
Asynchronous Verifiable Secret Sharing and Proactive
Cryptosystems

Christian Cachin∗ Klaus Kursawe∗ Anna Lysyanskaya† Reto Strobl∗

29 August 2002

An extended abstract of this paper appears inProc. 9th ACM Conference on Computer and
Communications Security (CCS-9), Washington DC, USA, 2002.

Abstract

Verifiable secret sharing is an important primitive in distributed cryptography. With the growing
interest in the deployment of threshold cryptosystems in practice, the traditional assumption of a
synchronous network has to be reconsidered and generalized to an asynchronous model. This paper
proposes the firstpracticalverifiable secret sharing protocol for asynchronous networks. The proto-
col creates a discrete logarithm-based sharing and uses only a quadratic number of messages in the
number of participating servers. It yields the first asynchronous Byzantine agreement protocol in the
standard model whose efficiency makes it suitable for use in practice. Proactive cryptosystems are
another important application of verifiable secret sharing. The second part of this paper introduces
proactive cryptosystems in asynchronous networks and presents an efficient protocol for refreshing
the shares of a secret key for discrete logarithm-based sharings.

1 Introduction

The idea ofthreshold cryptographyis to distribute the power of a cryptosystem in a fault-tolerant
way [12]. The cryptographic operation is not performed by a single server but by a group ofn servers,
such that an adversary who corrupts up tot servers and observes their secret key shares can neither break
the cryptosystem nor prevent the system as a whole from correctly performing the operation.

However, when a threshold cryptosystem operates over a longer time period, it may not be realistic
to assume that an adversary corrupts onlyt servers during the entire lifetime of the system.Proactive
cryptosystemsaddress this problem by operating inphases; they can tolerate the corruption of up tot
different servers during every phase [18]. They rely on the assumption that servers mayerasedata and
on a special reboot procedure to remove the adversary from a corrupted server. The idea is to proactively
reboot all servers at the beginning of every phase, and to subsequentlyrefreshthe secret key shares such
that in any phase, knowledge of shares from previous phases does not give the adversary an advantage.
Thus, proactive cryptosystems tolerate amobile adversary[20], which may move from server to server
and eventually corrupt every server in the system.

Since refreshing is a distributed protocol, the network model determines how to make a cryptosystem
proactively secure. For synchronous networks, where the delay of messages is bounded, many proactive
cryptosystems are known (see [6] and references therein). However, for asynchronous networks, no
proactive cryptosystem is known so far. Because of the absence of a common clock and the arbitrary
delay of messages, several problems arise: First, it is not clear how to define a proactive phase when
the servers have no common notion of time. Second, even if the notion of a common phase is somehow
imposed by external means, a message of the refresh protocol might be delayed arbitrarily across phase
boundaries, which poses additional problems. And last but not least, one needs an asynchronous share
refreshing protocol.
∗IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland.{cca,kku,rts}@zurich.ibm.

com.
†Brown University, Providence, RI 02912, USA.anna@cs.brown.edu . Work done at IBM Zurich.

1

The distributed share refreshing protocols of all proactive cryptosystems rely onverifiable secret
sharing. Verifiable secret sharing is a fundamental primitive in distributed cryptography [11] that has
found numerous applications to secure multi-party computation, Byzantine agreement, and threshold
cryptosystems. A verifiable secret sharing protocol allows a distinguished server, called thedealer, to
distribute shares of a secret among a group of servers such that only a qualified subgroup of the servers
may reconstruct the secret and the corrupted servers do not learn any information about the secret.
Furthermore, the servers need to reach agreement on the success of a sharing in case the dealer might
be faulty.

Asynchronousverifiable secret sharing protocols have been proposed previously [1, 9, 5]. However,
all existing solutions are prohibitively expensive to be suitable for practical use: the best one has message
complexityO(n5) and communication complexityO(n6 log n). This is perhaps not surprising because
they achieveunconditionalsecurity. In contrast, we consider acomputationalsetting and obtain a
much more efficient protocol. Our protocol achieves message complexityO(n2) and communication
complexityO(κn3), whereκ is a security parameter, and optimal resiliencen > 3t.

Specifically, we assume hardness of the discrete-logarithm problem. Our protocol is reminiscent
of Pedersen’s scheme [22], but the dealer creates a two-dimensional polynomial sharing of the secret.
Then the servers exchange two asynchronous rounds of messages to reach agreement on the success of
the sharing, analogous to the deterministic reliable broadcast protocol of Bracha [2].

Combining our verifiable secret sharing scheme with the protocol of Canetti and Rabin [9], we obtain
the first asynchronous Byzantine agreement protocol that is provably secure in the standard modeland
whose efficiency makes it suitable for use in practice.

With respect to asynchronous proactive cryptosystems, our contributions are twofold. On a con-
ceptual level, we propose a formal model for cryptosystems in asynchronous proactive networks, and
on a technical level, we present an efficient protocol for proactively refreshing discrete logarithm-based
shares of a secret key.

Our model of anasynchronous proactive networkextends an asynchronous network by an abstract
timer that is accessible to every server. The timer is scheduled by the adversary and defines the phase
of a serverlocally. We assume that the adversary corrupts at mostt servers who are in the samelocal
phase. Uncorrupted servers who are in the same local phase may communicate via private authenticated
channels. Such a channel must guarantee that every message is delayed no longer than the local phase
lasts and that it is lost otherwise.

A proactive cryptosystem refreshes the sharing of the secret key at the beginning of every phase
(i.e., when sufficiently many servers enter the same local phase). Our model implies that liveness for
the cryptosystem is only guaranteed to the extent that the adversary does not delay the messages of the
refresh protocol for longer than the phase lasts. Otherwise, the secret key may become unaccessible.
Despite this danger, we believe that our model achieves a good coverage for real-world loosely synchro-
nized networks, such as the Internet, since a phase typically lasts much longer than the maximal delay
of a message in the network.

Finally, we propose an efficient proactive refresh protocol for discrete logarithm-based sharings. It
builds on our verifiable secret sharing protocol and on a randomized asynchronous multi-valued Byzan-
tine agreement primitive [3]. The refresh protocol achieves optimal resiliencen > 3t and has expected
message complexityO(n3) and communication complexityO(κn5).

1.1 Organization of the Paper

In the next section we introduce our system model and recall the definition of asynchronous multi-valued
Byzantine agreement with external validity. Section 3 defines asynchronous verifiable secret sharing and
presents an efficient protocol for creating discrete logarithm-based sharings of a secret. In Section 4,
we extend the asynchronous system model to aproactivenetwork, and in Section 5 we describe how to
asynchronously refresh shares of a secret key for discrete logarithm-based cryptosystems.

2

2 Preliminaries

2.1 Asynchronous System Model

We adopt the basic system model from [4, 3], which describe an asynchronous network of servers with
a computationally bounded adversary.

Our computational model is parameterized by a security parameterκ; a functionε(κ) is called
negligibleif for all c > 0 there exists aκ0 such thatε(κ) < 1

κc for all κ > κ0.

Network. The network consists ofn serversP1, . . . , Pn, which are probabilistic interactive Turing
machines (PITM) [15] that run in polynomial time (inκ). There is an adversary, which is a PITM that
runs in polynomial time inκ. Some servers are controlled by the adversary and calledcorrupted; the
remaining servers are calledhonest. An adversary that corrupts at mostt servers is calledt-limited.
There is also an initialization algorithm, which is run by a trusted party before the system starts. On
input κ, n, t, and further parameters, it generates the state information used to initialize the servers,
which may be thought of as a read-only tape.

We assume that every pair of servers is linked by asecure asynchronous channelthat provides pri-
vacy and authenticity with scheduling determined by the adversary. (This is in contrast to [3], where
the adversary observes all network traffic.) Formally, we model such a network as follows. All com-
munication is driven by the adversary. There exists a global set of messagesM, whose elements are
identified by alabel (s, r, l) denoting the senders, the receiverr, and the lengthl of the message. The
adversary sees the labels of all messages inM, but not their contents.M is initially empty. The system
proceeds in steps. At each step, the adversary performs some computation, chooses an honest serverPi,
and selects some messagem ∈M with label(s, i, l). Pi is thenactivatedwithm on its communication
input tape. When activated,Pi reads the contents of its communication input tape, performs some com-
putation, and generates one or more response messages, which it writes to its communication output
tape. A response messagem may contain a destination address, which is the indexj of a server. Such
anm is added toM with label(i, j, |m|) if Pj is honest; ifPj is corrupted,m is given to the adversary.
In any case, control returns to the adversary. This step is repeated arbitrarily often until the adversary
halts.

These steps define a sequence of events, which we view as logical time. We sometimes use the
phrase “at a certain point in time” to refer to an event like this.

We assume anadaptiveadversary that may corrupt a serverPi at any point in time instead of ac-
tivating it on an input message. In that case, all messagesm ∈ M with label (·, i, |m|) are removed
fromM and given to the adversary. She gains complete control overPi, obtains the entireviewof Pi
up to this point, and may now send messages with label(i, ·, |m|). Theviewof a server consists of its
initialization data, all messages it has received, and the random choices it made so far.

Termination. We definetermination of a protocol instance only to the extent that the adversary
chooses to deliver messages among the honest servers [4]. Technically, termination of a protocol follows
from a bound on the number of messages that honest servers generate on behalf of a protocol, which
must be independent of the adversary.

We say that a message isassociatedto a particular protocol instance if it was generated by any server
that is honest throughout the protocol execution on behalf of the protocol.

Themessage complexityof a protocol is defined as the number of associated messages (generated
by honest servers). It is a random variable that depends on the adversary and onκ.

Similarly, thecommunication complexityof a protocol is defined as the bit length of all associated
messages (generated by honest servers). It is a random variable that depends on the adversary and onκ.

Recall that the adversary runs in time polynomial inκ. We assume that the parametern is bounded
by a fixed polynomial inκ, independent of the adversary, and that the same holds for all messages in the
protocol, i.e., larger messages are ignored.

3

For a particular protocol, aprotocol statisticX is a family of real-valued, non-negative random
variables{XA(κ)}, parameterized by adversaryA and security parameterκ, where eachXA(κ) is a
random variable induced by running the system withA. (Message complexity is an example of such a
statistic.) We restrict ourselves to protocol statistics that are bounded by a polynomial in the adversary’s
running time.

We say that a protocol statisticX is uniformly boundedif there exists a fixed polynomialp(κ) such
that for all adversariesA, there is a negligible functionεA, such that for allκ ≥ 0,

Pr[XA(κ) > p(κ)] ≤ εA(κ).

A protocol statisticX is calledprobabilistically uniformly boundedif there exists a fixed polynomial
p(κ) and a fixed negligible functionδ such that for all adversariesA, there is a negligible functionεA,
such that for alll ≥ 0 andκ ≥ 0,

Pr[XA(κ) > lp(κ)] ≤ δ(l) + εA(κ).

If X is probabilistically uniformly bounded byp, then for all adversariesA, we haveE[XA(κ)] =
O(p(κ)), with a hidden constant that is independent ofA. Additionally, if Y is probabilistically uni-
formly bounded byq, thenX ·Y is probabilistically uniformly bounded byp·q, andX+Y is probabilis-
tically uniformly bounded byp + q. Thus, (probabilistically) uniformly bounded statistics are closed
under polynomial composition, which is their main benefit for analyzing the composition of randomized
protocols [3].

Protocol execution and notation. We now introduce our notation for writing asynchronous protocols.
Recall that a server is always activated with an input message; this message is added to an internal input
buffer upon activation.

In our model, protocols are invoked by the adversary. Every protocolinstanceis identified by a
unique stringID , also called thetag, which is chosen by the adversary when it invokes the instance.

There may be several threads of execution for a given server, but no more than one is active con-
currently. When a server is activated, all threads are inwait states. A wait state specifies a condition
defined on the received messages contained in the input buffer and other local state variables. If one or
more threads are in a wait state whose condition is satisfied, one such thread is scheduled arbitrarily,
and this thread runs until it reaches another wait state. This process continues until no more threads are
in a wait state whose condition is satisfied. Then, the activation of the server is terminated, and control
returns to the adversary.

There are two types of messages that protocols process and generate: The first type containsinput
actions, which represent a local activation and carry input to a protocol, andoutput actions, which
signal termination and potentially carry output of a protocol; such messages are calledlocal events. The
second message type is an ordinary point-to-point network message, which is to be delivered to the peer
protocol instance running on another server; such messages are also calledprotocol messages.

All messages are denoted by a tuple(ID , . . .); the tagID denotes the protocol instance to which
this message isassociated. Input actions are of the form(ID , in , type, . . .), and output actions are of
the form(ID ,out , type, . . .), with typedefined by the protocol specification. All other messages of the
form (ID , type, . . .) are protocol messages, wheretypeis defined by the protocol implementation.

We describe protocols in a modular way: A protocol instance may invoke another protocol instance
by sending it a suitable input action and obtain its output via an output action of the sub-protocol. This is
realized by a server-internal mechanism, which, for any message generated by the calling protocol that
contains an input action for a sub-protocol, creates the corresponding protocol instance (if not already
running) and delivers the input action; furthermore, it passes all output actions of the sub-protocol to the
calling protocol by adding them to the input buffer.

The pseudo-code notation used for describing our protocols is as follows. To enter a wait state, a
thread may execute a command of the formwait for condition, whereconditionis an ordinary predicate

4

on the input buffer and other state variables. Upon executing this command, a thread enters a wait state
with the givencondition.

We specify aconditionin the form ofreceiving messagesor events. In this case,messagesdescribes
a set of one or more protocol messages andeventsdescribes a set of local events (e.g., outputs from a
sub-protocol) satisfying a certain predicate, possibly involving other state variables. Upon executing this
command, a thread enters a wait state, waiting for the arrival of messages satisfying the given predicate;
moreover, when this predicate becomes satisfied, the matching messages aremovedout of the input
buffer into local state variables. If there is more than one set of matching messages, one is chosen
arbitrarily.

We also may specify aconditionof the form ofdetecting messages. The semantics of this are the
same as forreceiving messages, except that the matching messages arecopiedfrom the input buffer into
local state variables.

There is a global implicitwait for statement that every protocol instance repeatedly executes; it
matches any of theconditionsgiven in the clauses of the formupon condition block. Every time a
conditionis satisfied, the correspondingblock is executed. If there is more than one satisfiedcondition,
all correspondingblocksare executed in an arbitrary order.

We use the terminologyunlessconditiondo block to denote thatblock is executed as long as the
specified condition doesnot hold. If the thread enters a wait state duringblock, and another activation
of the server changes its internal state such that the specified condition holds, the execution ofblock is
aborted.

2.2 Cryptographic Assumptions

Let p andq be two large primes satisfyingq|(p− 1), andq > n. LetG denote a multiplicative subgroup
of orderq of Zp, and letg andh be two generators ofG chosen by an initialization algorithm such that
no server knowslogg h.

Thediscrete-logarithm problemis to computelogg u given a description ofG, a generatorg of G,
and an elementu ∈ G. We assume that this problem is hard to solve inG, which means that any
probabilistic polynomial-time algorithm solves this problem at most with negligible probability.

2.3 Multi-valued Validated Byzantine Agreement

Byzantine agreementis a fundamental problem in distributed computation [21]. In asynchronous net-
works, it is impossible to solve by deterministic protocols [13], which means that one must resort to
randomized protocols. The first polynomial-time solution to this problem was given by Canetti and
Rabin [9, 5]. The standard notion of Byzantine agreement implements only a binary decision in asyn-
chronous networks. It can guarantee a particular outcome only ifall honest servers propose the same
value. Validated Byzantine agreement[3] extends this to arbitrary domains by means of a so-called
externalvalidity condition. It is based on a global, polynomial-time computable predicateQID known
to all servers, which is determined by an external application. Each server may propose a value that
perhaps contains validation information. The agreement ensures that the decision value satisfiesQID ,
and that it has been proposed by at least one server.

When a serverPi starts a validated Byzantine agreement (VBA) protocol with a tagID and input
v ∈ {0, 1}∗, we sayPi proposesv for ID . W.l.o.g. the honest servers propose values that satisfyQID .
When a server terminates a validated Byzantine agreement protocol with tagID and outputs a valuev,
we sayPi decidesv for ID .

Definition 1. (Validated Byzantine Agreement) A protocol forvalidated Byzantine agreementwith
predicateQID satisfies the following conditions for everyt-limited adversary, except with negligible
probability:

External Validity: Every honest server that terminates decidesv for ID such thatQID(v) holds.

5

Agreement: If some honest server decidesv for ID , then any honest server that terminates decidesv
for ID .

Liveness: If all honest servers have been activated onID and all associated messages have been deliv-
ered, then all honest servers have decided forID .

Integrity: If all servers follow the protocol, and if some server decidesv for ID , then some server
proposedv for ID .

Efficiency: For everyID , the communication complexity of instanceID is probabilistically uniformly
bounded.

The protocol of Cachin et al. [3] for multi-valued validated Byzantine agreement is based on a
so-called consistent broadcast protocol and on a protocol for binary Byzantine agreement, which rely
on threshold signatures and on a threshold coin-tossing protocol [4]. Both sub-protocols can be im-
plemented efficiently in the random oracle model. With these primitives, the expected message com-
plexity of multi-valued validated agreement isO(n2), and the expected communication complexity is
O(n3 + n2(K + |v|)), wherev is the longest value proposed by any server andK is the length of a
threshold signature. These protocols have been proven secure only against static adversaries [3].

As we show in this paper, binary asynchronous Byzantine agreement can also be implemented effi-
ciently in the standard model and with adaptive security based on verifiable secret sharing. This solution
incurs a larger communication complexity than the one in [3], however.

3 Asynchronous Verifiable Secret Sharing

In this section we define asynchronous verifiable secret sharing (AVSS) and propose a novel efficient
AVSS protocol based on the discrete-logarithm problem.

3.1 Definition

We considerdual-threshold sharings, which generalize the standard notion of secret sharing by allowing
the reconstruction threshold to exceed the number of corrupted servers by more than one [23]. In
an (n, k, t) dual-threshold sharing, there aren servers holding shares of a secret, of which up tot
may be corrupted by an adversary, and any group ofk or more servers may reconstruct the secret
(n − t ≥ k > t). Such dual-threshold sharings are an important primitive for distributed computation
and agreement problems [4].

A protocol with a tagID .d to share a secrets ∈ Zq consists of asharingstage and areconstruction
stage as follows.

Sharing stage.The sharing stage starts when a server initializes the protocol. In this case, we say
the serverinitializes a sharingID .d. There is a special serverPd, called thedealer, which is
activated additionally on an input message of the form(ID .d, in , share , s). If this occurs, we
sayPd sharess usingID .d among the group. A server is said tocomplete the sharingID .d when
it generates an output of the form(ID .d,out , shared).

Reconstruction stage.After a server has completed the sharing, it may be activated on a message
(ID .d, in , reconstruct). In this case, we say the serverstarts the reconstruction forID .d. At
the end of the reconstruction stage, every server should output the shared secret. A serverPi termi-
nates the reconstruction stage by generating an output of the form(ID .d,out , reconstructed ,
zi). In this case, we sayPi reconstructszi for ID .d. This terminates the protocol.

6

The definition of asynchronous verifiable secret sharing is the same as in synchronous networks,
except that some extra care is required to ensure that all servers agree on the fact that a valid sharing has
been established. Our definition provides computational correctness and unconditional privacy.

Definition 2. A protocol forasynchronous verifiable dual-threshold secret sharingsatisfies the follow-
ing conditions for anyt-limited adversary:

Liveness: If the adversary initializes all honest servers on a sharingID .d, delivers all associated mes-
sages, and the dealerPd is honest throughout the sharing stage, then all honest servers complete
the sharing, except with negligible probability.

Agreement: Provided the adversary initializes all honest servers on a sharingID .d and delivers all
associated messages, the following holds: If some honest server completes the sharingID .d,
then all honest servers complete the sharingID .d and if all honest servers subsequently start the
reconstruction forID .d, then every honest serverPi reconstructs somezi for ID .d, except with
negligible probability.

Correctness: Oncek honest servers have completed the sharingID .d, there exists a fixed valuez ∈ Zq
such that the following holds except with negligible probability:

1. If the dealer has shareds usingID .d and is honest throughout the sharing stage, thenz = s.

2. If an honest serverPi reconstructszi for ID .d, thenzi = z.

Privacy: If an honest dealer has shareds usingID .d and less thank− t honest servers have started the
reconstruction forID .d, the adversary has no information abouts.

Efficiency: For everyID .d, the communication complexity is uniformly bounded.

The first two conditions are liveness conditions. They imply the same form of termination and
agreement as required by theByzantine generals problem[19], which implements areliable broadcast
with Byzantine faults [17, 3] from a distinguished server to all others. The servers must terminate the
protocol only if the distinguished server is honest, but they agree on the termination of the protocol such
that either none or all honest servers terminate the protocol and generate some output.

This definition is analogous to the definition of AVSS in the information-theoretical model by
Canetti and Rabin [9].

3.2 Implementation

This section describes a novel verifiable secret sharing protocol for an asynchronous network with com-
putational security. Our protocol creates a discrete logarithm-based sharing of the kind introduced by
Pedersen [22], and it is much more efficient than the previous VSS protocols for asynchronous net-
works [1, 9, 5] (which were proposed in the information-theoretic model). Our protocol uses exactly the
same communication pattern as the asynchronous broadcast primitive proposed by Bracha [2], which
implements the Byzantine generals problem in an asynchronous network.

ProtocolAVSS creates an(n, k, t) dual-threshold sharing for anyn − 2t ≥ k > t. The sharing
stage works as follows (assumek ≥ dn+t+1

2 e for the moment).

1. The dealer computes a two-dimensional sharing of the secret by choosing a random bivariate
polynomialf ∈ Zq[x, y] of degree at mostk − 1 with f(0, 0) = s. It commits tof(x, y) =∑k−1

j,l=0 fjlx
jyl using a second random polynomialf ′ ∈ Zq[x, y] of degree at mostk − 1 by

computing a matrixC = {Cjl} with Cjl = gfjlhf
′
jl for j, l ∈ [0, k − 1]. Then the dealer sends to

every serverPi a message containing the commitment matrixC as well as twoshare polynomials
ai(y) := f(i, y) and a′i(y) := f ′(i, y) and twosub-share polynomialsbi(x) := f(x, i) and
b′i(x) := f ′(x, i), respectively.

7

2. When they receive thesend message from the dealer, the serversechothe points in which their
share and sub-share polynomials overlap to each other. To this effect,Pi sends anecho message
containingC, ai(j), a′i(j), bi(j), andb′i(j) to every serverPj .

3. Upon receivingk echo messages that agree onC and contain valid points, every serverPi inter-
polates its own share and sub-share polynomialsāi, ā

′
i, b̄i, andb̄′i from the received points using

standard Lagrange interpolation. (In case the dealer is honest, the resulting polynomials are the
same as those in thesend message.) ThenPi sends aready message containingC, āi(j), ā′i(j),
b̄i(j), andb̄′i(j) to every serverPj .

It is also possible that a server receivesk valid ready messages that agree onC and contain valid
points, but has not yet receivedk valid echo messages. In this case, the server interpolates its
share and sub-share polynomials from theready messages and sends its ownready message
to all servers as above.

4. Once a server receives a total ofk+ t ready messages that agree onC, it completesthe sharing.
Its share of the secret is(si, s′i) = (āi(0), ā′i(0)).

The reconstruction stage is straightforward. Every serverPi reveals its share(si, s′i) to every other
server, and waits fork such shares from other servers that are consistent with the commitmentsC. Then
it interpolates the secretf(0, 0) from the shares.

For smaller values ofk, in particular fort < k < dn+t+1
2 e, the protocol has to be modified to receive

dn+t+1
2 e echo messages in step 3. This guarantees the uniqueness of the shared value.
A detailed description of the protocol is given in Figures 1 and 2. In the protocol description, the

following predicates are used:

verify-poly(C, i, a, a′, b, b′), wherea, a′, b, andb′ are polynomials of degreek − 1, i.e.,

a(y) =
k−1∑
l=0

aly
l, a′(y) =

k−1∑
l=0

a′ly
l, b(x) =

k−1∑
j=0

bjx
j , and b′(x) =

k−1∑
j=0

b′jx
j ;

the predicate verifies that the given polynomials are share and sub-share polynomials forPi con-
sistent withC; it is true if and only if for alll ∈ [0, k − 1], it holdsgalha

′
l =

∏k−1
j=0(Cjl)i

j
, and

for all j ∈ [0, k − 1], it holdsgbjhb
′
j =

∏k−1
l=0 (Cjl)i

l
.

verify-point(C, i,m, α, α′, β, β′) verifies that the given valuesα, α′, β, andβ′ correspond to the points
f(m, i), f ′(m, i), f(i,m), andf ′(i,m), respectively, committed to inC, whichPi supposedly
receives fromPm; it is true if and only ifgαhα

′
=
∏k−1
j,l=0(Cjl)m

jil andgβhβ
′

=
∏k−1
j,l=0(Cjl)i

jml .

verify-share(C,m, σ, σ′) verifies that the pair(σ, σ′) forms a valid share ofPm with respect toC; it
is true if and only ifgσhσ

′
=
∏k−1
j=0(Cj0)m

j
.

The servers may need to interpolate a polynomiala of degree at mostk − 1 overZq from a setA of
k points{(m1, αm1), . . . , (mk, αmk)} such thata(mj) = αmj for j ∈ [1, k]. This can be done using
standard Lagrange interpolation. We abbreviate this by saying a serverinterpolatesa fromA; shouldA
contain more thank elements, an arbitrary subset ofk elements is used for interpolation.

In the protocol description, the variablese andr count the number ofecho andready messages,
respectively. They are instantiated separately only for values ofC that have actually been received in
incoming messages.

Intuitively, protocolAVSS performs a reliable broadcast ofC using the protocol of Bracha [2],
where everyecho andready message between two serversPi andPj additionally contains the values
f(i, j), f(j, i), f ′(i, j), andf ′(j, i), which they have in common.

The protocol usesO(n2) messages and has communication complexityO(κn4). The size of the
messages is dominated byC; it can be reduced by a factor ofn as shown in Section 3.4.

8

Protocol AVSS for server Pi and tag ID .d (sharing stage)

upon initialization:

for all C do
eC ← 0; rC ← 0
AC ← ∅; A′C ← ∅; BC ← ∅; B′C ← ∅

upon receivinga message(ID .d, in , share , s): /* only Pd */

choose two random bivariate polynomialsf, f ′ ∈ Zq[x, y] of degreek−1 with f(0, 0) = f00 =
s, i.e.,

f(x, y) =
k−1∑
j,l=0

fjlx
jyl and f ′(x, y) =

k−1∑
j,l=0

f ′jlx
jyl

C← {Cjl}, whereCjl = gfjlhf
′
jl for j, l ∈ [0, k − 1]

for j ∈ [1, n] do
aj(y)← f(j, y); a′j(y)← f ′(j, y); bj(x)← f(x, j); b′j(x)← f ′(x, j)
send the message(ID .d, send ,C, aj , a′j , bj , b

′
j) to Pj

upon receivinga message(ID .d, send ,C, a, a′, b, b′) from Pd for the first time:

if verify-poly(C, i, a, a′, b, b′) then
for j ∈ [1, n] do send the message(ID .d,echo ,C, a(j), a′(j), b(j), b′(j)) to Pj

upon receivinga message(ID .d,echo ,C, α, α′, β, β′) from Pm for the first time:

if verify-point(C, i,m, α, α′, β, β′) then
AC ← AC ∪ {(m,α)}; A′C ← A′C ∪ {(m,α′)}
BC ← BC ∪ {(m,β)}; B′C ← B′C ∪ {(m,β′)}
eC ← eC + 1
if eC = max{dn+t+1

2 e, k} and rC < k then
interpolatēa, ā′, b̄, andb̄′ fromAC,A′C, BC, andB′C, respectively
for j ∈ [1, n] do send the message(ID .d, ready ,C, ā(j), ā′(j), b̄(j), b̄′(j)) to Pj

upon receivinga message(ID .d, ready ,C, α, α′, β, β′) from Pm for the first time:

if verify-point(C, i,m, α, α′, β, β′) then
AC ← AC ∪ {(m,α)}; A′C ← A′C ∪ {(m,α′)}
BC ← BC ∪ {(m,β)}; B′C ← B′C ∪ {(m,β′)}
rC ← rC + 1
if rC = k and eC < max{dn+t+1

2 e, k} then
interpolatēa, ā′, b̄, andb̄′ fromAC,A′C, BC, andB′C, respectively
for j ∈ [1, n] do send the message(ID .d, ready ,C, ā(j), ā′(j), b̄(j), b̄′(j)) to Pj

else ifrC = k + t then
C̄← C
(si, s′i)← (ā(0), ā′(0)) /* (si, s′i) is the share ofPi */
output(ID .d,out , shared)

Figure 1: ProtocolAVSS for asynchronous verifiable secret sharing (sharing stage).

9

Protocol AVSS for server Pi and tag ID .d (reconstruction stage)

upon receivinga message(ID .d, in , reconstruct):
c← 0; S ← ∅
for j ∈ [1, n] do send the message(ID .d, reconstruct-share , si, s

′
i) to Pj

upon receivinga message(ID .d, reconstruct-share , σ, σ′) from Pm:

if verify-share(C̄,m, σ, σ′) then
S ← S ∪ {(m,σ)}
c← c+ 1
if c = k then

interpolatea0 from S
output(ID .d,out , reconstructed , a0(0))
halt

Figure 2: ProtocolAVSS for asynchronous verifiable secret sharing (reconstruction stage).

Note that protocolAVSS creates an ordinary(n, t+1, t)-sharing with optimal resiliencen > 3t, and
an(n, 2t+1, t)-sharing with resiliencen > 4t. It is an open problem to develop an AVSS protocol with
comparable efficiency that creates arbitrary dual-threshold sharings (or even sharings withk = 2t+ 1)
with optimal resilience.

We prove the following theorem in the next section.

Theorem 1. Assuming the hardness of the discrete-logarithm problem, protocolAVSS implements
asynchronous verifiable dual-threshold secret sharing forn− 2t ≥ k > t.

3.3 Analysis

We have to show that protocolAVSS satisfiesliveness, agreement, correctness, privacy, andefficiency
according to Definition 2. The proof relies on the following lemma.

Lemma 2 ([2]). Suppose an honest serversPi sends aready message containingCi and a distinct
honest serverPj sends aready message containingCj . ThenCi = Cj .

Proof. We prove the lemma by contradiction. SupposeCi 6= Cj . Pi generates theready message
for Ci only if it has received at leastdn+t+1

2 e echo messages containingCi or k ready messages
containingCi. In the second case, at least one honest server has sent aready message containingCi

upon receiving at leastdn+t+1
2 e echo messages; we may as well assume that this isPi to simplify the

rest of the argument. Thus,Pi has receiveddn+t+1
2 e echo messages containingCi, of which up tot

are from corrupted servers.
Using the same argumentation,Pj must have received at leastdn+t+1

2 e echo messages containing
Cj .

Then there are at least2dn+t+1
2 e = n+t+1 echo messages received byPi andPj together, among

them at leastn− t+ 1 from honest servers. But no honest server generates more than one such message
by the protocol.

Liveness. If the dealerPd is honest, it follows directly by inspection of the protocol that all honest
servers complete the sharingID .d, provided all servers initialize the sharingID .d and the adversary
delivers all associated messages.

10

Agreement. We first show that if some honest server completes the sharingID .d, then all honest
servers complete the sharingID .d, provided all servers initialize the sharingID .d and the adversary
delivers all associated messages.

Suppose an honest server has completed the sharing. Then it has receivedk + t valid ready
messages that agree on someC̄. Of these, at leastk have been sent by honest servers. Avalid echo or
ready message is one that satisfiesverify-point, and it is easy to see from the definition ofverify-poly
andverify-point that honest servers send only validready messages.

Since an honest server sends itsready message to all servers, every honest server receives at least
k valid ready messages with the samēC by Lemma 2 and sends aready message containinḡC.
Hence, by the assumption of the theorem, any honest server receivesn − t ≥ k + t valid ready
messages containinḡC and completes the sharing.

As for the reconstruction part, it follows from Lemma 2 that every honest serverPi computes the
sameC̄. Moreover,Pi has received enough validecho or ready messages with respect tōC so that
it computes validready messages and avalid sharesi, s′i with respect toC̄ (a share such thatverify-
share(C̄, i, si, s′i) holds). Thus, if all honest servers subsequently start the reconstruction stage, then
every server receives enough valid shares to reconstruct some value, provided the adversary delivers all
associated messages.

Correctness. Let J be the index set of thek honest serversPj that have completed the sharing, and
let (sj , s′j) be their shares. LetλJj for j ∈ J denote the appropriate Lagrange interpolation coefficients
for the setJ and position 0. Define

z =
∑
j∈G

λJj sj .

To prove the first part, suppose the dealer has shareds and is honest throughout the sharing stage.
Towards a contradiction assumez 6= s. Because the dealer is honest, it is easy to see that everyecho
message sent from an honestPi to Pj containsC, f(i, j), f ′(i, j), f(j, i), andf ′(j, i) as computed by
the dealer. Furthermore, if the servers inJ computed their shares only from theseecho messages,
thensj = āj(0) = f(j, 0). But sincez 6= s, at least one honest serverPi computed a polynomial
āi(y) 6= f(i, y); this must be becausePi accepted anecho or ready message from some corrupted
Pm containingα 6= f(m, i).

SincePi has evaluatedverify-point to true, we have

gαhα
′

=
k−1∏
j,l=0

(C̄jl)m
jil . (1)

On the other hand, the dealer has sent polynomialsam anda′m to Pm satisfying

gam(i)ha
′
m(i) =

k−1∏
j,l=0

(Cjl)i
jml (2)

and(am(i), a′m(i) = (f(m, i), f ′(m, i)). It is easy to see from Lemma 2 and from the fact that the
dealer is honest thatC used by the dealer and̄C used byPi are equal. Thus,gαhα

′
= gam(i)ha

′
m(i) from

(1) and (2). Together withα 6= f(m, i) = am(i) from above, this implies also

α′ 6= f ′(m, i) = a′m(i). (3)

Rewriting this usingh = glogg h and comparing exponents yieldsα+(logg h)α′ = am(i)+(logg h)a′m(i).
Because of (3), one can computelogg h = (α− am(i))/(a′m(i)− α′), a contradiction.

11

To prove the second part, assume that two distinct honest serversPi andPj reconstruct valueszi
andzj such thatzi 6= zj . This means that they have received two distinct setsSi = {(l, s(i)

l , s
′
l
(i))} and

Sj = {(l, s(j)
l , s′l

(j))} of k shares each, which are valid with respect to the unique commitment matrix
C̄ used byPi andPj (the uniqueness of̄C follows from Lemma 2).

According to the protocol,zi andzj are interpolated from the sets{(l, s(i)
l)} and{(l, s(j)

l)} obtained
fromSi andSj , respectively. Letz′i andz′j be interpolated analogously from{(l, s′l(i))} and{(l, s′l(j))}.
Since the shares inSi andSj are valid, it is easy to see thatgzihz

′
i = C̄00 = gzjhz

′
j . But then one can

rewrite this usingh = glogg h and computelogg h = (zi − zj)/(z′j − z′i).

Privacy. Fix any point in time, and letB be the index set of servers that are either corrupted or have
already started the reconstruction forID .d. W.l.o.g. assume|B| = k − 1 and that the adversary’s view
consists of the polynomialsf(x, i), f ′(x, i), f(i, y), andf ′(i, y) for i ∈ B and the commitmentsC as
computed by the dealer.

We have to show that for every values̃ ∈ Zq, there exist two polynomials̃f, f̃ ′ ∈ Zq[x, y] of degree
at mostk − 1 that are consistent with the adversary’s view and such thatf̃(0, 0) = s̃.

Note that there is a unique values̃′ ∈ Zq such thatC00 = gs̃hs̃
′
. The values̃s′ ands̃ together with

the polynomialsf(x, i), f ′(x, i), f(i, y), andf ′(i, y) in the view of the adversary define uniquely two
polynomialsf̃ , f̃ ′ ∈ Zq[x, y] of degree at mostk − 1 such thatf̃(0, 0) = s̃ andf̃ ′(0, 0) = s̃′, as well as

f(x, i) = f̃(x, i), f ′(x, i) = f̃ ′(x, i), f(i, y) = f̃(i, y), and f ′(i, y) = f̃ ′(i, y) (4)

for i ∈ B. It remains to show thatClm = gf̃lmhf̃
′
lm for l,m ∈ [0, k − 1].

Definee(x, y) = f(x, y)+`f ′(x, y), wherè = loggh. Then we havegelm = Clm for l,m ∈ [0, k−
1]. If we analogously definẽe(x, y) = f̃(x, y) + `f̃ ′(x, y), all we have to show ise(x, y) = ẽ(x, y).

Recall thate(x, i) = f(x, i)+`f ′(x, i) ande(i, y) = f(i, y)+`f ′(i, y) for i ∈ B as well ase(0, 0) =
f(0, 0) + `f ′(0, 0) by construction. Inserting (4) into the definition ofẽ, we havẽe(x, i) = e(x, i) and
ẽ(i, y) = e(i, y) for i ∈ B. In addition, we know thatge(0,0) = C00 = gs̃hs̃

′
= gs̃+`s̃

′
= gẽ(0,0), from

the definitions of̃s′, of `, and off̃ , f̃ ′, andẽ (in this order). Thus, the polynomialse andẽ are equal.

Efficiency. Every honest server sends at most oneecho , ready , andreconstruct-share mes-
sage to every other server, which yields a total ofO(n2) messages. Since the size of all messages is
bounded byO(κn2), it follows easily that the communication complexity is uniformly bounded.

3.4 Reducing Message Sizes

In the sharing stage of the protocolAVSS described above, every serverPi resends the commitment
matrix C with every message it sends. Intuitively, this is needed for two reasons: first, to allow the
honest servers to agree on the value that is a commitment to the secret being shared, and second, to
allow the servers to verify that the secret shares they receive correspond to this commitment. We show
in this section how to guarantee these two ends without having the servers resend so much data.

The new protocol relies on a collision-resistant hash functionH. This is not an extra assumption
because it is well-known that the hardness of the discrete-logarithm problem implies efficient collision-
resistant hash functions. In practice, hash functions can be implemented at very little cost.

Recall from Section 3.2 that to create a secret sharing, the dealer selects two bivariate polynomi-
als f andf ′. Also, recall the notationai, a′i, bi, b

′
i from the description in Section 3.2. LetA(i) =

(A(i)
0 , A

(i)
1 , . . . , A

(i)
n) denote the(n + 1)-element list formed by settingA(i)

j = gai(j)ha
′
i(j) for j ∈

[0, n]. Let B(i) be derived analogously frombi andb′i. Define listsA(0) andB(0) analogously with

A
(0)
j = gf(0,j)hf

′(0,j) andB(0)
j = gf(j,0)hf

′(j,0) for j ∈ [0, n].

12

Modifications to the dealer’s part of the sharing protocol. Instead of sendingC to each server,Pd
adds the following values, which we will denote byD, to everysend message:

1. A(0) andB(0);

2. ha = (ha,0, . . . , ha,n) andhb = (hb,0, . . . , hb,n), whereha,j = H(A(j)) andhb,j = H(B(j)).

In addition, the dealer sends the polynomialsai, a′i, bi andb′i to each serverPi as before. Note that as a
result, the dealer sendsn messages of lengthO(κn) each.

Modifications to Pi’s part of the sharing protocol. In the modified protocol,Pi computes the lists
A(i) andB(i) from the received data and adds them to everyecho or ready message, together with
the publicD from the dealer’s message. This allows every server to perform the same checks as before,
but reduces the length of every message toO(κn). Furthermore, messages are counted separately with
respect toD instead ofC.

The modified protocol uses the following predicates (in each,D = (A(0), B(0), ha, hb) as described
above):

check-poly(D, i, A,B), whereA andB are(n+1)-element lists, is satisfied ifA(0)
i = B0,B(0)

i = A0,
ha,i = H(A), andhb,i = H(B).

check-point(C, γ, γ′) checks thatC is a commitment toγ andγ′; it is satisfied if and only ifC =
gγhγ

′
.

verify-poly(D, i, a, a′, b, b′), wherea, a′, b, andb′ are polynomials of degreek − 1, is satisfied if and
only if check-poly(D, i, A,B) for the listsA = (A0, . . . , An) andB = (B0, . . . , Bn) formed by
settingAj = ga(j)ha

′(j) andBj = gb(j)hb
′(j), respectively.

verify-point(D, i,m,A,B, α, α′, β, β′), whereA andB are the(n + 1)-element lists received from
Pm, verifies that the given valuesα, α′, β, andβ′ correspond to the pointsf(m, i), f ′(m, i),
f(i,m), andf ′(i,m), respectively, committed to inD; it is true if and only if

check-poly(D,m,A,B) ∧ check-point(Ai, α, α′) ∧ check-point(Bi, β, β′).

verify-share(D,m, σ, σ′) verifies that the pair(σ, σ′) forms a valid share ofPm with respect toD; it

is true if and only ifgσhσ
′

= A
(0)
m .

The remaining details of the modified protocol can now easily be filled in. The part for reconstruct-
ing the secret remains the same, except for the new definition of theverify-share predicate.

It is clear that the message complexity of the revised protocol is the same as the message complexity
of the protocol in Section 3.2. It is also clear that the communication complexity is reduced toO(κn3)
because every single message sent out by the new protocol includesD, which is of sizeO(κn), instead
of C, which is of sizeO(κn2).

Analysis. We must now argue why the resulting protocol retains the properties of an asynchronous
verifiable secret sharing protocol. Theliveness, agreement, andprivacyproperties follow in exactly the
same way as in Section 3.3. Thecorrectnessproperty is the only one that needs to be elaborated on.

First, observe that Lemma 2 holds as well for this protocol with the obvious modifications (replacing
C by D). LetJ andz be as in the proof of correctness in Section 3.3.

Suppose the dealer is honest and has shareds and yetz 6= s. As before, because the dealer is
honest, it is easy to see that everyecho message sent from an honestPi to Pj containsD, A(i),
B(i), f(i, j), f ′(i, j), f(j, i), andf ′(j, i) as computed by the dealer. Furthermore, if the servers in
J computed their shares only from theseecho messages, thensj = āj(0) = f(j, 0). But since

13

z 6= s, at least one honest serverPi computed a polynomial̄ai(y) 6= f(i, y); this must be because
Pi accepted anecho or ready message from some corruptedPm containingα 6= f(m, i). SincePi
has evaluatedverify-point(D, i,m,A,B, α, α′, β, β′) to true, we know thatcheck-poly(D,m,A,B)
andcheck-point(Ai, α, α′) hold. SupposeA(i) 6= A. Then we have broken the hash function, since
check-poly would fail if ha,i = H(A(i)) 6= H(A). SoA(i) = A. But then we break the discrete-
logarithm assumption as before.

Suppose the dealer is corrupted and two distinct honest serversPi andPj reconstruct valueszi and
zj such thatzi 6= zj . By Lemma 2, they both accepted the unique commitmentD̄, which includes

the valueA(0). This means that they have received two distinct setsSi = {(l, s(i)
l , s

′
l
(i))} andSj =

{(l, s(j)
l , s′l

(j))} of k shares each, which are valid with respect toA(0). According to the protocol,zi and

zj are interpolated from the sets{(l, s(i)
l)} and{(l, s(j)

l)} obtained fromSi andSj , respectively. Letz′i
andz′j be interpolated analogously from{(l, s′l(i))} and{(l, s′l(j))}. Since the shares inSi andSj pass
theverify-share test, but interpolate to distinct values, we obtain two ways of opening the commitment
contained inA(0), which contradicts the discrete-logarithm assumption. The details are similar as before
and left to the reader.

Further Improvements. Suppose instead of using just the two generatorsg andh of the groupG, we
use generatorsg1, . . . , gN , andh. Then, in order to shareN secretss1, . . . , sN , the dealer computes
N + 1 bivariate polynomialsf1, . . . , fN , andf ′, and forms the entries of the verification matrixC as
Cjl = g

f1(j,l)
1 g

f2(j,l)
2 · · · gfn(j,l)

n hf
′(j,l). The rest of the protocol is carried out analogously to the protocol

described above. As a result, we can have a dealer shareN secrets at the cost ofO(n2) messages and
O(κn2(n+N)) communication.

3.5 Application to Asynchronous Byzantine Agreement

Byzantine agreement is a fundamental problem in distributed computation [21]. In asynchronous net-
works, it is impossible to solve by deterministic protocols [13], which means that one must resort to
randomized protocols. The first polynomial-time solution to this problem was given by Canetti and Ra-
bin [9, 5]. However, this result is aproof of conceptand not a practical solution because the complexity
of their protocol is rather high: the message complexity isO(n6) and the communication complexity is
O(n8 log n).

The cost of this protocol is dominated by their asynchronous verifiable secret sharing protocol for
sharingn secrets. Our protocol for the same task from the previous section isΘ(n3) times more efficient
for message complexity, and approximatelyΘ(n4) times more efficient for communication complexity.
We propose to plug our AVSS protocol directly into the Byzantine agreement protocol of Canetti and
Rabin [9] (an excellent exposition of how AVSS is used in asynchronous Byzantine agreement is given
in [5]). As a result, assuming the hardness of the discrete-logarithm problem, the complexity of asyn-
chronous Byzantine agreement is reduced toO(n3) message complexity andO(κn4) communication
complexity.

We stress that this works in thecomputationalsetting, whereas Canetti and Rabin [9] use an uncon-
ditional model. We also mention that in the so-called random-oracle model, a more efficient protocol
exists, which is secure against a static adversary [4]. However, the random-oracle model makes an
idealizing assumption about cryptographic hash functions, which involves certain problems [7], and a
proof in this model falls short from a proof in the real world. Hence, our AVSS protocol yields the first
asynchronous Byzantine agreement protocol that is provably secure in the standard modeland whose
efficiency makes it suitable for use in practice.

14

4 Asynchronous Proactive Model

Proactive cryptosystems combine distribution with a periodic refresh operation in order to protect the
secret key against amobileadversary, who can move from one server to another and corrupt all servers
during the lifetime of the system [20, 18]. In this section, we propose an extension of the asynchronous
system model given in Section 2 for proactive cryptosystems. We argue that such an extension is nec-
essary and that our proposal is minimal. An asynchronous proactive refresh protocol for shared secrets,
which forms the core of every proactive cryptosystem, is presented in the next section.

Motivation. A proactive cryptosystem is a threshold cryptosystem that tolerates an adversary who can
gradually break into any number of servers. To protect against leaking the secret key, it operates in a
sequence ofphasesand the servers periodicallyrefreshtheir shares between two phases. The new set of
shares is independent of the previous one and the old shares are erased. Thus, the adversary may corrupt
up tot different servers in any phase without learning anything about the secret key.

The underlying assumption is that breaking into a server requires a certain amount of time, which
occurs for every server that is corrupted, independent from other corruptions. It must also be possible to
remove the adversary by rebooting a server in a trusted way (e.g., from a read-only device) and to erase
information on a server permanently.

This concept maps onto a synchronous network in a straightforward way. In an asynchronous net-
work, however, the following two issues regarding phases and secure channels arise.

First, the notion of a common phase is not readily available because there is no common clock.
Since refreshing requires a distributed protocol, in which all servers should participate, at least some
synchronization primitive is needed to define the length of a phase in a meaningful way. It turns out
that a single time signal orclock tick, which defines the start of every phase locally, is enough. In our
formal model, we leave the scheduling of this signal up to the network, i.e., the adversary. In practice,
this might be an impulse from an external clock, say every day at 0:00 UTC. Hence, phases are defined
locally to every server. The adversary may corrupt up tot servers who are in the same local phase.

Second, the channels that link the servers have to be adapted to this model. Recall that all servers are
linked by secure channels (i.e., private and authenticated links), which are scheduled by the adversary.
Given only locally defined phases and purely asynchronous scheduling, however, it would be possible
for the adversary to break the secure channels assumption as follows. Suppose all servers are in the same
local phase and the adversary has corruptedt of them. In order to read any message sent between two
honest servers, the adversary may delay the message until the receiver enters the next phase and some
of the previously corrupted servers are again honest. Then she corrupts the receiver and observes the
message, which gives her access to private information from the previous phase of more thant servers.

Therefore, we assume that secure channels in the proactive model guarantee that messages are deliv-
ered in the same local phase in which they are sent. More precisely, a message sent in some local phase
of the sender arrives when the receiver is in the same local phase or it is invariably lost. Under these
restrictions, we leave all scheduling up to the adversary. In practice, such proactive secure channels
might be implemented by re-keying every point-to-point link when a phase change occurs, as discussed
below.

We now proceed to the formal description of the model.

Formal Model. A server is a PITM as before, which can now alsoeraseinformation. We define
erasing in terms of restricting a server’s view. To erase information means to exclude the corresponding
values from the server’s view.

As before, the adversary may corrupt a server at any point in time, but now it can now also be
removed from a corrupted server by arebootprocedure. In this case, the server is restarted with correct
initialization data, and the proactive protocols running before the corruption are invoked again (how

15

these protocols are determined is outside our model). The internal state of the server may have been
modified arbitrarily by the adversary.

Every server operates in a sequence of local phases, which are defined with respect to a trivial
protocoltimer. Every honest server continuously runs one instance of this protocol, which starts when
the server is initialized. Upon initialization, the protocol sends a timer message called aclock tick
to itself. Whenever the server receives a clock tick, the server resends the message to itself over the
network. Thelocal phaseof an uncorrupted serverPi is defined as the number of clock ticks that it has
received so far. If the adversary corrupts a server during some phaseτ , we define the corrupted server
to remain in local phaseτ until it is rebooted and the adversary is removed. We assume that after a
reboot, a server is automatically activated on a clock tick and continues to operate in the subsequent
phase. Hence every server is honest at the point in time when it enters the next local phase. However,
the adversary can cause a server to appear corrupted during multiple subsequent phases (and across the
phase changes) by corrupting it again immediately after the phase change.

Since the set of honest servers may change from one phase to another, we also define the set of
associated messagesaccordingly.

An adversary in the proactive network model is calledt-limited if for every phase indexτ ≥ 0, it
corrupts at mostt servers in local phaseτ . Recall that activations are atomic and cannot be interrupted
by a corruption. This allows an honest server to perform some actions, like erasing critical data, at the
very beginning of a phase (upon detectinga clock tick)before it can be corrupted by the adversary
during this phase.

We assume that every pair of servers is linked by aproactive secure asynchronous channel, which is
defined as follows. Recall that in our asynchronous network model, the adversary can schedule messages
in a setM with labels of the form(s, r, l). In the proactive network, a numberτ is added to every label
denoting the local phase in whichPs has sent the message. Then we restrict the scheduling as follows.
If Pj enters local phaseτ , all messages inM with labels(·, j, ·, σ) whereσ < τ are removed fromM.
Furthermore, the adversary may not schedule any message with label(·, j, ·, τ) beforePj has entered
its local phaseτ . We say thatthe adversary delivers messages within phasesto denote an adversary
that delivers all messages inM with a label of the form(·, j, ·, τ) to a receiverPj whenPj is in local
phaseτ . If the adversary corrupts a serverPj during its local phaseτ , then all messagesm ∈ M with
label(·, j, ·, τ) are removed fromM and given to the adversary, who may now send messages with label
(j, ·, ·, τ).

Note that every honest server runs a separate instance of thetimer protocol, and that we view this
protocol as an integral part of the proactive system model. As such, it is not required to terminate or to
satisfy a uniform bound on its communication complexity. It will simply run until the adversary halts.

Implementation. In practice, asynchronous proactive secure channels with the described properties
could be implemented using secure co-processors as follows. The communication link between every
pair of servers is encrypted and authenticated using a phase session key that is stored in secure hard-
ware. A fresh session key is established in the co-processor as soon as both enter a new phase, with
authentication based on data stored in secure hardware (if a public-key infrastructure is used, this may
be a single root certificate). Thus, even if the adversary corrupts a server, she gains access to the phase
session key only through calls to the co-processor. The external clock which triggers the phase changes
must have a trusted path into the secure co-processor and an intruder must not be able to influence it.

The related problem of maintaining proactive authenticated communication in a synchronous net-
work has been investigated by Canetti et al. [8].

Related Work. Proactive systems in asynchronous networks have been discussed by Castro and Lis-
kov [10] and by Zhou [24]; the former aims at maintaining a common state, and the latter at maintaining
a shared secret. In these works, the phases are defined with respect to proactive protocols, i.e., a phase
endsupon the termination of the corresponding update protocol. Our approach is more general in the

16

sense that we postulate the phases only with respect to a timeout mechanism, independent of proac-
tive protocols. This models also systems where a refresh protocol may not terminate within a phase.
Our protocols therefore postulate two types of conditions: liveness conditions, which hold only if the
protocol terminates within a phase, and safety conditions, which hold in any case.

Another difference lies in our network model, which identifies the main security requirements on
asynchronous proactive secure communication. While authenticity of messages in such a setting is
addressed in terms of a special freshness requirement in [10], a formal treatment of these aspects is
missing in [24].

Finally, from a practical point of view, our implementation of the refresh protocol is much more
efficient than the one of Zhou [24]. Ours has an expected message complexity ofO(n3) as opposed
toO(

(
n
t

)
).

5 Asynchronous Proactive Refresh Protocol

In this section, we describe how a group of servers holding shares of a secret may refresh these shares
in an asynchronous proactive network such that the adversary does not learn anything about the secret.
Such protocols form the basis of any proactive cryptosystem. We define the notion of a verifiable
sharing and the properties of a protocol to refresh such a sharing. Then we propose an implementation
of a refresh protocol for discrete logarithm-based verifiable sharings as established by protocolAVSS
from Section 3. We restrict ourselves to ordinary(n, t+ 1, t)-sharings in this section.

5.1 Definitions

Verifiable sharing. A sharingof a (secret) values0 ∈ Zq can be seen as an encoding ofs0 into a set
of sharesSi such that all sets of at leastt+ 1 shares uniquely defines0, whereas any other set of shares
does not give any information abouts0.

Such a sharing results, for example, from the first stage of an AVSS protocol. A sharing is robust
against erasures in the sense that a unique secret can also be reconstructed from a subset the shares.
Missing shares of honest servers are denoted by⊥.

A verifiable sharing, or v-sharingfor short, has the additional property that the secret is defined
uniquely even if the adversary corrupts up tot servers and modifies their shares in an arbitrary way.

We define a verifiable sharing in terms of an algorithmreconstructthat takes as input a set of shares
{Si} and outputs a value inZq or⊥.

Definition 3. We say the servers hold averifiable sharing ofs0 with tag ID and with respect to an
algorithm reconstruct, if every serverPi holds a shareSi such that the following conditions are satisfied:

Integrity: For any set{Si} of shares that contains at leastt+ 1 shares of honest servers different from
⊥, runningreconstructon input{Si} yieldss0, except with negligible probability.

Privacy: Any set{Si} of at mostt shares contains no information abouts0.

Notice that the integrity property is computational and the privacy property unconditional.

Refreshing a verifiable sharing. The goal of a proactive refresh protocol is to protect a verifiable
sharing by providing the servers with new shares for the next phase such that the adversary’s knowledge
of shares from the previous phase is rendered useless.

Suppose the servers hold a v-sharingS1, . . . , Sn of a values0 with tag ID and with respect to an
algorithmreconstructat some point in time where all honest servers are in local phaseτ − 1. Then an
honest server starts arefresh protocolwith tagID and inputSi as soon as itdetectsandreceivesthe next
clock tick (all ongoing computations are aborted as soon as the clock tick isdetected). This also marks

17

the end of local phaseτ − 1 and the begin of phaseτ . The refresh protocol terminates either when the
server generates an output of the form(ID , refreshed) or when itdetectsthe next clock tick. In the
first case, we saythe server completes the refresh of sharingID .

The refresh protocol must ensure that the honest servers compute a fresh v-sharing of the same
values0 and that anyt-limited adversary does not learn any information ons0. This is captured by the
following definition.

Definition 4. Suppose the servers hold a verifiable sharing of some values0 with tag ID and with
respect to some algorithmreconstruct. An asynchronous secure refreshprotocol satisfies the following
conditions for anyt-limited adversary:

Liveness: If the adversary activates all honest servers on a clock tick and delivers all associated mes-
sages within phases, then all honest servers complete the refresh of sharingID , except with neg-
ligible probability.

Correctness: If at leastt + 1 honest servers have completed the refresh of sharingID and have not
detecteda subsequent clock tick, the servers hold a verifiable sharing ofs0 with tagID and with
respect toreconstruct, except with negligible probability.

Privacy: In any polynomial number of consecutive executions of the protocol, the adversary’s view is
statistically independent ofs0.

Efficiency: For everyID , the communication complexity of instanceID is probabilistically uniformly
bounded.

Note that this definition guarantees that the servers complete the refresh only when the adversary
delivers messages within phases. Otherwise, the model allows the adversary to cause the secret to be lost,
in order to preserve privacy. One could also imagine a different formalization of asynchronous proactive
refresh protocols that preserves correctness at the cost of privacy, i.e., where the adversary may learn the
secret. Such a trade-off between privacy and correctness seems unavoidable in asynchronous networks
where messages may be delayed for longer than the duration of a proactive phase; interestingly, it does
not arise for proactive cryptosystems in synchronous networks.

Another difference to the synchronous case is the fact that our phases do not overlap. As a conse-
quence of this, a server must erase the old share during thesameactivation in which it receives the clock
tick (in order to guarantee privacy of the secret). This point in time corresponds to the beginning of the
refresh protocol, before the server may receive messages from other servers or become corrupted in the
new local phase. In contrast, two subsequent phases in synchronous proactive cryptosystems are usually
assumed to overlap for the duration of the refresh protocol, and a server may delay the erasure of an old
share until the end of the refresh protocol.

5.2 Implementation

This section describes protocolRefresh for refreshing a discrete logarithm-based verifiable(n, t+1, t)-
sharing in an asynchronous network. Its implementation needs the multi-valued validated Byzantine
agreement protocol from Section 2.3, a digital signature scheme secure against adaptive chosen-message
attacks [16] for every server, and the AVSS protocol from Section 3 as building blocks. We assume that
such sub-protocols have the property that the calling protocol can access and modify their internal state
andabort them if necessary by terminating the corresponding instance anderasingall associated local
data. A local variablex associated with sub-protocol instanceID is denotedx[ID].

Recall that these primitives were defined in a purely asynchronous, non-proactive network. Hence,
we use them only as sub-protocols running within a single phase; if a protocol does not terminate before
the end of the phase, it must be aborted by the calling protocol. The security of the keys for the digital
signature scheme and for the VBA protocol in the proactive corruption model has to be guaranteed by

18

storing them inside secure co-processors or by using a proactively secure refresh protocols. The details
of this are beyond the scope of this paper.

The verifiable sharing. We investigate how to refresh a discrete logarithm-based verifiable sharing
as computed by protocolAVSS from Section 3. The share of an honest serverPi is of the formSi =
(i, si, s′i, V), whereV = (V0, . . . , Vt) is the same for all servers andgsihs

′
i =

∏t
j=0(Vj)i

j
; in other

words, there exist two polynomialsa(x) =
∑t

j=0 ajx
j anda′(x) =

∑t
j=0 a

′
jx
j over Zq such that

a(i) = si anda′(i) = s′i for all correct sharesSi, andgajha
′
j = Vj for j ∈ [0, t]. (Note thatVj = Cj0

using the notation of protocolAVSS.)
Algorithm reconstructworks as follows. On input a setS of shares, it selects a valueV that is

found in at leastt+ 1 shares and discards shares that contain a different value forV . If V is not unique
or does not exist, it returns⊥; otherwise, it computes a setG ⊆ S of tuples(i, si, s′i, ·) that satisfy
gsihs

′
i =

∏t
j=0(Vj)i

j
. If |G| ≤ t, it returns⊥; otherwise it interpolates a polynomiala of degree at most

t from the set{(i, si)|(i, si, s′i, ·) ∈ G} and returnsa(0).

The refresh protocol. From a high-level point of view, the protocol works in three stages. First,
every serverPi shares its sharesi of s0 using an AVSS protocol. Second, the servers use multi-valued
Byzantine agreement to selectt+1 such sharings that have successfully terminated. Third, they compute
a fresh share ofs0 from the set of sharings which they agreed on.

More precisely, suppose the servers hold a verifiable sharing ofs0 with tag ID as described in
the previous paragraph and have set up a digital signature scheme such that every server can verify
signatures issued by any other server.

Then every server executes the following steps for protocolRefresh in phaseτ .

1. ServerPi initializesn verifiable(n, t+ 1, t)-sharingsID |avss .j for j ∈ [1, n] using anextended
version of protocolAVSS. Then it sharessi ands′i usingID |avss .i, wheref ′[ID |avss .i](0, 0)
is set tos′i, and immediatelyerasesthe current share and the sharing polynomialsf [ID |avss .i]

andf ′[ID |avss .i] in instanceID |avss .i.

The extension of protocolAVSS is that each server adds a digital signature to everyready
message; in AVSS instanceID |avss .j, the signature is computed on(ID |avss .j, τ, ready).
A list Π of 2t+ 1 such signatures is output when the server completes the sharing and may serve
as aproof for this fact.

The server also sends its current value ofV = (V0, . . . , Vt) all other servers in arecover
message. Then it waits forreceivingt + 1 identicalrecover messages and assigns the value
found in them toD.

2. The server waits for completingt + 1 sharingsID |avss .j such thatC[ID |avss .j] is consistent

with D, i.e.,C [ID |avss .j]
00 =

∏t
l=0(Dl)j

l
. Recall that the extended AVSS protocol also returns a

proofΠj for the completion of the sharing.

Next, Pi proposes the set of completed sharings for validated Byzantine agreement with tag
ID |vba . Its proposal is a setLi = {(j,Πj)} of t + 1 tuples, indicating the dealerPj of ev-
ery completed sharing and containing the listΠj of signatures onready messages from the
extended sharing. The predicate of the VBA protocol is set toverify-termination(), described
below, which verifies that a proposal containst + 1 valid lists of signatures from instances of
protocolAVSS.

3. After the server decides in the VBA protocol for a setL that indicatest + 1 AVSS instances,
it waits for these sharings to complete. ThenPi computes its new share as follows: it inter-
polates two polynomials overZq from the set of shares computed in the AVSS instances in-
dicated byL; more precisely, polynomials̄a and ā′ of degreet are interpolated from the sets

19

{(j, s[ID |avss .j]
i)|(j,Πj) ∈ L} and{(j, s′i

[ID |avss .j])|(j,Πj) ∈ L}, respectively. Then the
server sets the sharessi ands′i to ā(0) and ā′(0), respectively. The new commitmentsV are
computed analogously.

Finally, the serverabortsall sub-protocolsID |avss .j, which automaticallyerasesall informa-
tion of these protocol instances.

Predicateverify-termination(ID |vba , τ,L) used in VBA instanceID |vba verifies thatL contains
t+ 1 tags of AVSS protocols with the proofs that these protocols will actually terminate. It is true if and
only if |L| = t+ 1 and for every(j,Πj) ∈ L, the listΠj contains at least2t+ 1 valid signatures on the
string(ID |avss .j, τ, ready) from distinct servers.

Figure 3 shows the detailed description of the protocol. A server mayinterpolatea polynomial
a ∈ Zq[x] of degree at mostt from t+ 1 points as before. LetλJj for someJ ⊂ {1, . . . , n} denote the
appropriate Lagrange interpolation coefficient forj ∈ J , setJ , and position 0.

Protocol Refresh for server Pi, phaseτ , and tagID
/* local inputs:si, s′i, andV */
for j ∈ [1, n] do initialize a sharingID |avss .j using the extended protocolAVSS
if si 6= ⊥ then

sharesi usingID |avss .i, wheref ′[ID |avss .i]
00 = s′i

erasesi, s′i, andf [ID |avss .i] andf ′[ID |avss .i] of instanceID |avss .i
send the message(ID , recover , V) to every server

unlessa clock tick isdetecteddo
wait for receivingt+ 1 identical messages(ID , recover , D) from distinct servers

with D = (D0, . . . , Dt)
wait for t+ 1 sharings with tagID |avss .j to complete such thatC [ID |avss .j]

00 =
∏t
l=0(Dl)j

l

Li ← {(j,Πj)} for all sharingsID |avss .j completed in the previous step
proposeLi in a multi-valued validated Byzantine agreement forID |vba with

predicateverify-termination
wait for the VBA protocol to decide someL for ID |vba
J ← {j|(j,Πj) ∈ L}
wait for all sharingsID |avss .j for j ∈ J to complete

interpolatēa andā′ from
{

(j, s[ID |avss .j]
i)

∣∣j ∈ J } and
{

(j, s′i
[ID |avss .j])

∣∣j ∈ J }, resp.
for l ∈ [0, t] do

V̄l ←
∏
j∈J
(
C

[ID |avss .j]
l0

)λJj
(si, s′i, V)←

(
ā(0), ā′(0), (V̄0, . . . , V̄t)

)
output(ID , refreshed)

abort protocolsID |vba andID |avss .j for j ∈ [1, n]
/* local outputs:si, s′i, andV */

Figure 3: ProtocolRefresh for proactive share refreshing in an asynchronous network, started upon
receivingtheτ -th clock tick.

As mentioned before, a key point of the protocol is that every server erases its old share in the first
activation before waiting for any network input. The event ofreceivingthe clock tick and starting the
refresh protocol defines the end of local phaseτ−1. Thus, one cannot tolerate to leave share information
from phaseτ − 1 around when entering a wait state in phaseτ because at any point in time afterwards,
a corruption might occur that counts towards phaseτ . This is also the reason why the protocol does
not follow the approach of Gennaro et al. [14], which is to establish a set of sharings of the value 0 and
to add these shares to the shares of the secret from phaseτ − 1 later on. Instead, our protocol creates
sharings of previous shares of the secret and uses the agreed-on set of such sharings as a polynomial
sharing of the secret itself.

20

The purpose of therecover messages is to supply the verification informationV of phaseτ −1 to
those honest servers that might have been corrupted in phaseτ −1 and have been rebooted into phaseτ .

ProtocolRefresh invokesn protocols for AVSS and one VBA sub-protocol. With AVSS imple-
mented according to Section 3.4 and VBA from [3], its expected message complexity isO(n3) and its
expected communication complexity isO(κn4).

We prove the following theorem in the next section.

Theorem 3. Assuming the hardness of the discrete-logarithm problem, protocolRefresh is an asyn-
chronous secure refresh protocol forn > 3t.

5.3 Analysis

We have to show the verifiable sharing satisfies Definition 3 and that protocolRefresh satisfies the
liveness, correctness, privacy, andefficiencyproperties of Definition 4.

Verifiable sharing. Recall that the shares of our verifiable sharing are of the formSi = (i, si, s′i, V)
with V = (V0, . . . , Vt) such that there exist two polynomialsa, a′ ∈ Zq[x] of degree at mostt such that
a(i) = si, a′(i) = s′i, andgsihs

′
i =

∏t
j=0(Vj)i

j
for all correct sharesSi. Furthermore,a(0) is equal to

the shared secrets0.
We may assume that the adversary knows the shares(j, sj , s′j , V) of the corrupted servers.

For integrity, we have to show that the adversary cannot compute sharesS̃j = (j, s̃j , s̃′j , Ṽ) of
corrupted serversPj such that runningreconstructwith these shares and at leastt + 1 shares of honest
servers different from⊥ yields a value different froms0.

Towards a contradiction, suppose the adversary has computed such values. Then it must be that
Ṽ = V , because the adversary corrupts at mostt servers andreconstructaccepts only shares that
contain a valueV found in at leastt+ 1 shares. Moreover, it must be the case thatgs̃jhs̃

′
j =

∏t
l=0(Vl)j

l

because otherwisereconstructignores these shares as well. Hence, the adversary has computed a tuple
(s̃j , s̃′j) 6= (sj , s′j) such thatgs̃jhs̃

′
j =

∏t
l=0(Vl)j

l
= gsjhs

′
j . Rewriting this withh = glogg h and

comparing exponents gives̃sj + (logg h)s̃′j = sj + (logg h)s′j . Thus, the adversary has computed
logg h = (s̃j − sj)/(s′j − s̃′j).

Privacyfollows directly from the privacy property of protocolAVSS, which computes this verifiable
sharing.

Liveness. We have to show that the conditions of all wait states that a server enters are eventually
satisfied, provided the adversary delivers all associated messages within phases.

A server waiting fort + 1 identicalrecover messages containing a valueV from the verifiable
sharing above will receive them because theintegrity property of the v-sharing implies that there are
at leastt + 1 honest servers with identical valuesV . It guarantees also that the valueD computed by
honest servers is unique.

The next step is to wait fort+ 1 sharings consistent withD to complete. There are at leastn− t ≥
2t + 1 honest servers who have completed the last phase with valid shares different from⊥. Even if
t of them are now corrupted, there are at leastt + 1 honest servers whose sharings complete and are
consistent withD. Thus, no honest server is blocked here.

Because all honest servers start the VBA protocol (with valid proposals), thelivenessandefficiency
conditions of VBA together imply that the VBA protocol also terminates.

The last step is to wait for the agreed-on sharings inJ to complete. By theexternal validityof
the VBA protocol and by the definition of the predicateverify-termination, there are for every AVSS
instanceID |avss .j with j ∈ J at least2t + 1 valid signatures on theready message, according to
the extended protocolAVSS. Thus, at leastt + 1 honest servers have sent aready message in these
instances, which is sufficient to guarantee termination of the agreed-on instances of protocolAVSS.

21

Correctness. Fix a point in time where a setH of at leastt + 1 honest servers has completed the
refresh protocol and not yet detected the next clock tick.

We have to show that they hold a verifiable sharing ofs0. According to the properties of our discrete
logarithm-based sharing, it is sufficient to show that their shares(i, si, s′i, V) as computed at the end
of the refresh protocol satisfya(i) = si anda′(i) = s′i for i ∈ H, andgajhbj = Vj for j ∈ [0, t] for
polynomialsa(y) =

∑t
j=0 ajy

j anda′(y) =
∑t

j=0 a
′
jy
j with a(0) = s0, and thatV is the same for all

servers.
Let (i, ŝi, ŝ′i, V̂) denote the shares of the initial verifiable sharing ofs0 which the servers hold at the

beginning of the refresh protocol.
We start with the last condition above. By the definition of our verifiable sharing, honest servers

start with the samêV 6= ⊥; therefore, all honest servers accept the sameD = (D0, . . . , Dt) in the

recover messages and any two honest servers receive the sameC
[ID |avss .j]
00 . Together with the

agreementproperty of the VBA protocol, it follows easily that all servers inH assign the same value to
V before completing the refresh protocol.

Let J denote the set of agreed-on sharings computed by honest servers and letλJj for j ∈ J
denote the Lagrange interpolation coefficients for the setJ and position 0. Recall that protocolAVSS
establishes a discrete logarithm-based verifiable sharing. Hence, forj ∈ J there exist two polynomials
a(j)(y) anda′(j)(y) such that every share(s[ID |avss .j]

i , s′i
[ID |avss .j]) computed by any serverPi inH

satisfies

a(j)(i) = s
[ID |avss .j]
i , a′

(j)(i) = s′i
[ID |avss .j]

, and ga
(j)
l ha

′
l
(j)

= C
[ID |avss .j]
l0 . (5)

Define

a(y) =
∑
j∈J

λJj a
(j)(y) and a′(y) =

∑
j∈J

λJj a
′(j)(y). (6)

We first show thata(i) = si anda′(i) = s′i for all servers inH. Combining (5) and (6) yields

a(i) =
∑
j∈J

λJj a
(j)(i) =

∑
j∈J

λJj s
[ID |avss .j]
i (7)

and

a′(i) =
∑
j∈J

λJj a
′(j)(i) =

∑
j∈J

λJj s
′
i
[ID |avss .j]

. (8)

Now let āi andā′i denote the polynomials interpolated byPi in protocolRefresh. According to the

protocol,Pi interpolates̄ai from {(j, s[ID |avss .j]
i)|j ∈ J } and ā′i from {(j, s′i

[ID |avss .j])|j ∈ J }.
Hence, we can write

si = āi(0) =
∑
j∈J

λJj s
[ID |avss .j]
i and s′i = ā′i(0) =

∑
j∈J

λJj s
′
i
[ID |avss .j]. (9)

Combining (7) and (8) with (9) givesa(i) = si anda′(i) = s′i, as required.
We proceed by showing thatgalha

′
l = Vl for l ∈ [0, t]. By the definition (6) of the polynomials

a anda′, their coefficients are a linear combination of the coefficients ofa(j) anda′(j), respectively:
al =

∑
j∈J λ

J
j a

(j)
l anda′l =

∑
j∈J λ

J
j a
′
l
(j). Hence,

galha
′
l =

∏
j∈J

(
ga

(j)
l ha

′
l
(j)
)λJj

=
∏
j∈J

(
C

[ID |avss .j]
l0

)λJj
= Vl,

where the second step follows from (5) and the last step from the protocol.

22

It remains to show thata(0) = s0. Towards a contradiction, assumea(0) 6= s0. By the definition
of a, this can only be the case if some AVSS protocol with tagID |avss .j∗ for j∗ ∈ J resulted in a
verifiable sharing defining polynomialsa(j∗) anda′(j

∗) such that

a(j∗)(0) 6= ŝj∗ . (10)

Let s̃′j∗ := a(j∗)(0). We have

gs̃j∗h
s̃′
j∗ = C

[ID |avss .j∗]
00 =

t∏
l=0

(Dl)(j∗)l (11)

by the properties of protocolAVSS and becausej∗ ∈ J in protocolRefresh. By the properties of the
initial verifiable sharing,

gŝj∗h
ŝ′
j∗ =

t∏
l=0

(V̂l)(j∗)l . (12)

As shown earlier,D = (D0, . . . , Dt) as computed by the protocol is equal toV̂ . Therefore, we conclude

from (11) and (12) thatgŝj∗hŝ
′
j∗ = gs̃j∗h

s̃′
j∗ . But then, (10) implieslogg h = (s̃j∗ − ŝj∗)/(ŝ′j∗ − s̃′j∗).

Privacy. We show that the adversary’s view in an execution of the protocol is statistically independent
of s0.

The protocol starts from a verifiable sharing ofs0. Let B̂ denote the index set of the corrupted servers
for the initial verifiable sharing. In regular operation of the proactive cryptosystem, for instance,B̂ are
the corrupted servers from thepreviousexecution of the refresh protocol. Furthermore, the adversary
may corrupt a setB of serversduring the execution of the refresh protocol, but onlyafter their first
activation according to the proactive system model. LetH = {1, . . . , n} \ B, and assume w.l.o.g. that
B̂ ∩ B = ∅.

Thus, the view of the adversary in protocolRefresh consists w.l.o.g. of (i) the initial shares(i, ŝi,
ŝ′i, (V̂0, . . . , V̂t)) for i ∈ B̂ from past corruptions, (ii) the polynomials received by the corrupted servers
in the sub-protocolAVSS from honest servers during the current protocol,

f [ID |avss .j](x, i), f ′
[ID |avss .j](x, i), f [ID |avss .j](i, y), and f ′

[ID |avss .j](i, y)

for i ∈ B andj ∈ H, (iii) the commitmentsC[ID |avss .j] for j ∈ H, and (iv) the setJ as output
by the Byzantine agreement protocol. Observer that the new shares of the corrupted servers inB are
determined by this.

We have to show that this view is consistent with every possibles̃ ∈ Zq. Because the protocol starts
with a verifiable sharing, it follows directly from the privacy property of the discrete logarithm-based
sharing that there exist polynomialsã, ã′ ∈ Zq[x] such that fori ∈ B̂ andl ∈ [0, t],

ã(0) = s̃, ã(i) = ŝi, ã′(i) = ŝ′i, and gãlhã
′
l = V̂l.

The polynomials̃a andã′ define initial shares̃sj = ã(j) ands̃′j = ã′(j) for Pj with j ∈ H; moreover,

gs̃jhs̃
′
j =

t∏
l=0

(V̂l)j
l
. (13)

From theprivacy property of the AVSS sub-protocol, we know that the adversary’s view in every
instanceID |avss .j for honestPj is consistent with̃sj and s̃′j if these values are consistent with

C
[ID |avss .j]
00 .

23

Thus, it remains to show thatgs̃jhs̃
′
j = C

[ID |avss .j]
00 . We obtain

gs̃jhs̃
′
j =

t∏
l=0

(V̂l)j
l

=
t∏
l=0

(Dl)j
l

= C
[ID |avss .j]
00

from (13), from the proof ofcorrectnessabove, and from the acceptance condition of the AVSS sub-
protocols in the protocol.

Efficiency (Sketch). The servers executen AVSS protocols and one VBA sub-protocol. In addition,
they sendO(n2) recover messages in total. Because the communication complexity of protocol
AVSS is uniformly bounded and the communication complexity of the VBA sub-protocol is probabilis-
tically uniformly bounded, it follows from the argumentation of Cachin et al. [3] that the communication
complexity of protocolRefresh is probabilistically uniformly bounded.

References

[1] M. Ben-Or, R. Canetti, and O. Goldreich, “Asynchronous secure computation,” inProc. 25th An-
nual ACM Symposium on Theory of Computing (STOC), 1993.

[2] G. Bracha, “An asynchronous[(n − 1)/3]-resilient consensus protocol,” inProc. 3rd ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 154–162, 1984.

[3] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broad-
cast protocols (extended abstract),” inAdvances in Cryptology: CRYPTO 2001(J. Kilian, ed.),
vol. 2139 ofLecture Notes in Computer Science, pp. 524–541, Springer, 2001.

[4] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in Constantinople: Practical asynchronous
Byzantine agreement using cryptography,” inProc. 19th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 123–132, 2000.

[5] R. Canetti,Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute, 1995.

[6] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor, “Proactive security: Long-term protection
against break-ins,”RSA Laboratories’ CryptoBytes, vol. 3, no. 1, 1997.

[7] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology, revisited,” inProc. 30th
Annual ACM Symposium on Theory of Computing (STOC), pp. 209–218, 1998.

[8] R. Canetti, S. Halevi, and A. Herzberg, “Maintaining authenticated communication in the presence
of break-ins,”Journal of Cryptology, vol. 13, no. 1, pp. 61–106, 2000.

[9] R. Canetti and T. Rabin, “Fast asynchronous Byzantine agreement with optimal resilience,” in
Proc. 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 42–51, 1993.

[10] M. Castro and B. Liskov, “Proactive recovery in a Byzantine-fault-tolerant system,” inProc. Fourth
Symp. Operating Systems Design and Implementation (OSDI), 2000.

[11] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable secret sharing and achieving
simultaneity in the presence of faults,” inProc. 26th IEEE Symposium on Foundations of Computer
Science (FOCS), pp. 383–395, 1985.

[12] Y. Desmedt, “Threshold cryptography,”European Transactions on Telecommunications, vol. 5,
no. 4, pp. 449–457, 1994.

24

[13] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with one
faulty process,”Journal of the ACM, vol. 32, pp. 374–382, Apr. 1985.

[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure key generation for discrete-log based
cryptosystems,” inAdvances in Cryptology: EUROCRYPT ’99(J. Stern, ed.), vol. 1592 ofLecture
Notes in Computer Science, pp. 295–310, Springer, 1999.

[15] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof sys-
tems,”SIAM Journal on Computing, vol. 18, pp. 186–208, Feb. 1989.

[16] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against adaptive
chosen-message attacks,”SIAM Journal on Computing, vol. 17, pp. 281–308, Apr. 1988.

[17] V. Hadzilacos and S. Toueg, “Fault-tolerant broadcasts and related problems,” inDistributed Sys-
tems(S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 1993.

[18] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret sharing or how to cope with
perpetual leakage,” inAdvances in Cryptology: CRYPTO ’95(D. Coppersmith, ed.), vol. 963 of
Lecture Notes in Computer Science, pp. 339–352, Springer, 1995.

[19] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”ACM Transactions on
Programming Languages and Systems, vol. 4, pp. 382–401, July 1982.

[20] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,” inProc. 10th ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 51–59, 1991.

[21] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of faults,”Journal of
the ACM, vol. 27, pp. 228–234, Apr. 1980.

[22] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” inAd-
vances in Cryptology: CRYPTO ’91(J. Feigenbaum, ed.), vol. 576 ofLecture Notes in Computer
Science, pp. 129–140, Springer, 1992.

[23] V. Shoup, “Practical threshold signatures,” inAdvances in Cryptology: EUROCRYPT 2000(B. Pre-
neel, ed.), vol. 1087 ofLecture Notes in Computer Science, pp. 207–220, Springer, 2000.

[24] L. Zhou, Towards Fault-tolerant and Secure On-line Services. PhD thesis, Cornell University,
2001.

25

