosystems. A verifiable secret sharing protocol allows a distinguished server, caltezhteeto
distribute shares of a secret among a group of servers such that only a qualified subgroup of the servers
may reconstruct the secret and the corrupted servers do not learn any information about the secret.
Furthermore, the servers need to reach agreement on the success of a sharing in case the dealer might
be faulty.

Asynchronouserifiable secret sharing protocols have been proposed previously [1, 9, 5]. However,
all existing solutions are prohibitively expensive to be suitable for practical use: the best one has message
complexityO(n®) and communication complexity (n° log n). This is perhaps not surprising because
they achieveunconditionalsecurity. In contrast, we considercamputationalsetting and obtain a
much more efficient protocol. Our protocol achieves message compl@kity) and communication
complexityO(xn?), wheres is a security parameter, and optimal resilience 3t.

Specifically, we assume hardness of the discrete-logarithm problem. Our protocol is reminiscent
of Pedersen’s scheme [22], but the dealer creates a two-dimensional polynomial sharing of the secret.
Then the servers exchange two asynchronous rounds of messages to reach agreement on the success of
the sharing, analogous to the deterministic reliable broadcast protocol of Bracha [2].

Combining our verifiable secret sharing scheme with the protocol of Canetti and Rabin [9], we obtain
the first asynchronous Byzantine agreement protocol that is provably secure in the standaranadodel
whose efficiency makes it suitable for use in practice.

With respect to asynchronous proactive cryptosystems, our contributions are twofold. On a con-
ceptual level, we propose a formal model for cryptosystems in asynchronous proactive networks, and
on a technical level, we present an efficient protocol for proactively refreshing discrete logarithm-based
shares of a secret key.

Our model of arasynchronous proactive netwoelktends an asynchronous network by an abstract
timer that is accessible to every server. The timer is scheduled by the adversary and defines the phase
of a serveldocally. We assume that the adversary corrupts at mastvers who are in the sarceal
phase Uncorrupted servers who are in the same local phase may communicate via private authenticated
channels. Such a channel must guarantee that every message is delayed no longer than the local phase
lasts and that it is lost otherwise.

A proactive cryptosystem refreshes the sharing of the secret key at the beginning of every phase
(i.e., when sufficiently many servers enter the same local phase). Our model implies that liveness for
the cryptosystem is only guaranteed to the extent that the adversary does not delay the messages of the
refresh protocol for longer than the phase lasts. Otherwise, the secret key may become unaccessible.
Despite this danger, we believe that our model achieves a good coverage for real-world loosely synchro-
nized networks, such as the Internet, since a phase typically lasts much longer than the maximal delay
of a message in the network.

Finally, we propose an efficient proactive refresh protocol for discrete logarithm-based sharings. It
builds on our verifiable secret sharing protocol and on a randomized asynchronous multi-valued Byzan-
tine agreement primitive [3]. The refresh protocol achieves optimal resiliencet and has expected
message complexit§(n3) and communication complexity (xn°).

1.1 Organization of the Paper

In the next section we introduce our system model and recall the definition of asynchronous multi-valued
Byzantine agreement with external validity. Section 3 defines asynchronous verifiable secret sharing and
presents an efficient protocol for creating discrete logarithm-based sharings of a secret. In Section 4,
we extend the asynchronous system modelgoactivenetwork, and in Section 5 we describe how to
asynchronously refresh shares of a secret key for discrete logarithm-based cryptosystems.

2 Preliminaries

2.1 Asynchronous System Model

We adopt the basic system model from [4, 3], which describe an asynchronous network of servers with
a computationally bounded adversary.

Our computational model is parameterized by a security parametarfunctione(x) is called
negligibleif for all ¢ > 0 there exists & such that(x) < Hi forall k > k.

Network. The network consists of serverspP;, ..., P,, which are probabilistic interactive Turing
machines (PITM) [15] that run in polynomial time (it). There is an adversary, which is a PITM that
runs in polynomial time inc. Some servers are controlled by the adversary and cediadpted the
remaining servers are calldwnest An adversary that corrupts at masservers is called-limited.
There is also an initialization algorithm, which is run by a trusted party before the system starts. On
input k, n, t, and further parameters, it generates the state information used to initialize the servers,
which may be thought of as a read-only tape.

We assume that every pair of servers is linked Isgeure asynchronous chanrteét provides pri-
vacy and authenticity with scheduling determined by the adversary. (This is in contrast to [3], where
the adversary observes all network traffic.) Formally, we model such a network as follows. All com-
munication is driven by the adversary. There exists a global set of messdgedose elements are
identified by aabel (s, r, 1) denoting the sendey, the receiver, and the lengtli of the message. The
adversary sees the labels of all messagestirbut not their contentsM is initially empty. The system
proceeds in steps. At each step, the adversary performs some computation, chooses an hon@st server
and selects some message= M with label(s, i,1). P; is thenactivatedwith m on its communication
input tape. When activated®; reads the contents of its communication input tape, performs some com-
putation, and generates one or more response messages, which it writes to its communication output
tape. A response messagemay contain a destination address, which is the intdeka server. Such
anm is added toM with label (i, j, |m|) if P; is honest; ifP; is corruptedn is given to the adversary.
In any case, control returns to the adversary. This step is repeated arbitrarily often until the adversary
halts.

These steps define a sequence of events, which we view as logical time. We sometimes use the
phrase “at a certain point in time” to refer to an event like this.

We assume aadaptiveadversary that may corrupt a servérat any point in time instead of ac-
tivating it on an input message. In that case, all messages M with label (-, ¢, |m|) are removed
from M and given to the adversary. She gains complete control Byebtains the entirgiew of P;
up to this point, and may now send messages with label|m|). Theviewof a server consists of its
initialization data, all messages it has received, and the random choices it made so far.

Termination. We definetermination of a protocol instance only to the extent that the adversary
chooses to deliver messages among the honest servers [4]. Technically, termination of a protocol follows
from a bound on the number of messages that honest servers generate on behalf of a protocol, which
must be independent of the adversary.

We say that a messagedssociatedo a particular protocol instance if it was generated by any server
that is honest throughout the protocol execution on behalf of the protocol.

The message complexibf a protocol is defined as the number of associated messages (generated
by honest servers). It is a random variable that depends on the adversaryand on

Similarly, thecommunication complexityf a protocol is defined as the bit length of all associated
messages (generated by honest servers). It is a random variable that depends on the adversary and on

Recall that the adversary runs in time polynomiakinWe assume that the parameteis bounded
by a fixed polynomial ins, independent of the adversary, and that the same holds for all messages in the
protocol, i.e., larger messages are ignored.

For a particular protocol, arotocol statisticX is a family of real-valued, non-negative random
variables{ X 4(x)}, parameterized by adversaryand security parameter, where eachX 4(x) is a
random variable induced by running the system with(Message complexity is an example of such a
statistic.) We restrict ourselves to protocol statistics that are bounded by a polynomial in the adversary’s
running time.

We say that a protocol statisti is uniformly boundedf there exists a fixed polynomial(x) such
that for all adversaried, there is a negligible functiogy, such that for alk > 0,

Pr[Xa(k) > p(k)] < ea(k).

A protocol statisticX is calledprobabilistically uniformly boundedf there exists a fixed polynomial
p(x) and a fixed negligible functiod such that for all adversarie$, there is a negligible functioay,,
such that for all > 0 andx > 0,

Pr[Xa(k) > p(x)] < 5(1) + ea(r).

If X is probabilistically uniformly bounded by, then for all adversariesl, we haveE[X 4(k)] =
O(p(r)), with a hidden constant that is independentdof Additionally, if Y is probabilistically uni-
formly bounded by, thenX -Y is probabilistically uniformly bounded lyy- ¢, and X + Y is probabilis-
tically uniformly bounded by + ¢. Thus, (probabilistically) uniformly bounded statistics are closed
under polynomial composition, which is their main benefit for analyzing the composition of randomized
protocols [3].

Protocol execution and notation. We now introduce our notation for writing asynchronous protocols.
Recall that a server is always activated with an input message; this message is added to an internal input
buffer upon activation.

In our model, protocols are invoked by the adversary. Every protostdnceis identified by a
unique stringlD, also called theag, which is chosen by the adversary when it invokes the instance.

There may be several threads of execution for a given server, but no more than one is active con-
currently. When a server is activated, all threads aneait states A wait state specifies a condition
defined on the received messages contained in the input buffer and other local state variables. If one or
more threads are in a wait state whose condition is satisfied, one such thread is scheduled arbitrarily,
and this thread runs until it reaches another wait state. This process continues until no more threads are
in a wait state whose condition is satisfied. Then, the activation of the server is terminated, and control
returns to the adversary.

There are two types of messages that protocols process and generate: The first type iopotains
actions which represent a local activation and carry input to a protocol, arigdut actions which
signal termination and potentially carry output of a protocol; such messages ardacdleglvents The
second message type is an ordinary point-to-point network message, which is to be delivered to the peer
protocol instance running on another server; such messages are alspratedl messages

All messages are denoted by a tupl®, .. .); the tag/D denotes the protocol instance to which
this message iassociated Input actions are of the for/D, in ,type ...), and output actions are of
the form(ID, out ,type ...), with typedefined by the protocol specification. All other messages of the
form (ID,type .. .) are protocol messages, wheypeis defined by the protocol implementation.

We describe protocols in a modular way: A protocol instance may invoke another protocol instance
by sending it a suitable input action and obtain its output via an output action of the sub-protocol. This is
realized by a server-internal mechanism, which, for any message generated by the calling protocol that
contains an input action for a sub-protocol, creates the corresponding protocol instance (if not already
running) and delivers the input action; furthermore, it passes all output actions of the sub-protocol to the
calling protocol by adding them to the input buffer.

The pseudo-code notation used for describing our protocols is as follows. To enter a wait state, a
thread may execute a command of the fovait for condition whereconditionis an ordinary predicate

4

on the input buffer and other state variables. Upon executing this command, a thread enters a wait state
with the givencondition

We specify aconditionin the form ofreceiving messages events In this casemessagedescribes
a set of one or more protocol messages evehtsdescribes a set of local events (e.g., outputs from a
sub-protocol) satisfying a certain predicate, possibly involving other state variables. Upon executing this
command, a thread enters a wait state, waiting for the arrival of messages satisfying the given predicate;
moreover, when this predicate becomes satisfied, the matching messagesvadout of the input
buffer into local state variables. If there is more than one set of matching messages, one is chosen
arbitrarily.

We also may specify aonditionof the form ofdetecting message3he semantics of this are the
same as foreceiving messageexcept that the matching messagescagiedfrom the input buffer into
local state variables.

There is a global implicitvait for statement that every protocol instance repeatedly executes; it
matches any of theonditionsgiven in the clauses of the formmpon condition block Every time a
conditionis satisfied, the correspondibpckis executed. If there is more than one satistieddition
all correspondindplocksare executed in an arbitrary order.

We use the terminologynlessconditiondo block to denote thablockis executed as long as the
specified condition doesot hold. If the thread enters a wait state durbiigck and another activation
of the server changes its internal state such that the specified condition holds, the exeditick isf
aborted.

2.2 Cryptographic Assumptions

Let p andq be two large primes satisfying(p — 1), andg > n. Let G denote a multiplicative subgroup
of orderq of Z,, and letg andh be two generators @i chosen by an initialization algorithm such that
no server knowsog,, h.

Thediscrete-logarithm problers to computdog, u given a description of, a generatoy of G,
and an element € G. We assume that this problem is hard to solveGinwhich means that any
probabilistic polynomial-time algorithm solves this problem at most with negligible probability.

2.3 Multi-valued Validated Byzantine Agreement

Byzantine agreemelig a fundamental problem in distributed computation [21]. In asynchronous net-
works, it is impossible to solve by deterministic protocols [13], which means that one must resort to
randomized protocols. The first polynomial-time solution to this problem was given by Canetti and
Rabin [9, 5]. The standard notion of Byzantine agreement implements only a binary decision in asyn-
chronous networks. It can guarantee a particular outcome oaly lifonest servers propose the same
value. Validated Byzantine agreemej8] extends this to arbitrary domains by means of a so-called
externalvalidity condition. It is based on a global, polynomial-time computable predi@ateknown
to all servers, which is determined by an external application. Each server may propose a value that
perhaps contains validation information. The agreement ensures that the decision value @agsfies
and that it has been proposed by at least one server.

When a servelP; starts a validated Byzantine agreement (VBA) protocol with alfagand input
v € {0,1}*, we sayP; proposew for ID. W.l.o.g. the honest servers propose values that safigfy
When a server terminates a validated Byzantine agreement protocol with tagd outputs a value,
we sayP; decidesy for ID.

Definition 1. (Validated Byzantine Agreement) A protocol fealidated Byzantine agreementith
predicateQ);p satisfies the following conditions for evetylimited adversary, except with negligible
probability:

External Validity: Every honest server that terminates decidés /D such thatQp(v) holds.

5

Agreement: If some honest server decidedor /D, then any honest server that terminates decides
for ID.

Liveness: If all honest servers have been activated/dnand all associated messages have been deliv-
ered, then all honest servers have decided for

Integrity: If all servers follow the protocol, and if some server decide®r ID, then some server
proposed for ID.

Efficiency: For everyID, the communication complexity of instanéP is probabilistically uniformly
bounded.

The protocol of Cachin et al. [3] for multi-valued validated Byzantine agreement is based on a
so-called consistent broadcast protocol and on a protocol for binary Byzantine agreement, which rely
on threshold signatures and on a threshold coin-tossing protocol [4]. Both sub-protocols can be im-
plemented efficiently in the random oracle model. With these primitives, the expected message com-
plexity of multi-valued validated agreement@¥n?), and the expected communication complexity is
O(n3 + n?(K + |v|)), wherev is the longest value proposed by any server &hd the length of a
threshold signature. These protocols have been proven secure only against static adversaries [3].

As we show in this paper, binary asynchronous Byzantine agreement can also be implemented effi-
ciently in the standard model and with adaptive security based on verifiable secret sharing. This solution
incurs a larger communication complexity than the one in [3], however.

3 Asynchronous Verifiable Secret Sharing

In this section we define asynchronous verifiable secret sharing (AVSS) and propose a novel efficient
AVSS protocol based on the discrete-logarithm problem.

3.1 Definition

We considedual-threshold sharingsvhich generalize the standard notion of secret sharing by allowing
the reconstruction threshold to exceed the number of corrupted servers by more than one [23]. In
an (n, k,t) dual-threshold sharing, there ameservers holding shares of a secret, of which ug to
may be corrupted by an adversary, and any groug of more servers may reconstruct the secret
(n —t > k > t). Such dual-threshold sharings are an important primitive for distributed computation
and agreement problems [4].

A protocol with a tag/D.d to share a secratc Z, consists of aharingstage and g&econstruction
stage as follows.

Sharing stage. The sharing stage starts when a server initializes the protocol. In this case, we say
the serverinitializes a sharing/D.d. There is a special servét;, called thedealer, which is
activated additionally on an input message of the fofi.d, in , share ,s). If this occurs, we
say P; sharess using/D.d among the group. A server is saiddomplete the sharingD.d when
it generates an output of the forffiD.d, out , shared).

Reconstruction stage.After a server has completed the sharing, it may be activated on a message
(ID.d,in ,reconstruct). Inthis case, we say the sengarts the reconstruction fatD.d. At
the end of the reconstruction stage, every server should output the shared secret. B sergar
nates the reconstruction stage by generating an output of the férnd, out , reconstructed :
z;). In this case, we sa¥; reconstructs; for ID.d. This terminates the protocol.

The definition of asynchronous verifiable secret sharing is the same as in synchronous networks,
except that some extra care is required to ensure that all servers agree on the fact that a valid sharing has
been established. Our definition provides computational correctness and unconditional privacy.

Definition 2. A protocol forasynchronous verifiable dual-threshold secret shasatisfies the follow-
ing conditions for any-limited adversary:

Liveness: If the adversary initializes all honest servers on a shafingl, delivers all associated mes-
sages, and the deal& is honest throughout the sharing stage, then all honest servers complete
the sharing, except with negligible probability.

Agreement: Provided the adversary initializes all honest servers on a shafing and delivers all
associated messages, the following holds: If some honest server completes the Bbatjng
then all honest servers complete the shaiibgl and if all honest servers subsequently start the
reconstruction forD.d, then every honest servét reconstructs some for ID.d, except with
negligible probability.

Correctness: Oncek honest servers have completed the shafingl, there exists a fixed valuee Z,
such that the following holds except with negligible probability:

1. If the dealer has sharedising/D.d and is honest throughout the sharing stage, thens.
2. If an honest serveP; reconstructg; for ID.d, thenz; = z.

Privacy: If an honest dealer has sharedsing/D.d and less tha# — ¢ honest servers have started the
reconstruction fofD.d, the adversary has no information abeut

Efficiency: For everylD.d, the communication complexity is uniformly bounded.

The first two conditions are liveness conditions. They imply the same form of termination and
agreement as required by tBgzantine generals problefh9], which implements aeliable broadcast
with Byzantine faults [17, 3] from a distinguished server to all others. The servers must terminate the
protocol only if the distinguished server is honest, but they agree on the termination of the protocol such
that either none or all honest servers terminate the protocol and generate some output.

This definition is analogous to the definition of AVSS in the information-theoretical model by
Canetti and Rabin [9].

3.2 Implementation

This section describes a novel verifiable secret sharing protocol for an asynchronous network with com-
putational security. Our protocol creates a discrete logarithm-based sharing of the kind introduced by
Pedersen [22], and it is much more efficient than the previous VSS protocols for asynchronous net-
works [1, 9, 5] (which were proposed in the information-theoretic model). Our protocol uses exactly the
same communication pattern as the asynchronous broadcast primitive proposed by Bracha [2], which
implements the Byzantine generals problem in an asynchronous network.

ProtocolAVSS creates arin, k, t) dual-threshold sharing for any — 2¢t > k£ > ¢. The sharing
stage works as follows (assurhe> [2tLL] for the moment).

1. The dealer computes a two-dimensional sharing of the secret by choosing a random bivariate
polynomial f € Z,[x,y| of degree at most — 1 with f(0,0) = s. It commits tof(z,y) =
Z;l_:lo fﬂ:cjy’ using a second random polynomifll € Z,[x,y] of degree at most — 1 by
computing a matrbxC = {C}; } with Cj; = gfinhicfor j,1 € [0,k — 1]. Then the dealer sends to
every servel’; a message containing the commitment maifias well as tweshare polynomials
a;(y) = f(i,y) anda(y) := f'(i,y) and twosub-share polynomials;(x) := f(z,4) and
bi(z) == f'(x,1), respectively.

2. When they receive theend message from the dealer, the senexBothe points in which their
share and sub-share polynomials overlap to each other. To this é#feseinds arecho message
containingC, a;(j), a;(j), b:(j), andd;(j) to every serverP;.

1 (3
3. Upon receiving: echo messages that agree @nand contain valid points, every seni@rinter-
polates its own share and sub-share polynondialg;, b;, andb, from the received points using
standard Lagrange interpolation. (In case the dealer is honest, the resulting polynomials are the
same as those in tisend message.) TheR; sends aeady message containing, a;(j), a,(j),
bi(7), andbl(j) to every server;.
Itis also possible that a server receivemlid ready messages that agree @rand contain valid
points, but has not yet receivédvalid echo messages. In this case, the server interpolates its
share and sub-share polynomials from tkady messages and sends its oready message
to all servers as above.

4. Once a server receives a totakof t ready messages that agree @nit completeshe sharing.
Its share of the secret {s;, s;) = (a;(0), a,(0)).

The reconstruction stage is straightforward. Every seRyeeveals its sharés;, s;) to every other
server, and waits fak such shares from other servers that are consistent with the commit@eniten
it interpolates the secrgt 0, 0) from the shares.

For smaller values of, in particular fort < k < [2t+1], the protocol has to be modified to receive
[%t“} echo messages in step 3. This guarantees the uniqueness of the shared value.

A detailed description of the protocol is given in Figures 1 and 2. In the protocol description, the
following predicates are used:

verify-poly(C, i, a,a’,b,b'), wherea, a’, b, andb’ are polynomials of degree— 1, i.e.,

k-1 k-1 k-1 k-1
ay) => ay', d@)=> ay, ba)=) bpd, and V()= bal;
1=0 1=0 §=0 §=0

the predicate verifies that the given polynomials are share and sub-share polynomizaledir
sistent withC; it is true if and only if for alll € [0,k — 1], it holds g h% = [T5Z3(C;,)”, and
1

for all j € [0,k — 1], it holds g% h% = TTF- 0 (Cy)*".

verify-point(C, i,m, a, o/, 3, 5) verifies that the given values o/, 3, andg’ correspond to the points
f(m,i), f'(m,1), f(i,m), and f'(i, m), respectively, committed to i€, which P, supposedly
receives fromP,,,; itis true if and only ifg® h®’ = Hf}l’:lo(cjl)m”l andg?h? = H;?’l’zlo(()jl)“ml.
verify-share(C, m, o,¢’) verifies that the paifo, ¢’) forms a valid share of,, with respect taC; it
is true if and only ifg”h" = [T52(Cj0)™ .
The servers may need to interpolate a polynomiaf degree at most — 1 overZ, from a setA of
k points{(m1, am,), - ., (Mg, am,) } such thata(m;) = ay,, for j € [1,k]. This can be done using
standard Lagrange interpolation. We abbreviate this by saying a setemolatess from A; should.A
contain more thatk elements, an arbitrary subsetfoélements is used for interpolation.

In the protocol description, the variablesindr count the number ofcho andready messages,
respectively. They are instantiated separately only for valud&s thfat have actually been received in
incoming messages.

Intuitively, protocol AVSS performs a reliable broadcast @f using the protocol of Bracha [2],
where evenecho andready message between two servéisand P; additionally contains the values
f@,), f(4,1), f'(i,7),andf'(j,7), which they have in common.

The protocol use$)(n?) messages and has communication comple&ityn*). The size of the
messages is dominated kY it can be reduced by a factor afas shown in Section 3.4.

8

Protocol AVSS for server P; and tag ID.d (sharing stage)

upon initialization:
for all C do

ec — 0;rc <0
Ac — 0; A — 0; Bc «— 0; B 0

upon receivinga messagélD.d,in ,share ,s): [*only Py*/
choose two random bivariate polynomiglsf’ € Z,|x, y| of degreek —1 with f(0,0) = foo =
s, i.e.,

k—1 k—1
flay)=> fazy' and fl(zy) =) faly

7,=0 7,0=0

C — {Cy}, whereCj; = gfinivfor j,1 e [0,k — 1]
for j € [1,n] do
aj(y) — f() aj(y) — f'(G9): bj (@) — f(x,5); V(x) — f'(x,)

send the messadéD.d, send , C, a;, a;, b, b;) to P;

upon receivinga messagé/D.d, send , C, a, a’,b, ') from P, for the first time:
if verify-poly(C,i,a,d’,b,b") then
for j € [1,n] dosend the messadéD.d,echo , C,a(j),a’(4),b(5),V(j)) to P;

upon receivinga messagé/D.d, echo ,C, a, o/, 3, 3') from P, for the first time:
if verify-point(C, i, m,a, o/, 3, 3") then

Ac — Ac U {(m.)} Ag — Ag U {(m,a')}

Bc « Bo U{(m. B)}; B — Be U{(m.)}

ec «—ec+1

if ec = max{[2tH1] &k} and rc < k then
interpolatea, a’, b, andb’ from Ac, A, Be, andBg, respectively
for j € [1,n] do send the messadéD.d, ready , C,a(j),a (j),b(5),V'(j)) to P;

upon receivinga message/D.d, ready ,C, «a, ', 3, 3') from P, for the first time:
if verify-point(C, i, m,a, o/, 3, 3") then

Ac — Ac U{(m,a)}; Ag — Ag U {(m,a/)}

Bc « Bo U{(m, B)}; B — B U{(m, 3}

rc—rc+1

if rc =k and ec < max{[2H], k} then
interpolatea, a’, b, andb’ from Ac, A, Bc, andBg, respectively
for j € [1,n] do send the messadéD.d, ready , C,a(j),a’ (j),b(5),V'(j)) to P;

else ifrc = k£ + t then
C—C
(si,sh) <« (a(0),a'(0)) I* (si, s;) is the share of; */
output(/D.d,out ,shared)

Figure 1: ProtocolAVSS for asynchronous verifiable secret sharing (sharing stage).

Protocol AVSS for server P; and tag ID.d (reconstruction stage)

upon receivinga messagé/D.d, in ,reconstruct):

c—0;S—10
for j € [1,n] do send the messadéD.d, reconstruct-share , 8, 8;) 10 P;
upon receivinga messagélD.d, reconstruct-share ,o,0') from P,

if verify-share(C,m, o,) then
S —SU{(m,o)}
c—c+1
if ¢ = k then
interpolateay from S
output(ID.d,out ,reconstructed ,ag(0))
halt

Figure 2: ProtocolAVSS for asynchronous verifiable secret sharing (reconstruction stage).

Note that protocoRVSS creates an ordinarfy:, t+1, t)-sharing with optimal resilience > 3¢, and
an(n, 2t + 1, t)-sharing with resilience > 4t¢. It is an open problem to develop an AVSS protocol with
comparable efficiency that creates arbitrary dual-threshold sharings (or even sharings=2ndth+ 1)
with optimal resilience.

We prove the following theorem in the next section.

Theorem 1. Assuming the hardness of the discrete-logarithm problem, prot&¢@S implements
asynchronous verifiable dual-threshold secret sharing#fer 2t > k > ¢.

3.3 Analysis

We have to show that protocélVSS satisfiedivenessagreementcorrectnessprivacy, andefficiency
according to Definition 2. The proof relies on the following lemma.

Lemma 2 ([2]). Suppose an honest servdfssends aready message containin@; and a distinct
honest serveP; sends aeady message containinG;. ThenC; = C;.

Proof. We prove the lemma by contradiction. Supp@se# C;. P; generates theeady message
for C; only if it has received at Ieaé,t%t“} echo messages containin@; or £ ready messages
containingC;. In the second case, at least one honest server has ssadya message containing;
upon receiving at Ieasf,t%t“} echo messages; we may as well assume that thiz it® simplify the
rest of the argument. Thu$; has received%t“} echo messages containing;, of which up tot
are from corrupted servers.

Using the same argumentatiaf, must have received at legstt=1] echo messages containing
C;.

Then there are at Iea%i%t“} = n-+t+1echo messages received by and P; together, among
them at least — t + 1 from honest servers. But no honest server generates more than one such message
by the protocol. O

Liveness. If the dealerP; is honest, it follows directly by inspection of the protocol that all honest
servers complete the sharid@.d, provided all servers initialize the sharid@.d and the adversary
delivers all associated messages.

10

Agreement. We first show that if some honest server completes the shdfing, then all honest
servers complete the sharid@.d, provided all servers initialize the sharid@.d and the adversary
delivers all associated messages.

Suppose an honest server has completed the sharing. Then it has rdceivedalid ready
messages that agree on sofeOf these, at least have been sent by honest serversiafid echo or
ready message is one that satisfiesify-point, and it is easy to see from the definitionvafrify-poly
andverify-point that honest servers send only val@hdy messages.

Since an honest server sendsédady message to all servers, every honest server receives at least
k valid ready messages with the san@ by Lemma 2 and sendsraady message containing.
Hence, by the assumption of the theorem, any honest server receives > k + t valid ready
messages containirg and completes the sharing.

As for the reconstruction part, it follows from Lemma 2 that every honest sélveomputes the
sameC. Moreover,P; has received enough valetho orready messages with respect @so that
it computes valideady messages andwalid shares;, s with respect taC (a share such thaerify-
share(C, i, s;, s;) holds). Thus, if all honest servers subsequently start the reconstruction stage, then
every server receives enough valid shares to reconstruct some value, provided the adversary delivers all
associated messages.

Correctness. Let J be the index set of the honest server®; that have completed the sharing, and
let (s;, s;-) be their shares. Letf for j € J denote the appropriate Lagrange interpolation coefficients
for the set7 and position 0. Define

z:Z)\fsj.

Jj€G

To prove the first part, suppose the dealer has shagettl is honest throughout the sharing stage.
Towards a contradiction assume# s. Because the dealer is honest, it is easy to see that echry
message sent from an honétto P; containsC, f(4,7), f'(z,7), f(j, %), and f'(j,) as computed by
the dealer. Furthermore, if the serversincomputed their shares only from theseho messages,
thens; = a;(0) = f(j,0). But sincez # s, at least one honest servEy computed a polynomial
a;(y) # f(i,y); this must be because accepted aecho orready message from some corrupted
P, containinga # f(m,1).

SinceP; has evaluatederify-point to true, we have

k—1
g“h =TT @™, 1)

Jil=0
On the other hand, the dealer has sent polynomiglanda,,, to P, satisfying

k—1
l

g Onee® = TT ()™ e
4,1=0

and (an,(i),al,(i) = (f(m,1), f'(m,i)). Itis easy to see from Lemma 2 and from the fact that the

dealer is honest th& used by the dealer a@ used byP; are equal. Thug;®h® = ¢@m () pam () from
(1) and (2). Together withy # f(m, i) = a,,(7) from above, this implies also

o # f'(m,i) = ay, (). ®3)

Rewriting this usingh = ' and comparing exponents yields- (log, 7)o’ = am (i)+(log, h)ay, (i).
Because of (3), one can complitg, i = (a — am(i))/(ay, (i) — o), a contradiction.

m

11

To prove the second part, assume that two distinct honest sdryarsd P; reconstruct values;
andz; such that; # z;. This means that they have received two distinct Sets {(1, s\”, 5/(7)} and

S; = {(, sl(j), S;U‘))} of k& shares each, which are valid with respect to the unique commitment matrix
C used byP; and P; (the uniqueness dt follows from Lemma 2).

According to the protocok; andz; are interpolated from the sef§l, sl(i))} and{(l slj))} obtained
from S; andS;, respectively. Let; and’; be interpolated analogously frofil, 51} and{(l, s;U))}.

Since the shares ifi; andS; are valid, it is easy to see that h% = Coy = g% K%, But then one can
rewrite this using: = ¢'°% " and computéog, h = (z; — z;)/ (2} — 2}).

Privacy. Fix any point in time, and leB be the index set of servers that are either corrupted or have
already started the reconstruction f@.d. W.l.o.g. assum@3| = k£ — 1 and that the adversary’s view
consists of the polynomialg(z, i), f'(z,%), f(¢,y), and f'(i,y) for i € B and the commitment€ as
computed by the dealer.

We have to show that for every valdes Z,, there exist two polynomialg, f' € Zqlx,y] of degree
at mostk — 1 that are consistent with the adversary’s view and suchftf@at) = 3.

Note that there is a unique valdee Z, such thatCyy = ¢°h*¥'. The values’ ands together with
the polynomialsf (z,), f'(z,%), f(i,y), and f'(i,y) in the view of the adversary define uniquely two
polynomialsf, f’ € Z,[x,y] of degree at most — 1 such thatf(0,0) = 5 and f'(0,0) = &, as well as

f(xal) :f($,l), f’(l’,’b) :f/(.T,Z>, f(luy> :f(lvy)a and f/(Z7y) :.]E/(Zay> (4)

for i € B. It remains to show that},,, = g/ hfim for I,m € [0,k — 1].
Definee(z,y) = f(z,y)+Lf (x,y), wherel = log,h. Then we havg® = Cy,,, fori,m € [0,k —
1]. If we analogously definé(z,y) = f(z,y) + £f (x,y), all we have to show is(z,y) = é(z,).
Recall thak(x,:) = f(x,i)+4f (z,i) ande(i,y) = f(i,y)+Lf (i,y) fori € Baswellag(0,0) =
£(0,0) + £f7(0,0) by construction. Inserting (4) into the definition @fwe haveg(x,i) = e(x, i) and
é(i,y) = e(i,y) for i € B. In addition, we know thag(%-0) = Cyy = ¢°h%" = ¢"T6" = ¢¢(00) from
the definitions of’, of ¢, and of f, /', andé (in this order). Thus, the polynomiatsandé are equal.

Efficiency. Every honest server sends at most enko , ready , andreconstruct-share mes-
sage to every other server, which yields a totalgh?) messages. Since the size of all messages is
bounded byO(xn?), it follows easily that the communication complexity is uniformly bounded.

3.4 Reducing Message Sizes

In the sharing stage of the protoc&V/SS described above, every servBr resends the commitment
matrix C with every message it sends. Intuitively, this is needed for two reasons: first, to allow the
honest servers to agree on the value that is a commitment to the secret being shared, and second, to
allow the servers to verify that the secret shares they receive correspond to this commitment. We show
in this section how to guarantee these two ends without having the servers resend so much data.

The new protocol relies on a collision-resistant hash functionThis is not an extra assumption
because it is well-known that the hardness of the discrete-logarithm problem implies efficient collision-
resistant hash functions. In practice, hash functions can be implemented at very little cost.

Recall from Section 3.2 that to create a secret sharing, the dealer selects two bivariate polynomi-
als f and f’. Also, recall the notation;, a’, b;, b; from the description in Section 3.2. Let(") =
(AW, AW Ay denote the(n + 1)-element list formed by settinggl) = ¢u0p%0) for j €
[0,n]. Let B® be derived analogously froy andb;. Define listsA(®) and B(®) analogously with
A§0> — gD RS (04) and BJ(O) = ¢gfGORI'GO) for j € [0, 7).

12

Modifications to the dealer’s part of the sharing protocol. Instead of sending to each server?;
adds the following values, which we will denote By, to everysend message:

1. A© and BO);
2. ha = (haos-- -, han) @andhy = (hyo, ..., hopp), whereh, ; = H(AD) andhy, ; = H(BW).

In addition, the dealer sends the polynomialsa}, b; andb; to each serveP; as before. Note that as a
result, the dealer sendsmessages of lengti(xn) each.

Modifications to P;’s part of the sharing protocol. In the modified protocol?, computes the lists
A® and B® from the received data and adds them to evamiyo or ready message, together with
the publicD from the dealer's message. This allows every server to perform the same checks as before,
but reduces the length of every messag@ten). Furthermore, messages are counted separately with
respect td instead ofC.

The modified protocol uses the following predicates (in e@kh; (A®, BO) h,, h;) as described
above):

check-poly(D, i, A, B), whereA andB are(n+1)-elementlists, is satisfiedjctgo) = By, Bfo) = Ao,
hai = H(A), andhy; = H(DB).

check-point(C,~,~") checks thatC is a commitment toy and~/; it is satisfied if and only ifC’ =
gvhv’.

verify-poly(D, i,a,a’,b, V'), wherea, o/, b, andd’ are polynomials of degrele — 1, is satisfied if and
only if check-poly(D, i, A, B) for the listsA = (Ao, ..., A,)andB = (By, ..., B,) formed by
setting4; = g*@Whe'0) andB; = "W Kt U), respectively.

verify-point(D, i,m, A, B,a, o/, 3,3'), where A and B are the(n + 1)-element lists received from
P,,, verifies that the given values, o', 3, and’ correspond to the point§(m,i), f'(m,1),
f(i,m), andf’(i,m), respectively, committed to iD; it is true if and only if

check-poly(D,m, A, B) A check-point(A;, a,a’) A check-point(B;, 3,3).

verify-share(D, m, o, 0’) verifies that the paifo, ') forms a valid share of,, with respect tdD; it
is true if and only ifg”h = ALY

The remaining details of the modified protocol can now easily be filled in. The part for reconstruct-
ing the secret remains the same, except for the new definition ottiifg-share predicate.

Itis clear that the message complexity of the revised protocol is the same as the message complexity
of the protocol in Section 3.2. It is also clear that the communication complexity is reducke o)
because every single message sent out by the new protocol ingydesich is of sizeO(xn), instead
of C, which is of sizeO(kn?).

Analysis. We must now argue why the resulting protocol retains the properties of an asynchronous
verifiable secret sharing protocol. Tleenessagreementandprivacy properties follow in exactly the
same way as in Section 3.3. Therrectnesgproperty is the only one that needs to be elaborated on.
First, observe that Lemma 2 holds as well for this protocol with the obvious modifications (replacing
C by D). Let 7 andz be as in the proof of correctness in Section 3.3.
Suppose the dealer is honest and has sharatd yetz # s. As before, because the dealer is
honest, it is easy to see that evesgho message sent from an hongstto P; containsD, A
B9, £(i,), f'(i,7), f(4,4), and f'(4,7) as computed by the dealer. Furthermore, if the servers in
J computed their shares only from theseho messages, thes;, = a;(0) = f(4,0). But since

13

z # s, at least one honest servEy computed a polynomiai;(y) # f(i,y); this must be because
P; accepted aecho orready message from some corruptéy, containinga: # f(m,). SinceP;
has evaluatederify-point(D, i, m, A, B, o, &, 3, 3’) to true, we know thatheck-poly(D, m, A, B)
andcheck-point(4;, a, o’) hold. Supposed” # A. Then we have broken the hash function, since
check-poly would fail if h,; = H(A®W) # H(A). SoA® = A. But then we break the discrete-
logarithm assumption as before.

Suppose the dealer is corrupted and two distinct honest seffvarsd P; reconstruct values; and
z; such thatz; # z;. By Lemma 2, they both accepted the unique commitnigntvhich includes

the valueA®). This means that they have received two distinct sgts= {(I, sl(i), s} andS; =
{157, 51©)} of k shares each, which are valid with respectitd). According to the protocok; and

z; are interpolated from the se{¢l, sl(l))} and{(l, sl(]))} obtained fromS; andsS;, respectively. Let/

andz/ be interpolated analogously frofiil, s;”))} and{(l, s;\"))}. Since the shares i§; andsS; pass
theverify-share test, but interpolate to distinct values, we obtain two ways of opening the commitment
contained inA(?), which contradicts the discrete-logarithm assumption. The details are similar as before
and left to the reader.

Further Improvements. Suppose instead of using just the two generajasdh of the groupG, we

use generatorg, ..., gy, andh. Then, in order to sharé&’ secretssy, ..., sy, the dealer computes
N + 1 bivariate polynomialsfs, ..., fv, and f’, and forms the entries of the verification matfixas
Cy =gl (j’l)gf(j’l) . ginUDRI"GD The rest of the protocol is carried out analogously to the protocol

described above. As a result, we can have a dealer shaecrets at the cost 6#(n?) messages and
O(kn?(n + N)) communication.

3.5 Application to Asynchronous Byzantine Agreement

Byzantine agreement is a fundamental problem in distributed computation [21]. In asynchronous net-
works, it is impossible to solve by deterministic protocols [13], which means that one must resort to
randomized protocols. The first polynomial-time solution to this problem was given by Canetti and Ra-
bin [9, 5]. However, this result is proof of concepaind not a practical solution because the complexity

of their protocol is rather high: the message complexit9 {8°) and the communication complexity is
O(n®logn).

The cost of this protocol is dominated by their asynchronous verifiable secret sharing protocol for
sharingn secrets. Our protocol for the same task from the previous sect@®mi¥) times more efficient
for message complexity, and approximatéign*) times more efficient for communication complexity.

We propose to plug our AVSS protocol directly into the Byzantine agreement protocol of Canetti and
Rabin [9] (an excellent exposition of how AVSS is used in asynchronous Byzantine agreement is given
in [5]). As a result, assuming the hardness of the discrete-logarithm problem, the complexity of asyn-
chronous Byzantine agreement is reducedfa’) message complexity and(xn*) communication
complexity.

We stress that this works in tlremputationabketting, whereas Canetti and Rabin [9] use an uncon-
ditional model. We also mention that in the so-called random-oracle model, a more efficient protocol
exists, which is secure against a static adversary [4]. However, the random-oracle model makes an
idealizing assumption about cryptographic hash functions, which involves certain problems [7], and a
proof in this model falls short from a proof in the real world. Hence, our AVSS protocol yields the first
asynchronous Byzantine agreement protocol that is provably secure in the standarcntosikbse
efficiency makes it suitable for use in practice.

14

4 Asynchronous Proactive Model

Proactive cryptosystems combine distribution with a periodic refresh operation in order to protect the
secret key againstmobileadversary, who can move from one server to another and corrupt all servers
during the lifetime of the system [20, 18]. In this section, we propose an extension of the asynchronous
system model given in Section 2 for proactive cryptosystems. We argue that such an extension is nec-
essary and that our proposal is minimal. An asynchronous proactive refresh protocol for shared secrets,
which forms the core of every proactive cryptosystem, is presented in the next section.

Motivation. A proactive cryptosystem is a threshold cryptosystem that tolerates an adversary who can
gradually break into any number of servers. To protect against leaking the secret key, it operates in a
sequence gbhasesnd the servers periodicalfgfreshtheir shares between two phases. The new set of
shares is independent of the previous one and the old shares are erased. Thus, the adversary may corrupt
up tot different servers in any phase without learning anything about the secret key.

The underlying assumption is that breaking into a server requires a certain amount of time, which
occurs for every server that is corrupted, independent from other corruptions. It must also be possible to
remove the adversary by rebooting a server in a trusted way (e.g., from a read-only device) and to erase
information on a server permanently.

This concept maps onto a synchronous network in a straightforward way. In an asynchronous net-
work, however, the following two issues regarding phases and secure channels arise.

First, the notion of a common phase is not readily available because there is no common clock.
Since refreshing requires a distributed protocol, in which all servers should participate, at least some
synchronization primitive is needed to define the length of a phase in a meaningful way. It turns out
that a single time signal alock tick which defines the start of every phase locally, is enough. In our
formal model, we leave the scheduling of this signal up to the network, i.e., the adversary. In practice,
this might be an impulse from an external clock, say every day at 0:00 UTC. Hence, phases are defined
locally to every server. The adversary may corrupt upgervers who are in the same local phase.

Second, the channels that link the servers have to be adapted to this model. Recall that all servers are
linked by secure channels (i.e., private and authenticated links), which are scheduled by the adversary.
Given only locally defined phases and purely asynchronous scheduling, however, it would be possible
for the adversary to break the secure channels assumption as follows. Suppose all servers are in the same
local phase and the adversary has corruptefithem. In order to read any message sent between two
honest servers, the adversary may delay the message until the receiver enters the next phase and some
of the previously corrupted servers are again honest. Then she corrupts the receiver and observes the
message, which gives her access to private information from the previous phase of morsctivains.

Therefore, we assume that secure channels in the proactive model guarantee that messages are deliv-
ered in the same local phase in which they are sent. More precisely, a message sent in some local phase
of the sender arrives when the receiver is in the same local phase or it is invariably lost. Under these
restrictions, we leave all scheduling up to the adversary. In practice, such proactive secure channels
might be implemented by re-keying every point-to-point link when a phase change occurs, as discussed
below.

We now proceed to the formal description of the model.

Formal Model. A server is a PITM as before, which can now almmaseinformation. We define
erasing in terms of restricting a server’s view. To erase information means to exclude the corresponding
values from the server’s view.

As before, the adversary may corrupt a server at any point in time, but now it can now also be
removed from a corrupted server byedbootprocedure. In this case, the server is restarted with correct
initialization data, and the proactive protocols running before the corruption are invoked again (how

15

these protocols are determined is outside our model). The internal state of the server may have been
modified arbitrarily by the adversary.

Every server operates in a sequence of local phases, which are defined with respect to a trivial
protocoltimer. Every honest server continuously runs one instance of this protocol, which starts when
the server is initialized. Upon initialization, the protocol sends a timer message catledkatick
to itself. Whenever the server receives a clock tick, the server resends the message to itself over the
network. Theocal phaseof an uncorrupted servek, is defined as the number of clock ticks that it has
received so far. If the adversary corrupts a server during some phasedefine the corrupted server
to remain in local phase until it is rebooted and the adversary is removed. We assume that after a
reboot, a server is automatically activated on a clock tick and continues to operate in the subsequent
phase. Hence every server is honest at the point in time when it enters the next local phase. However,
the adversary can cause a server to appear corrupted during multiple subsequent phases (and across the
phase changes) by corrupting it again immediately after the phase change.

Since the set of honest servers may change from one phase to another, we also define the set of
associated messagascordingly.

An adversary in the proactive network model is caltdimited if for every phase index > 0, it
corrupts at most servers in local phase Recall that activations are atomic and cannot be interrupted
by a corruption. This allows an honest server to perform some actions, like erasing critical data, at the
very beginning of a phaseaijon detectinga clock tick) beforeit can be corrupted by the adversary
during this phase.

We assume that every pair of servers is linked Ipyaactive secure asynchronous chanmehich is
defined as follows. Recall that in our asynchronous network model, the adversary can schedule messages
in a setM with labels of the forn{s, r,1). In the proactive network, a numbeiis added to every label
denoting the local phase in whidh has sent the message. Then we restrict the scheduling as follows.

If P; enters local phase, all messages i with labels(, 7, -, 0) wheres < 7 are removed froroM.
Furthermore, the adversary may not schedule any message with({abelr) before P; has entered

its local phaser. We say thathe adversary delivers messages within phdeedenote an adversary
that delivers all messages.int with a label of the form(-, j, -, 7) to a receiverP; when P; is in local
phaser. If the adversary corrupts a servey during its local phase, then all messages € M with
label(-, 5, -, 7) are removed froriM and given to the adversary, who may now send messages with label
(j7 R 7_)'

Note that every honest server runs a separate instance tinieprotocol, and that we view this
protocol as an integral part of the proactive system model. As such, it is not required to terminate or to
satisfy a uniform bound on its communication complexity. It will simply run until the adversary halts.

Implementation. In practice, asynchronous proactive secure channels with the described properties
could be implemented using secure co-processors as follows. The communication link between every
pair of servers is encrypted and authenticated using a phase session key that is stored in secure hard-
ware. A fresh session key is established in the co-processor as soon as both enter a new phase, with
authentication based on data stored in secure hardware (if a public-key infrastructure is used, this may
be a single root certificate). Thus, even if the adversary corrupts a server, she gains access to the phase
session key only through calls to the co-processor. The external clock which triggers the phase changes
must have a trusted path into the secure co-processor and an intruder must not be able to influence it.

The related problem of maintaining proactive authenticated communication in a synchronous net-
work has been investigated by Canetti et al. [8].

Related Work. Proactive systems in asynchronous networks have been discussed by Castro and Lis-
kov [10] and by Zhou [24]; the former aims at maintaining a common state, and the latter at maintaining

a shared secret. In these works, the phases are defined with respect to proactive protocols, i.e., a phase
endsupon the termination of the corresponding update protocol. Our approach is more general in the

16

sense that we postulate the phases only with respect to a timeout mechanism, independent of proac-
tive protocols. This models also systems where a refresh protocol may not terminate within a phase.
Our protocols therefore postulate two types of conditions: liveness conditions, which hold only if the
protocol terminates within a phase, and safety conditions, which hold in any case.

Another difference lies in our network model, which identifies the main security requirements on
asynchronous proactive secure communication. While authenticity of messages in such a setting is
addressed in terms of a special freshness requirement in [10], a formal treatment of these aspects is
missing in [24].

Finally, from a practical point of view, our implementation of the refresh protocol is much more
efficient than the one of Zhou [24]. Ours has an expected message compleglty.Of as opposed

to O((7})).

5 Asynchronous Proactive Refresh Protocol

In this section, we describe how a group of servers holding shares of a secret may refresh these shares
in an asynchronous proactive network such that the adversary does not learn anything about the secret.
Such protocols form the basis of any proactive cryptosystem. We define the notion of a verifiable
sharing and the properties of a protocol to refresh such a sharing. Then we propose an implementation
of a refresh protocol for discrete logarithm-based verifiable sharings as established by pi8€&ol

from Section 3. We restrict ourselves to ordinényt + 1, t)-sharings in this section.

5.1 Definitions

Verifiable sharing. A sharingof a (secret) valug, € Z, can be seen as an encodingsgfnto a set
of sharesS; such that all sets of at least 1 shares uniquely defing, whereas any other set of shares
does not give any information abos.

Such a sharing results, for example, from the first stage of an AVSS protocol. A sharing is robust
against erasures in the sense that a unique secret can also be reconstructed from a subset the shares.
Missing shares of honest servers are denoted by

A verifiable sharing or v-sharingfor short, has the additional property that the secret is defined
uniguely even if the adversary corrupts up ervers and modifies their shares in an arbitrary way.

We define a verifiable sharing in terms of an algoritl@monstructthat takes as input a set of shares
{S;} and outputs a value i, or L.

Definition 3. We say the servers holderifiable sharing ofsy with tag ID and with respect to an
algorithm reconstructif every server; holds a sharé; such that the following conditions are satisfied:

Integrity: For any sef.S;} of shares that contains at least 1 shares of honest servers different from
L, runningreconstructon input{.S;} yields sy, except with negligible probability.

Privacy: Any set{S;} of at mostt shares contains no information abayt

Notice that the integrity property is computational and the privacy property unconditional.

Refreshing a verifiable sharing. The goal of a proactive refresh protocol is to protect a verifiable
sharing by providing the servers with new shares for the next phase such that the adversary’s knowledge
of shares from the previous phase is rendered useless.

Suppose the servers hold a v-sharig. . ., S,, of a valuesy with tag ID and with respect to an
algorithmreconstructat some point in time where all honest servers are in local phasé. Then an
honest server startgafresh protocolvith tag ID and inputS; as soon as letectsandreceiveghe next
clock tick (all ongoing computations are aborted as soon as the clock tilgtastedl This also marks

17

the end of local phase — 1 and the begin of phase The refresh protocol terminates either when the
server generates an output of the foff, refreshed) or when itdetectghe next clock tick. In the
first case, we sathe server completes the refresh of shariiiy

The refresh protocol must ensure that the honest servers compute a fresh v-sharing of the same
value sy and that any-limited adversary does not learn any informationsgn This is captured by the
following definition.

Definition 4. Suppose the servers hold a verifiable sharing of some wwglweith tag /D and with
respect to some algorithreconstruct An asynchronous secure refrephotocol satisfies the following
conditions for any-limited adversary:

Liveness: If the adversary activates all honest servers on a clock tick and delivers all associated mes-
sages within phases, then all honest servers complete the refresh of diigragept with neg-
ligible probability.

Correctness: If at leastt + 1 honest servers have completed the refresh of shdiihgnd have not
detecteda subsequent clock tick, the servers hold a verifiable sharirg with tag /D and with
respect taeconstruct except with negligible probability.

Privacy: In any polynomial number of consecutive executions of the protocol, the adversary’s view is
statistically independent af,.

Efficiency: For everylD, the communication complexity of instanéB is probabilistically uniformly
bounded.

Note that this definition guarantees that the servers complete the refresh only when the adversary
delivers messages within phases. Otherwise, the model allows the adversary to cause the secret to be lost,
in order to preserve privacy. One could also imagine a different formalization of asynchronous proactive
refresh protocols that preserves correctness at the cost of privacy, i.e., where the adversary may learn the
secret. Such a trade-off between privacy and correctness seems unavoidable in asynchronous networks
where messages may be delayed for longer than the duration of a proactive phase; interestingly, it does
not arise for proactive cryptosystems in synchronous networks.

Another difference to the synchronous case is the fact that our phases do not overlap. As a conse-
guence of this, a server must erase the old share durirgatheactivation in which it receives the clock
tick (in order to guarantee privacy of the secret). This point in time corresponds to the beginning of the
refresh protocol, before the server may receive messages from other servers or become corrupted in the
new local phase. In contrast, two subsequent phases in synchronous proactive cryptosystems are usually
assumed to overlap for the duration of the refresh protocol, and a server may delay the erasure of an old
share until the end of the refresh protocol.

5.2 Implementation

This section describes protod®éfresh for refreshing a discrete logarithm-based verifighlet + 1, ¢)-

sharing in an asynchronous network. Its implementation needs the multi-valued validated Byzantine
agreement protocol from Section 2.3, a digital signature scheme secure against adaptive chosen-message
attacks [16] for every server, and the AVSS protocol from Section 3 as building blocks. We assume that
such sub-protocols have the property that the calling protocol can access and modify their internal state
andabort them if necessary by terminating the corresponding instance@sihgall associated local

data. A local variable: associated with sub-protocol instani is denoted: /2!

Recall that these primitives were defined in a purely asynchronous, non-proactive network. Hence,
we use them only as sub-protocols running within a single phase; if a protocol does not terminate before
the end of the phase, it must be aborted by the calling protocol. The security of the keys for the digital
signature scheme and for the VBA protocol in the proactive corruption model has to be guaranteed by

18

storing them inside secure co-processors or by using a proactively secure refresh protocols. The details
of this are beyond the scope of this paper.

The verifiable sharing. We investigate how to refresh a discrete logarithm-based verifiable sharing
as computed by protoc#lVSS from Section 3. The share of an honest sevgeis of the formS; =
(i, 8,85, V), whereV = (Vp,...,V}) is the same for all servers and hsi = H;:O(Vj)i]; in other
words, there exist two polynomials(z) = Z;:O ajz’ andd’(z) = Z;ZO a;-xj over Z, such that
a(i) = s; andd’ (i) = s/ for all correct shares);, andg®s h% = V; for j € [0,t]. (Note thatV; = Cjo
using the notation of protoc@lVSsS.)

Algorithm reconstructworks as follows. On input a s& of shares, it selects a valué that is
found in at least + 1 shares and discards shares that contain a different valdé fiérV is not unique
or does not exist, it returns; otherwise, it computes a sét C S of tuples(i, s;, s,) that satisfy
g5 ihsi = H;:O(V})ij' If |G| < t,itreturnsL; otherwise it interpolates a polynomiabf degree at most
t from the set{(i, s;)|(7, s, s, -) € G} and returns(0).

The refresh protocol. From a high-level point of view, the protocol works in three stages. First,
every serverP; shares its sharg of sy using an AVSS protocol. Second, the servers use multi-valued
Byzantine agreement to seleet1 such sharings that have successfully terminated. Third, they compute
a fresh share ofy from the set of sharings which they agreed on.

More precisely, suppose the servers hold a verifiable sharing @fith tag /D as described in
the previous paragraph and have set up a digital signature scheme such that every server can verify
signatures issued by any other server.

Then every server executes the following steps for protBedtesh in phaser.

1. ServerP; initializesn verifiable(n, t + 1, t)-sharings/D|avss .j for j € [1,n] using anextended
version of protocoAVSS. Then it shares; ands, usingID|avss .i, wheref/l/P18VSS (g)
is set tos], and immediatelyerasesthe current share and the sharing polynomj&i§/2vss -l
and f/'P1AVSS il i instancelD |avss .i.

The extension of protocoAVSS is that each server adds a digital signature to eveady
message; in AVSS instand® |avss .j, the signature is computed @D |avss .j, T, ready).

A list IT of 2¢ + 1 such signatures is output when the server completes the sharing and may serve
as aproof for this fact.

The server also sends its current valuelof= (14, ..., V;) all other servers in aecover
message. Then it waits foeceivingt + 1 identicalrecover messages and assigns the value
found in them taD.

2. The server waits for completing+ 1 sharingsZD|avss .j such thatCl/P18VSS .il s consistent

with D, i.e.,C([)émaVSS 9= [T'_,(D;)7". Recall that the extended AVSS protocol also returns a
proofII; for the completion of the sharing.

Next, P; proposes the set of completed sharings for validated Byzantine agreement with tag
ID|vba. lts proposal is a sef; = {(j,1I;)} of ¢t + 1 tuples, indicating the deald?; of ev-

ery completed sharing and containing the libt of signatures omeady messages from the
extended sharing. The predicate of the VBA protocol is sefetify-termination(), described
below, which verifies that a proposal contains 1 valid lists of signatures from instances of
protocolAVSS.

3. After the server decides in the VBA protocol for a gethat indicateg + 1 AVSS instances,
it waits for these sharings to complete. ThBncomputes its new share as follows: it inter-
polates two polynomials ovef, from the set of shares computed in the AVSS instances in-
dicated byL; more precisely, polynomialg anda’ of degreet are interpolated from the sets

19

{(7, ngmavss ‘ﬂ)\(j, II;) € L} and{(y, s;[ID‘aVSS ‘ﬂ)|(j, II;) € L}, respectively. Then the

server sets the sharesand s, to a(0) anda’(0), respectively. The new commitmenks are
computed analogously.

Finally, the servembortsall sub-protocoldD|avss .j, which automaticallyerasesall informa-
tion of these protocol instances.

Predicateverify-termination(ZD|vba , 7, £) used in VBA instancéD|vba verifies thatC contains

t + 1 tags of AVSS protocols with the proofs that these protocols will actually terminate. It is true if and

only if |£| =t + 1 and for every(j,II;) € L, the listII; contains at leastt + 1 valid signatures on the
string (/D]avss .j, 7, ready) from distinct servers.

Figure 3 shows the detailed description of the protocol. A server imaypolatea polynomial
a € Z4[z] of degree at mostfrom ¢t + 1 points as before. Le)tf forsomeJ C {1,...,n} denote the
appropriate Lagrange interpolation coefficient far 7, set.7, and position 0.

Protocol Refresh for server P;, phaser, and tag /D
/* local inputs: s;, s;, andV */
for j € [1,n] doinitialize a sharing/D|avss .j using the extended protocaVSS
if s; 2 L then
shares; usingID|avss .i, where ;
erases;, s, and flP18VSS i gng p/lIP1AVSS 1] of instancelD|avss .i
send the messadéD, recover , V) to every server
unlessa clock tick isdetecteddo
wait for receivingt + 1 identical messagegdD, recover , D) from distinct servers
with D = (Dy, ..., Dy)
wait for ¢ 4 1 sharings with tagD|avss .;j to complete such tha{f([){)DlaVSS 9= Hfzo(Dl)jl
L; — {(j,11;)} for all sharings/D|avss .;j completed in the previous step
propose’; in a multi-valued validated Byzantine agreementfbivba with
predicateverify-termination
wait for the VBA protocol to decide somé for /D |vba
J — {10, 1) € £}
wait for all sharings/D|avss .j for j € J to complete
interpolatei anda’ from {(j, s/"”'@%% 9| ¢ 7} and{(j, s;1P18YSS 11| j € 7}, resp.
for [€ [0,¢] do
Vi = Teg (Cly" ™8)
(Sia ng V) — (&(O)v d/(O), (‘707 s 7‘7;5))
output(ID, refreshed)
abortprotocols/D|vba andID|avss .j for j € [1,n]
/* local outputs:s;, s;, andV */

f,gfomavss Ay

Figure 3. ProtocolRefresh for proactive share refreshing in an asynchronous network, started upon

receivingthe r-th clock tick.

As mentioned before, a key point of the protocol is that every server erases its old share in the first

activation before waiting for any network input. The eventedeivingthe clock tick and starting the

refresh protocol defines the end of local phasel. Thus, one cannot tolerate to leave share information

from phaser — 1 around when entering a wait state in phadsecause at any point in time afterwards,
a corruption might occur that counts towards phaserhis is also the reason why the protocol does

not follow the approach of Gennaro et al. [14], which is to establish a set of sharings of the value 0 and

to add these shares to the shares of the secret from phaseé later on. Instead, our protocol creates

sharings of previous shares of the secret and uses the agreed-on set of such sharings as a polynomial

sharing of the secret itself.

20

The purpose of theecover messages is to supply the verification informafionf phaser — 1 to
those honest servers that might have been corrupted in phaseand have been rebooted into phase

ProtocolRefresh invokesn protocols for AVSS and one VBA sub-protocol. With AVSS imple-
mented according to Section 3.4 and VBA from [3], its expected message complexityi$ and its
expected communication complexityGyxn?).

We prove the following theorem in the next section.

Theorem 3. Assuming the hardness of the discrete-logarithm problem, proRebiesh is an asyn-
chronous secure refresh protocol for> 3t.

5.3 Analysis

We have to show the verifiable sharing satisfies Definition 3 and that proRefoksh satisfies the
livenesscorrectnessprivacy, andefficiencyproperties of Definition 4.

Verifiable sharing. Recall that the shares of our verifiable sharing are of the f8rm (i, s;, s}, V)
with V' = (Vp, ..., V4) such that there exist two polynomialsa’ € Z,[x] of degree at mostsuch that
a(i) = s, d'(i) = s}, andg® h% = H;ZO(V]-)“ for all correct shares);. Furthermoreq(0) is equal to
the shared secrag,.

We may assume that the adversary knows the siigres s;, V') of the corrupted servers.

For integrity, we have to show that the adversary cannot compute slﬁares (4, 55, 59, f/) of
corrupted server®; such that runningeconstructwith these shares and at least 1 shares of honest
servers different fromL yields a value different fromy.

Towards a contradiction, suppose the adversary has computed such values. Then it must be that
V = V, because the adversary corrupts at ntoservers andeconstructaccepts only shares that
contain a valué’ found in at least + 1 shares. Moreover, it must be the case ffat® =]_[fzo(Vl)jl
because otherwigseconstructignores these shares as well. Hence, the adversary has computed a tuple
(35,8;) # (sj,s;) such thatg®i h®s = H};O(V})jl — ¢%h®%i. Rewriting this withh = ¢'%" and
comparing exponents gives§ + (log, h)s; = s; + (log, h)s}. Thus, the adversary has computed
log, h = (35 — 5;)/(s}; — &)).

Privacyfollows directly from the privacy property of protocaVSS, which computes this verifiable
sharing.

Liveness. We have to show that the conditions of all wait states that a server enters are eventually
satisfied, provided the adversary delivers all associated messages within phases.

A server waiting fort + 1 identicalrecover messages containing a valliefrom the verifiable
sharing above will receive them because ithtegrity property of the v-sharing implies that there are
at leastt + 1 honest servers with identical valu&s It guarantees also that the valilecomputed by
honest servers is unique.

The next step is to wait far+ 1 sharings consistent with to complete. There are at least- ¢ >
2t 4+ 1 honest servers who have completed the last phase with valid shares different fr&wen if
t of them are now corrupted, there are at least1 honest servers whose sharings complete and are
consistent withD. Thus, no honest server is blocked here.

Because all honest servers start the VBA protocol (with valid proposald)yémessandefficiency
conditions of VBA together imply that the VBA protocol also terminates.

The last step is to wait for the agreed-on sharingg/imo complete. By theexternal validityof
the VBA protocol and by the definition of the predicatrify-termination, there are for every AVSS
instancelD|avss .j with j € J at least2t + 1 valid signatures on theeady message, according to
the extended protoc@VSS. Thus, at least + 1 honest servers have senteady message in these
instances, which is sufficient to guarantee termination of the agreed-on instances of pkvts8ol

21

Correctness. Fix a point in time where a sétl of at leastt + 1 honest servers has completed the
refresh protocol and not yet detected the next clock tick.

We have to show that they hold a verifiable sharinggpofAccording to the properties of our discrete
logarithm-based sharing, it is sufficient to show that their shéies, s;, V') as computed at the end
of the refresh protocol satisty(i) = s; andd’(i) = s, fori € H, andg%h’ = V; for j € [0,¢] for
polynomialsa(y) = >='_, a;57 anda’(y) = 3='_, asy’ with a(0) = so, and thatl” is the same for all
servers.

Let (s, §;, &, V') denote the shares of the initial verifiable sharingivhich the servers hold at the
beginning of the refresh protocol.

We start with the last condition above. By the definition of our verifiable sharing, honest servers
start with the samé& # L; therefore, all honest servers accept the sdine- (Dy, ..., D;) in the

recover messages and any two honest servers receive the @%@VSS A, Together with the
agreemenproperty of the VBA protocol, it follows easily that all servershfiassign the same value to
V before completing the refresh protocol.

Let 7 denote the set of agreed-on sharings computed by honest servers a\r;fdﬂmtj e J
denote the Lagrange interpolation coefficients for the’saind position 0. Recall that protocAVSS
establishes a discrete logarithm-based verifiable sharing. Hengecfgf there exist two polynomials
a9 (y) anda’? () such that every shatel™”12V3S -7l ¢/ [IDIAVSS ily computed by any serve®, in H

’L

satisfies
a(j)(i) _ Sl[ID|aVSS .j]7 a/(j) (2) _ 82[1D|avss .j]’ and gal ha/(a) Cl[émavss]])
Define
=Y " AMal(y) and d(y) = AaV(y). (6)
JjeTJ JjeJ

We first show thati(i) = s; anda’(i) = s/ for all servers irf{. Combining (5) and (6) yields

_ Z)\{a(j)(i) _ Z A}ySEID\aVSS 4] @)
jeTJ JjeT
and
_ Z)\jja/(j)(i) _ Z)\BZSQUDIaVSS ~j]' (8)
jeJ jeJ

Now leta; anda; denote the polynomials interpolated Byin protocolRefresh. According to the

protocol, P; interpolatesi; from {(j, s'’?1&5S 71y ¢ 71 anda from {(j, s,[/P1YSS 915 € 7},
Hence, we can write

si =a;(0) = Z /\fsyD‘avss) and s, = a;(0) = Z)\fsg[mlavss 4, 9)
JjeT JjET

Combining (7) and (8) with (9) gives(i) = s; andd/ (i) = s,, as required.
We proceed by showing thgtih% = V for [e [0,¢]. By the definition (6) of the polynomials
a andd’, their coefficients are a Iinear combination of the coefficienta®f and a’(]), respectively:

a =Y cs N a andd) = 3., A a)Y). Hence,
apal a)@) javss 41\
st L) - [) o
JET JjeJ

where the second step follows from (5) and the last step from the protocol.

22

It remains to show that(0) = so. Towards a contradiction, assum@) # sq. By the definition
of a, this can only be the case if some AVSS protocol with f&gavss .j* for j* € 7 resulted in a
verifiable sharing defining polynomiaté’*) anda’"") such that

al")(0) #£ 8. (20)
Let). := aU")(0). We have

t
ggj*hgg.* _ C([)émavss J H(Dz)(j*)l (12)
=0

~

by the properties of protoc@dVSS and becaus¢* € 7 in protocolRefresh. By the properties of the
initial verifiable sharing,

t
g b = H(Vz)“*)l- (12)
=0

As shown earlierD = (Dy, ..., D;) as computed by the protocol is equalfo Therefore, we conclude
from (11) and (12) thag®* h*5* = g% h**. But then, (10) impliesog, h = (5;+ — 8j+)/ (8« — 55.).
Privacy. We show that the adversary’s view in an execution of the protocol is statistically independent
of sg.

The protocol starts from a verifiable sharingsgf Let 3 denote the index set of the corrupted servers
for the initial verifiable sharing. In regular operation of the proactive cryptosystem, for instéraze,
the corrupted servers from theviousexecution of the refresh protocol. Furthermore, the adversary
may corrupt a seBB of serversduring the execution of the refresh protocol, but omlffer their first
activation according to the proactive system model. Ket {1,...,n}\ B, and assume w.l.0.g. that
BNB=40.

Thus, the view of the adversary in protoddfresh consists w.l.0.g. of (i) the initial shargs s;,

s, (Vo, ..., V;)) for i € B from past corruptions, (ii) the polynomials received by the corrupted servers
in the sub-protocahVSS from honest servers during the current protocol,

FUDIAVSS l(y 4. f,[zD|avss .j](%i)’ FUPIRVSS ;) and f,[1D|avss 4] (i, y)
fori € Bandj € H, (iii) the commitmentsCl/P1&VSS .Jl for j ¢ H, and (iv) the set7 as output
by the Byzantine agreement protocol. Observer that the new shares of the corrupted sefvars in
determined by this.

We have to show that this view is consistent with every possildleZ,. Because the protocol starts
with a verifiable sharing, it follows directly from the privacy property of the discrete logarithm-based
sharing that there exist polynomiaisa’ € Z,[x] such that fori € 5 andi < [0, ¢],

a(0) =35, a(i)=4§, a(i)=4, and g™h% =V,

77
The polynomials: anda’ define initial shares; = a(j) ands’; = a'(j) for P; with j € H; moreover,

t
g h% =) (13)
1=0
From theprivacy property of the AVSS sub-protocol, we know that the adversary’s view in every

instance/D|avss .j for honestP; is consistent withs; and 3’ if these values are consistent with
ClIDIavss j]
00 :

23

Thus, it remains to show thafi h%i = C{[)émavss 71, We obtain

t

S = T10 ﬁ _ glipiavss j|

=0 =0

from (13), from the proof otorrectnessabove, and from the acceptance condition of the AVSS sub-
protocols in the protocol.

Efficiency (Sketch). The servers execute AVSS protocols and one VBA sub-protocol. In addition,
they sendO(n?) recover messages in total. Because the communication complexity of protocol
AVSS is uniformly bounded and the communication complexity of the VBA sub-protocol is probabilis-
tically uniformly bounded, it follows from the argumentation of Cachin et al. [3] that the communication
complexity of protocoRefresh is probabilistically uniformly bounded.

References

[1] M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computatioRfoic. 25th An-
nual ACM Symposium on Theory of Computing (ST.QS93.

[2] G. Bracha, “An asynchronousgn — 1)/3]-resilient consensus protocol,” Proc. 3rd ACM Sym-
posium on Principles of Distributed Computing (POD@p. 154-162, 1984.

[3] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broad-
cast protocols (extended abstract),” Advances in Cryptology: CRYPTO 20QL Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Scienpp. 524-541, Springer, 2001.

[4] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantinople: Practical asynchronous
Byzantine agreement using cryptography,”Hroc. 19th ACM Symposium on Principles of Dis-
tributed Computing (PODGC)p. 123-132, 2000.

[5] R. Canetti,Studies in Secure Multiparty Computation and ApplicatioRfiD thesis, Weizmann
Institute, 1995.

[6] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive security: Long-term protection
against break-insRSA Laboratories’ CryptoBytesol. 3, no. 1, 1997.

[7] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology, revisitederda 30th
Annual ACM Symposium on Theory of Computing (ST@@)209-218, 1998.

[8] R. Canetti, S. Halevi, and A. Herzberg, “Maintaining authenticated communication in the presence
of break-ins,”Journal of Cryptologyvol. 13, no. 1, pp. 61-106, 2000.

[9] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with optimal resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (ST@pC%2-51, 1993.

[10] M. Castro and B. Liskov, “Proactive recovery in a Byzantine-fault-tolerant systemybia. Fourth
Symp. Operating Systems Design and Implementation (Q3@Y.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving
simultaneity in the presence of faults,”ioc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS)pp. 383-395, 1985.

[12] Y. Desmedt, “Threshold cryptographyEuropean Transactions on Telecommunicatjord. 5,
no. 4, pp. 449-457, 1994,

24

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with one
faulty process,Journal of the ACMvol. 32, pp. 374-382, Apr. 1985.

[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure key generation for discrete-log based
cryptosystems,” iddvances in Cryptology: EUROCRYPT '@P Stern, ed.), vol. 1592 dfecture
Notes in Computer Sciengep. 295-310, Springer, 1999.

[15] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof sys-
tems,”SIAM Journal on Computingol. 18, pp. 186—208, Feb. 1989.

[16] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against adaptive
chosen-message attackSJAM Journal on Computingol. 17, pp. 281-308, Apr. 1988.

[17] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problerbsstiitbuted Sys-
tems(S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 1993.

[18] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing or how to cope with
perpetual leakage,” ildvances in Cryptology: CRYPTO '¢B. Coppersmith, ed.), vol. 963 of
Lecture Notes in Computer Scienpp. 339-352, Springer, 1995.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob#@h Transactions on
Programming Languages and Systend. 4, pp. 382—401, July 1982.

[20] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,Pioc. 10th ACM Sympo-
sium on Principles of Distributed Computing (POD@p. 51-59, 1991.

[21] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence ofJauhsal of
the ACM vol. 27, pp. 228-234, Apr. 1980.

[22] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharuy,” in
vances in Cryptology: CRYPTO 'ql. Feigenbaum, ed.), vol. 576 bécture Notes in Computer
Sciencepp. 129-140, Springer, 1992.

[23] V. Shoup, “Practical threshold signatures,Advances in Cryptology: EUROCRYPT 2@BOPre-
neel, ed.), vol. 1087 dfecture Notes in Computer Sciengp. 207-220, Springer, 2000.

[24] L. Zhou, Towards Fault-tolerant and Secure On-line Servicd2hD thesis, Cornell University,
2001.

25

