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Abstract

We give the £rst simple and ef£cient construction of veri£able random functions (VRFs). VRFs,
introduced by Micali et al. [MRV99], combine the properties of regular pseudorandom functions
(PRFs) [GGM86] (i.e., indistinguishability from a random function) and digital signatures [GMR88]
(i.e., one can provide an unforgeable proof that the VRF value is correctly computed). The ef£ciency
of our VRF construction is only slightly worse than that of a regular PRF construction of Naor and
Reingold [NR97]. In contrast to ours, the previous VRF constructions [MRV99, Lys02] all involved
an expensive generic transformation from veri£able unpredictable functions (VUFs), while our con-
struction is simple and direct.

We also provide the £rst construction of distributed VRFs. Our construction is more ef£cient than
the only known construction of distributed (non-veri£able) PRFs [Nie02], but has more applications
than the latter. For example, it can be used to distributively implement the random oracle model
in a publicly veri£able manner, which by itself has many applications (e.g., constructing threshold
signature schemes).

Our main construction is based on a new variant of decisional Dif£e-Hellman (DDH) assumption
on certain groups where the regular DDH assumption does not hold. We do not make any claims about
the validity of our assumption (which we call sum-free DDH, or sf-DDH). However, this assumption
seems to be plausible based on our current understanding of certain candidate elliptic and hyper-
elliptic groups which were recently proposed for use in cryptography [JN01, Jou00]. We hope that the
demonstrated power of our sf-DDH assumption will serve as a motivation for its closer study.
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1 Introduction

As a motivating example for our discussion, consider the problem of implementing the random oracle model [BR93].
Recall that in this model one assumes the existence of a publicly veri£able random functionO (over some suitable
domain and range, e.g. {0, 1}n). Each value O(x) is random and independent from the other values, and evalu-
ating O on the same input twice yields the same (random) output. This model has found numerous applications
in cryptography, which we do not even attempt to enumerate (for few examples, see [BR93, BR94, BR96, FS86,
GQ88, Sch91, Oka92, Mic94, PS96, BF01]). It was shown by Canetti et al. [CGH98], though, that no £xed public
function can generically replace the random oracle, so more elaborate solutions are needed.

PSEUDORANDOM FUNCTIONS. As the £rst attempt, we may assume the existence of a trusted (but computa-
tionally bounded) party T . Since a function is an exponential sized object, T cannot store it explicitly. While
maintaining a dynamically growing look-up table is a possibility, it is very inef£cient as it requires large storage
and growing complexity. A slightly better option is to use a pseudorandom function (PRF) FSK(·) [GGM86]. As
indicated, this function is fully speci£ed by a short secret key (or seed) SK, and yet, using FSK (for randomly
generated SK) is computationally indistinguishable from using exponential-sizedO. Put differently, FSK is com-
putationally indistinguishable from a truly random function to any polynomial time adversary who does not know
the secret key SK.

Of course, PRFs have found numerous more practical applications (e.g., see [NR97] and the references therein),
primarily in the area of symmetric-key cryptography (i.e., when the value SK can be shared between mutually
trusted parties). For example, they gives very simple constructions of symmetric-key encryption and message
authentication codes. In terms of constructing PRFs, there are several options. In principle, PRFs can be con-
structed from one-way functions [GGM86, HILL99], but this is quite inef£cient. Another alternative is to assume
that one already has a PRF of small or £xed size (e.g., a block cipher), and show how to extend its domain and
range to get a fully functional PRF. For a simple example, if H : {0, 1}∗ → {0, 1}` is a collision-resistant hash
function [Dam87] and FSK : {0, 1}` → R is our £xed-sized PRF, then FSK ◦ H : {0, 1}∗ → R is also a PRF
(many other constructions are possible too; see [BKR00, BCK96] and the references therein). Of course, we are
still left with the question of constructing the needed small-sized PRF.

The last alternative is to construct PRFs from some well studied number-theoretic assumption. The most pop-
ular such construction is due to Naor and Reingold [NR97] and is based on the decisional Dif£e-Hellman (DDH)
assumption (for related construction based on factoring, see [NRR00]). This assumption in some group G of prime
order q states that given elements g, ga and gb of (where g is the generator of G), it is hard to distinguish the
value gab from a truly random value gc (where a, b, c are random in Zq). The PRF of [NR97] is a tree-based
construction similar to the PRF construction of [GGM86] from a pseudorandom generator. Namely, the secret key
SK = (g, a1, . . . a`) consists of a random generator g of G and ` random exponents in Zq (where ` is the length
of the input to our PRF FSK : {0, 1}` → G). Given x = x1 . . . x` ∈ {0, 1}

n, the PRF is de£ned by:

Fg,a1,...,a`
(x1 . . . x`)

def
= g

∏

{i|xi=1} ai mod q
(1)

VERIFIABLE RANDOM FUNCTIONS. Coming back to our motivating application, replacing random oracle with
a PRF has several problems. The £rst one is the question of veri£ability and transferability. Even if everybody
trusts T (which we will revisit soon), T has to be contacted not only when the value of F has to be computed
for the £rst time, but even if one party needs to verify that another party has used the correct value of F . Thus,
it would be much nicer if each value of FSK(x) would come with a proof πSK(x) of correctness, so that the
recipient and everybody else can use this proof without the need to contact T again. As a side product, the ability
to give such proof will also insure that T himself cannot “cheat” by giving inconsistent values of F , or denying
a correctly computed value of the function. This leads to the notion of veri£able (pseudo)random functions, or
VRFs [MRV99].
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Slightly more formally, the key generation outputs a public veri£cation key PK in addition to the secret evalua-
tion key SK, and the function family {FSK} has the following properties: (1) Given SK, it is easy to compute the
value of the function y = FSK(x) and the corresponding proof πSK(x); (2) given PK, x, y, π, one can ef£ciently
verify if y = FSK(x) (and only one such value of y can be proven for any x and PK); (3) given only PK and
oracle access to both FSK(·) and πSK(·), no adversary can distinguish the value FSK(x) from a truly random
value without explicitly asking one of the oracles on input x (the last property is sometimes called residual pseu-
dorandomness). Put differently, the function remains (pseudo)random when restricted to all inputs whose function
values were not previously revealed (and proved).

VRFs already found several applications. For example, using VRFs one can reduce the number of rounds for
resettable zero-knowledge proofs to 3 in the bare model [MR01]. As another interesting application, they can be
used in a non-interactive lottery system used in micropayments [MR02]. The lottery organizer commits to a VRF
by publishing the public key PK. Any participant is allowed to choose his lottery ticket x by himself and send it to
the organizer (with the only requirement that x was not used before). The value y = FSK(x) somehow determines
whether the user has won the lottery. The organizer sends y to the user together with the proof πSK(x), which
ensures that the organizer cannot cheat. On the other hand, the unpredictability of y ensures that the participant
cannot bias the lottery in his favor. Another set of applications, given by Naor et al. [NPR99] for the case of regular
PRFs (or their distributed variants; see below), can be also enhanced by the veri£ability property of VRFs. For
example, VRFs could be used to implement a trusted key distribution center (KDC). For a group of users S with
“descriptor” xS (which could be the name of the group or a common password), the value kS = FSK(xS) can be
used as a common random key used by the members of S. When a party proves his right to get this key (which is
done by some application dependent mechanism), KDC would provide this party with kS together with the proof
of its correctness. Another application in similar spirit is that of long-term encryption of information [NPR99].
Finally, the pseudorandomness and veri£ability of a VRF immediately imply that VRF by itself is an unforgeable
signature scheme secure against adaptive chosen message attack [GMR88].

CONSTRUCTIONS OF VRFS. Unfortunately, VRFs are not very well studied yet. Currently, we have two con-
structions of VRFs: based on RSA [MRV99], and based on a separation between computational and decisional
Dif£e-Hellman problems in certain groups [Lys02]. Both of these constructions roughly proceed as follows. First,
they construct a relatively simple and ef£cient veri£able unpredictable function (VUF) based on the corresponding
assumption. Roughly, a VUF is the same veri£able object as a VRF, except each “new” value FSK(x) is only
unpredictable (i.e., hard to compute) rather than pseudorandom. From VUFs, a generic construction to VRFs is
given, as introduced by [MRV99]. Unfortunately, this construction is very inef£cient and also looses a very large
factor in its exact security. Essentially, £rst one uses the Goldreich-Levin theorem [GL89] to construct a VRF
with very small (slightly super-logarithmic) input size and output size 1 (and pretty dramatic security loss too).1

Then one makes enough such computations to amplify the output size to roughly match that of the input. Then one
follows another rather inef£cient tree-based construction on the resulting VRF to get a VRF with arbitrary input
size and small output size. Finally, one evaluates the resulting convoluted VRF several times to increase the output
size to the desired level. In some sense, the inef£ciency of the above construction is expected given its generality
and the fact that it has to convert pure unpredictability into a much stronger property of pseudorandomness. Still,
this means that the resulting VRF constructions are very bulky and inelegant. In this work we present the £rst
simple, ef£cient and “direct” VRF construction.

DISTRIBUTED PRFS. Coming back again to our target application of implementing the random oracle, the
biggest problem of both PRF/VRF-based solutions is the necessity to fully trust the honest party T holding the
secret key for F . Of course, VRFs slightly reduced this trust level, but T still singlehandedly knows all the values
of F . Clearly, this approach (1) puts to much trust into T , (2) makes T is bottleneck of all the computations; (3)

1For example, one needs to assume a super-polynomial hardness for the given VUF to make sure that the resulting VRF is polynomially
secure. Is it an interesting open question to improve this reduction.
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makes T is “single point of failure”: compromising T will break the security of any application which depends on
the random oracle assumption.

The natural solution to this problem is to distribute the role of T among n servers. This leads to the notion of
distributed PRFs (DPRFs) and distributed VRFs (DVRFs). Since the latter concept was not studied prior to our
work, we start with DPRFs, thus ignoring the issue of veri£ability for now. Intuitively, DPRFs with threshold
1 ≤ t < n allow any (t+ 1) out of n servers to jointly compute the function using their shares, while no coalition
of up to t servers to be in a better situation that any outside party. Namely, the function remains pseudorandom to
any such coalition. In the most ambitious form, the computation of DPRF should be non-interactive and single-
round. The £rst requirement means that the servers do not need to interact with each other in order to help the
user compute the value of the function. Instead, the only communication goes between the user and the servers.
The second requirement means that the entire computation should proceed in one round: the user gives to (at least)
t+ 1 honest servers the needed input x, each server i computes the share yi of the output y = FSK(x) by using its
secret key share SKi, and £nally the user combines the shares yi and recovers y.

Not surprisingly, DPRFs have a variety of applications, including distributed KDCs, threshold evaluation of
the Cramer-Shoup cryptosystem [CG99], ef£cient metering of the web [NP98], asynchronous Byzantine agree-
ment [Nie02] and several others (see [NPR99, Nie02]). DPRFs £rst originate in the work of Micali and Sid-
ney [MS95]. However, their construction (later improved by [NPR99]) can tolerate only a moderate number of
servers or a small threshold, since its complexity is proportional to nt. The next in¤uential work is that of Naor
et al. [NPR99], who give several ef£cient constructions of certain weak variants of DPRFs. Ironically, one of the
constructions (namely, that of distributed weak PRF) can be turned into an ef£cient DPRF by utilizing random or-
acles. Even though this is non-trivial (since nobody should compute the value of a DPRF without the cooperation
of t + 1 servers), we would certainly prefer a solution in the plain model, since elimination of the random oracle
was one of the main motivation for DPRFs!

The £rst regular DPRF was recently constructed by Nielsen [Nie02] by distributing a slightly modi£ed variant
of the Naor-Reingold PRF [NR97], given in Equation (1) (in the £nal version of their work, [NR97] also give
essentially the same construction). Unfortunately, the resulting DPRF in highly interactive and requires a lot of
rounds (proportional to the length of the input). Thus, the question of non-interactive (and, hopefully, round-
ef£cient) DPRF construction remained open.

DISTRIBUTED VRFS. Even though DVRFs were not explicitly studied prior to this work, they seem to provide
the most satisfactory solution to our original problem of implementing the random oracle. Indeed, distributing the
secret key ensures that no coalition of up to t servers can compromise the security (i.e., pseudorandomness) of
the resulting random oracle. On the other hand, veri£ability ensures that one does not need to contact the servers
again once the random oracle was computed once: the proof can convince any other party of the correctness of the
VRF value. For example, DVRFs by themselves provide an ordinary threshold signature scheme, which can be
veri£ed without further involvement of the servers. And, of course, using DVRFs is likely to enhance the security,
robustness or functionality of many applications originally designed for plain PRFs, VRFs and DPRFs.

OUR CONTRIBUTIONS. We give the £rst simple and direct construction of VRFs, based on a new “DDH-like” as-
sumption which seems to be plausible on certain recently proposed elliptic and hyper-elliptic groups (e.g., [JN01]).
We call this assumption sum-free decisional Dif£e-Hellman (sf-DDH) assumption. We will comment more on this
assumption below. We mention, however, that in the proposed groups the regular regular DDH assumption is
false (in fact, this is what gives us veri£ability!), and yet the sf-DDH or some similar assumption seems plausible.
Our construction is similar to the Naor-Reingold (NR) construction given by Equation (1), except we utilize some
carefully chosen encoding C before applying the NR-construction. Speci£cally, if C : {0, 1} ` → {0, 1}L is some
injective encoding, we consider the function of the form

Fg,a1,...,aL
(x1 . . . x`)

def
= g

∏

{i|C(x)i=1} ai mod q
(2)
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Identifying the properties of the encoding C and constructing C satisfying these properties will be one of the main
technical challenges we will have to face. At the end we will achieve L = O(`) (speci£cally, L = 2` to get a
regular PRF, and L = 3` + 2 to get a VRF), making our ef£ciency very close to the NR-construction. We also
mention that our construction is very similar “in syntax” to the VUF construction of Lysyanskaya [Lys02]. In fact,
the “only” differences are as follows: (1) we build a VRF while [Lys02] builds a VUF (which is a weaker notion);
(2) we use different (seemingly orthogonal to each other) assumptions, even though suggest the same groups were
these assumptions hold; (3) we use different encoding functions C. Speci£cally, [Lys02] uses any error-correcting
code, but only for the purposes of making a slightly weaker assumption (i.e., identity with appended 1 would yield
a VUF under a slightly stronger, but reasonable assumption). On the other hand, we use a very different kind of
encoding, because the fact that DDH is easy in our group implies that the identity cannot be used, irrespective of
what stronger assumption we make. Accidentally, by using a second (now error-correcting) code on top of our
encoding C, we can weaken our underling assumption too, similarly to [Lys02].

Our second main contribution is the £rst construction of a distributed VRF (DVRF). Namely, we show that
our VRF construction can be made distributed and non-interactive (although multi-round). This is the £rst
non-interactive construction of a distributed PRF (let alone VRF), since the only previous DPRF construction
of [Nie02, NR97] is highly interactive among the servers. In fact, our DVRF construction is more ef£cient than the
above mention DPRF construction, despite achieving the extra veri£ability. We already mentioned the big saving
in communication complexity (roughly, from n2`k to n`k, where k is the security parameter), since the servers do
not have to interact in our construction. Another important advantage, though, is that we dispense with the need to
perform somewhat expensive (concurrently composable) zero knowledge proofs for the equality of discrete logs.
This is because in our groups the DDH problem is easy, so it can be locally checked by each party without the need
for the proof. In particular, even though we need to apply the encoding C to the message, while the construction
of [Nie02, NR97] does not, the lack of ZK-proofs makes our round complexity again slightly better. We also
remark that our construction can be easily made proactive using standard techniques (see [OY91, HJJ+97]).

Finally, we remark that the same distributed construction can be applied to distribute the VUF of Lysyan-
skaya [Lys02] (which results in a threshold “unique signature” scheme under a different assumption than the one
we propose).

OUR NEW sf-DDH ASSUMPTION. Finally, we elaborate on the sf-DDH assumption, putting it in comparison to
the other related assumptions. Recently, Joux and Nguyen [JN01] demonstrated the existence of groups where the
DDH assumption is certainly false, but its computational version CDH (i.e., compute gab from g, ga, gb) still seems
to be hard. These groups with various ¤avors of the above CDH/DDH separation have already found numerous
applications, e.g. [Jou00, BF01, Lys02, BLS01]. Intuitively, the fact that DDH is easy gives many useful properties
(like veri£ability), while the hardness of some appropriate CDH-like assumption can be still put to use in security.
As already observed by [BF01], our current techniques in such groups only allow us to test DDH relations by
means of a certain bilinear mapping (details are not important), for which we do not know a multi-linear variant.
In fact, Boneh and Silverberg [BS02] observe that a multi-linear variant of such mapping seems unlikely to exist
in the currently proposed groups, and pose as a major open problem to exhibit groups where such mappings exist.
This suggests that many natural, but more restrictive ¤avors of DDH seem to hold in the currently proposed groups
(where regular DDH is easy). And this is exactly the approach we take. We assume a reasonable “DDH-like”
assumption which seems quite possible even when regular DDH is false. Intuitively (see formal de£nition in
Section 2.2), it states that given elements of the form G(I) = g

∏

i∈I ai for various subsets I ⊆ {1 . . . L}, any other
element G(J) is pseudorandom unless once can explicitly £nd a “DDH-tuple” (G(I1), G(I2), G(I3), G(J)) which
would allow to trivially verify G(J). We notice, however, that we do not make a strong claim that this so called
sf-DDH assumption is true. Rather, that it seems plausible given what we know. Thus, one can view our work as
a strong motivation to study this and related decisional assumptions in the above mentioned “gap groups”.
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2 De£nitions

2.1 Veri£able Random Functions and Friends

In this section we give the de£nition of veri£able random functions (VRFs). For putting our results in perspective
with prior works, we also give de£nitions of veri£able unpredictable functions (VUFs) and a new de£nition of
regular pseudorandom functions (PRFs). Here and everywhere, negl(k) refers to some function negligible in the
security parameter k.

De£nition 1 A function family F(·)(·) : {0, 1}`(k) → {0, 1}m(k) is a family of VRFs, if there exists a probabilistic
polynomial time algorithm Gen and deterministic algorithms Prove and Verify such that: Gen(1k) outputs a pair
of keys (PK,SK); ProveSK(x) outputs a pair 〈FSK(x), πSK(x)〉, where πSK(x) is the proof of correctness; and
VerifyPK(x, y, π) veri£es that y = FSK(x) using the proof π. More formally, we require the following:

1. Uniqueness: no values (PK, x, y1, y2, π1, π2) can satisfy VerifyPK(x, y1, π1) = VerifyPK(x, y2, π2) when
y1 6= y2.

2. Provability: if (y, π) = ProveSK(x), then VerifyPK(x, y, π) = 1.

3. Pseudorandomness: for any PPT A = (A1, A1) who did not call its oracle on x (see below)

Pr
[

b = b′
∣

∣

∣

(PK,SK)← Gen(1k); (x, st)← A
Prove(·)
1 (PK); y0 = FSK(x);

y1 ← {0, 1}
m(k); b← {0, 1}; b′ ← A

Prove(·)
2 (yb, st)

]

≤
1

2
+ negl(k)

Intuitively, the de£nition states that no value of the function can be distinguished from a random string, even after
seeing any other function values together with the corresponding proofs.

De£nition 2 A function family F(·)(·) : {0, 1}`(k) → {0, 1}m(k) is a family of VUFs, if satis£es the same syntax,
uniqueness and provability properties as the family of VRFs, except pseudorandomness is replaced by the following
weaker property:

3’. Unpredictability: for any PPT A1 who did not call its oracle on x (see below)

Pr
[

y = FSK(x)
∣

∣

∣
(PK,SK)← Gen(1k); (x, y)← A

Prove(·)
1 (PK)

]

≤ negl(k)

Regular PRFs form the non-veri£able analogs of VRFs. Namely, PK = ∅, πSK(·) = ∅, there is no algortihm
Verify, no uniqueness and provability properties, and pseudorandomness is the only remaining property. Speci£-
cally, it states

Pr
[

b = b′
∣

∣

∣

SK ← Gen(1k); (x, st)← A
F (·)
1 (1k); y0 = FSK(x);

y1 ← {0, 1}
m(k); b← {0, 1}; b′ ← A

F (·)
2 (yb, st)

]

≤
1

2
+ negl(k)

(provided A did not call its oracle on x). We notice that the above de£nition is not the typical de£nition for PRFs
as given by [GGM86]: namely, that no adversary can distinguish having oracle access to a truly random function
from having oracle access to a pseudorandom function. However, it is easy to see that our de£nition is equivalent
to that usual one, so will we use it as the more convenient in the context of VRFs.
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2.2 Dif£e-Hellman Assumptions

In what follows, it should be understood that all the objects below will be parametrized by the security parameter
k, but we will not explicitly mention this unless needed. Assume Setup(1k) outputs the description of some cyclic
group G of prime order q together with its random generator g. Let L = L(k) be some integer and a1 . . . aL be
random elements of Zq. Let [L] denote {1 . . . L}, and given a subset I ⊆ [L], we denote aI =

∏

i∈I ai mod q
(where a∅ = 1), G(I) = GI = gaI . Also, DLogg stands for the discrete logarithm base g (where we often omit g
when clear). For example, DLog(GI) = aI . Finally, we will often view an element z ∈ {0, 1}L as either a subset
{i | zi = 1}, or an L-dimensional vector over GF (2) (and vice versa).

GENERALIZED DIFFIE-HELLMAN ASSUMPTIONS. The security of ours, as well as the previous related con-
structions [NR97, Lys02], will rely on various assumptions of the following common ¤avor. The adversary A
has oracle access to G(·), and tries to “obtain information” about some value G(J). The meaning of obtaining
information depends on whether we are making a computational or a decisional assumption. In the former case,
A has to compute G(J), while in the latter case A has to distinguish G(J) from a random element of G. While
the decisional assumption is stronger, it has a potential of yielding a (veri£able) pseudorandom function, while the
computational assumption can yield at best2 a (veri£able) unpredictable function.

In either case, we require that it should be hard to any polynomial time adversary to succeed. Of course, to make
non-trivial sense of “success”, one has to make some non-trivial restrictions on when the adversary is considered
suceessful. Formally, given that the adversary called its oracle on subsets I1, . . . , It and “obtained information”
about G(J), we can de£ne a predicateR(J, I1, . . . It) which indicates whether the adversary’s actions are “legal”.
For example, at the very least the predicate should be false if J ∈ {I1 . . . It}. We call any such predicate non-trivial.
We will certainly restrict ourselves to non-trivial predicates, but may sometimes place some more restrictions on
R in order to make a more plausible and weaker assumption (see below).

De£nition 3 GivenL = L(k), we say that the group G satis£es the generalized decisional Dif£e-Hellman (gDDH)
assumption of order L relative to a non-trivial predicateR, if for any legal PPT adversary A = (A1, A1) we have

Pr
[

b = b′
∣

∣

∣

(G, q, g)← Setup(1k); (a1 . . . aL)← Zq, (J, st)← A
G(·)
1 (G, q);

y0 = G(J); y1 ← G; b← {0, 1}; b′ ← A
G(·)
2 (yb, st)

]

≤
1

2
+ negl(k)

where A is legal if it called its oracle on subsets I1 . . . It satisfyingR(J, I1, . . . , It) = 1.
Very similarly, the group G satis£es the generalized computational Dif£e-Hellman (gCDH) assumption of order L
relative toR, if for any legal (see above) PPT adversary A1 we have

Pr
[

G(J) = y
∣

∣

∣
(G, q, g)← Setup(1k); (a1 . . . aL)← Zq, (J, y)← A

G(·)
1 (G, q)

]

≤ negl(k)

We notice that the more restrictions R places on the Ii’s and the “target” set J , the harder it is for the adversary
to succeed, so the assumption becomes weaker (and more preferable). Thus, the strongest possible assumption
of the above type is to put no further restrictions on R other than non-triviality (i.e., J 6∈ {I1, . . . It}). We call
the two resulting assumptions simply gDDH and gCDH (without specifying R). A slightly weaker assumption
results when we require that the target set is equal to the full set J = [L], i.e. the adversary has to obtain
information about ga1...aL . We call the resulting assumptions full target gDDH/gCDH (where L = 2 yields regular
DDH/CDH). We remark that these full target assumptions are the “standard” way to de£ne generalized (aka group)
Dif£e-Hellman assumptions (e.g., in [STW96, BCP01, BCPQ01, Lys02]), but we will £nd our distinction (and,
therefore, terminology) more convenient. Finally, making L larger generally makes the assumption stronger (e.g.,

2Unless a generic inef£cient conversion is used, or one assumes the existence of a random oracle, in which case applying the random
oracle to a computationally hard object trivially gives a pseudorandom object.
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for unrestricted or full target gCDH/gCDH), since the adversary can always choose to concentrate on some subset
of L. Thus, it is preferable to base the security of some contsruction on as small L and as restrictiveR as possible.

Before moving to our new sum-free gDDH assumption, let us brie¤y state some simple facts about gDDH/gCDH.
It was already observed by [STW96] that gDDH assumption of any polynomial order L(k) (with or without full
target) follows from the regular DDH assumption (which corresponds to L = 2). Unfortunately, we do not know of
the same result for the gCDH problem. The best analog of this result was implicitly obtained by [Lys02], who more
or less showed that the regular gCDH assumption of logarithmic order O(log k) (even with full target) implies the
gCDH assumption of any polynomial order L(k), provided in the latter we restrict the adversary to operate on the
codewords of any good error-correcting code (i.e., J, I1 . . . It ⊆ [L] must be all “far” from each other in order to
satisfyR).

SUM-FREE gDDH. We already saw that the regular DDH assumption is a very strong security assumption in that
it implies the gDDH assumption. This useful fact almost immediately implies, for example, that the Naor-Reingold
construction in Equation (1) is a PRF under DDH, illustrating the power of DDH for proving pseudorandomness.
Unfortunately, groups were DDH is true are not convenient for making veri£able random functions, since nobody
can verify the equality of discrete logs. On the other hand, we will see shortly that it is very easy to obtain veri£a-
bility in groups where DDH is solvable in polynomial time (such as the group suggested by [JN01]). Unfortunately,
such groups certainly do not satisfy the gDDH assumption too, which seems to imply that we have to settle for
the computational assumption (like gCDH) in such groups, which in turn implies that we settle only for the VUF
construction rather than the desired VRF. Indeed, obtaining such a VUF is exactly what was recently done by
Lysyanskaya [Lys02] in groups where DDH is easy but gCDH is hard.

However, we make the curcial observation that the fact that DDH is easy does not mean that no version of
gDDH assumption can be true: it only means we might have to put more restrictions on the predicate R in order
to make it hard for the adversary to break the gDDH assumption relative to R. Indeed, for the current elliptic
groups for which we believe in a separation between DDH and CDH, we only know how to test if (h, u, v, w)
is of the form u = ha, v = hb, w = hab (this is called a DDH-tuple). For example, as was mentioned by
Boneh and Franklin [BF01], it seems reasonable to assume that it is hard to distinguidh a tuple (h, ha, hb, hc, habc)
from a random tuple (h, ha, hb, hc, hd). Put differently, when a1 . . . aL are chosen at random and given a sample
g = G(∅), G(I1) . . . G(It), the only way we know how to distinguish G(J) from a random element of such
groups is by exhibiting three sets Im, Ip, Is (where 0 ≤ m, p, s ≤ t, and I0 denotes the empty set) such that
aJ · aIm = aIp · aIs mod q.3 The last equation implies that “J + Im = Ip + Is”, where we view the sets as L-bit
0/1-vectors, and the addition is bitwise over the integers. In other words, one has to explicitly £nd a DDH-tuple
among the samples G(Ii)’s and the target G(J).

We formalize this intuition into the following predicateR(J, I1, . . . , It). Let us denote I0 = ∅. We say that J is
DDH-dependent on I1 . . . It if there are indices 0 ≤ m, p, s ≤ t satisfying J+Im = Ip+Is (see explanation above).
For example, 10101 is DDH-dependent on 01010, 00001 and 11111, since 10101 + 01011 = 11111 + 00001 =
11112. Then we de£ne the DDH-free relationR to be true if and only if J is DDH-independent from I1 . . . It.

De£nition 4 Given L = L(k), we say that the group G (where regular DDH is easy) satis£es the sum-free
decisional Dif£e-Hellman (sf-DDH) assumption of order L if if satis£es the gDDH assumption of order L relative
to the DDH-free relationR above. G satis£es the full target sf-DDH assumption if we additionally require J = [L].

For our purposes we notice that DDH-dependence also implies that J ⊕ Im = Ip ⊕ Is, where ⊕ indicates the
bitwise addition moduo 2 (i.e., we make “2 = 0”), or J ⊕ Im⊕ Ip⊕ Is = 0. Let us call J 4-wise independent from
I1 . . . It if no three sets Im, Ij , Is yield J ⊕ Im ⊕ Ip ⊕ Is = 0. Hence, if we let R′(J, I1, . . . , It) = 1 if and only

3One can also try to £nd the additive relations, but since the ai’s are all random, it seems that the only such relations one can £nd would
trivially follow from some multiplicative relations.
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if J is 4-wise independent from the Ii’s, we get that R′ is a stricter relation that our DDH-free R. But this means
that gDDH assumption relative toR′ is a weaker assumption than sf-DDH, so we call it weak sf-DDH. Our actual
construction will in fact be based on weak sf-DDH.

To summarize, sf-DDH is the strongest possible assumption which is conceivable in the groups were regular
DDH is false. We chose this assumption to get the simplest and most ef£cient VRF construction possible when
DDH is false (in fact, we only need weak sf-DDH in our case). However, even if the ambitious sf-DDH assumption
we propose turns out to be false in the current groups where DDH is easy — which we currently have no indication
of — it seems plausible that some reasonable weaker gDDH assumptions (relative to more restrictive R) might
still hold. And our approach seems to be general enough to allow some easy modi£cation to our construction (at
slight ef£ciency loss) meet many such weaker gDDH assumptions.

3 Constructions

Assume G is the group where DDH is easy while some version of sf-DDH holds (we will be more speci£c soon).
We consider the natural the type of functions given by Equation (2); in our new notation, Fg,a1,...,aL

(x1 . . . x`) =
G(C(x)),4 where C is some currently unspeci£ed (but ef£ciently computable) injective mapping from {0, 1} ` to
{0, 1}L. As we will see, the properties of encoding C will be crucial in showing the properties of the resulting
function. To emphasize this dependence on C, we will also call the above function NRC(·) when other parameters
are clear form the context.

3.1 Building PRFs

We notice, that the de£nition above already suf£ces to give a candidate for a regular PRF. As a warm-up towards
VRFs, we £rst determine the conditions on C and the kind of gDDH assumption we need in order to get a regular
PRF.

Lemma 1 Given encoding C : {0, 1}` → {0, 1}L, assume predicateR satis£esR(C(w), C(x1), . . . , C(xt)) = 1
for any w 6∈ {x1, . . . , xt}. Then NRC(·) is a PRF under the gDDH assumption of order L relative toR.

Proof: The proof follows almost immediately by comparing the deginition of gDDH relative to R (De£nition 3)
and the de£nition of PRF given in Section 2.1. Indeed, the adversary can query NRC(·) at any points x1, . . . xt,
which corresponds to querying G(·) on C(x1) . . . C(xt), and has to distinguish NRC(w) = G(C(w)) for some
w 6∈ {x1 . . . xt}. Since our assumption implies that R(C(w), C(x1), . . . , C(xt)) = 1, this adversary is legal for
breaking gDDH (of order L) relative toR, which is a contradiction.

As an immediate corollary, usual gDDH assumption implies that NRC(·) is a PRF for any (injective) C, including
the identity. This in turn gives the result of [NR97], since we mentioned that regular DDH implies gDDH [STW96].

More interestingly, we will now determine the properties of C which suf£ce to show that NRC is a PRF under
the much weaker sf-DDH assumption (for now, of the same large order L; we will reduce the order later). In the
following, view every subset of [L] (or element of {0, 1}L) as an L-dimensional vector over GF (2). Recall our
de£nition of a vector J being 4-wise independent from the collection I1 . . . It. To generalize this notion, we say
that the collection of vectors I1 . . . It is 4-wise independent, if no 4 or fewer vectors are linearly dependent.

Theorem 1 AssumeC : {0, 1}` → {0, 1}L is such that the collection
{

C(x) | x ∈ {0, 1}`
}

is 4-wise independent.
Then NRC(·) is a PRF under the weak (and thus regular) sf-DDH assumption of order L.

4Notice, we output a (pseudo)random element of G instead of a (pseudo)random m-bit string. However, standard hashing techniques
imply we can extract an almost uniform string of length close to log |G| from such an output. See [NR97].
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Proof: Obvious from Lemma 1 and the de£nition of weak sf-DDH.

CONSTRUCTING 4-WISE INDEPENDENT ENCODINGS. To get our PRF under the sf-DDH assumption (i.e., in
groups were regular DDH might be false), it suf£cing to construct a 4-wise independent encoding C. Naturally, the
goal is to make L as close to ` as possible. Such encodings come up quite often in the theory of derandomization
(see [ABI86, AS00]), and are closely related to coding theory.5 In our case, the well known construction is very
simple and ef£cient, so we present it in a self-contained manner.

Let us now view any element of x ∈ {0, 1}` as an element of the £eld GF (2`), which can be represented as
an `-dimensional vector over GF (2). This gives us the same bitwise addition operation ⊕, but now we also have
a multiplication operation. Then we set L = 2` and de£ne C(x) = (x3‖x), which is interpreted as follows. We
£rst cube x, which gives us another `-dimentional vector x3, and then we append x to it. Notice, the code C is
explicit and extremely ef£cient to evaluate. It is also very easy to see that any 4-wise independent encoding we
can come up with must have L ≥ 2`,6 so our encoding is optimal. Now, assume there are some non-zero distinct
x1, x2, x3, x4 ∈ GF (2`) and constants α1, α2, α3, α4 ∈ {0, 1} such that

∑4
i=1 αiC(xi) = 0. We will show that

α1 = α2 = α3 = α4 = 0, which yields 4-wise independence.

Since our bitwise addition is the same as in the £eld, we get
∑4

i=1 αixi = 0 and
∑4

i=1 αix
3
i = 0 over GF (2`).

Next, we square the £rst equation. Since GF (2`) has characteristic 2 and α2
i = αi, the only surviving terms are

αix
2
i , which gives us

∑4
i=1 αix

2
i = 0. Similarly, raising the £rst equation to the power 4 gives

∑4
i=1 αix

4
i = 0.

Thus, we have a linear system (with unknowns α1, α2, α3, α4) saying that
∑4

i=1 αix
j
i = 0 for j = 1, 2, 3, 4. The

system corresponds to the famous Vandermonde matrix whose determinant is x1x2x3x4 ·
∏

i<j(xi − xj) 6= 0,
since all the xi’s are distinct and non-zero. Thus, the only solution to the system is the trivial all-zero solution,
completing the proof.

As a small technicality, we get the 4-wise independent encoding C : {0, 1}`\
{

0`
}

→ {0, 1}2`, i.e. we explude
the all-zero vector. This implies that we get the PRF whose input domain excludes the all-zero vector too. This is
typically not a problem since we are “loosing” only one out of 2` points. Of course, one can always increase L by
1 and add a “dedicated” random aL+1 ∈ Zq to point 0`, but this seems to be going through too much trouble for
such a small technicality. To summarize,

Theorem 2 The encoding C above de£nes a PRF mapping ` bits (except 0`) to an element of G, which is secure
under the (weak) sf-DDH assumption of order 2`.

REDUCING THE ORDER. While Theorem 2 gives a simple PRF construction, it is based on the sf-DDH assump-
tion of high polynomial order 2`(k). While this assumption is reasonable, we now show how to reduce the order
to O(log k) at only a marginal ef£ciency loss. So let C : {0, 1}` → {0, 1}L be any 4-wise independet encoding
satisfying Theorem 1 (like the one we constructied above). The idea, similar to that of [Lys02], is to use an
error-correcting code E : {0, 1}L → {0, 1}N on top of our encoding C. However, since we are dealing with linear
dependence, we will have to restrict ourselves to linear codes (which was not needed in [Lys02]), and the analysis
will be slightly more involved. Thus, let E be a linear error correcting code of distance δN (where δ > 0 and
N = O(L)), and de£ne C̃ = E ◦ C : {0, 1}` → {0, 1}N .

Theorem 3 Assume (weak) sf-DDH assumption holds for any order p = O(log k). Then NRC̃(·) is a PRF.

Proof: Assume some adversary A = (A1, A2) breaks the pseudorandomness of NRC̃(·). We constuct an adver-
sary B = (B1, B2) which breaks sf-DDH assumption of some order p (to be speci£ed later). Assume B has oracle

5In particular, obtaining the 4-wise independent encoding C we need is equivalent to designing a parity check matrix of any linear code
of distance 5. Our speci£c code gives such matrix for the famous (and optimal) BCH code of designed distance 5. See [MS77].

6Since all pairwise sums C(x1)⊕ C(x2) have to be distinct non-zero elements of {0, 1}L.
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access to Fg,b1,...,bp
(H) for any subset H ⊆ [p]. B chooses a random subset I ⊂ [N ] of cardinality exactly p, and

implicitly sets ai = bi for i ∈ I . It also picks on its own random ai for all i 6∈ I . B (actually B1) now runs A1 with
these implicit assignment in mind. Speci£cally, when A1 asks for the value NRC̃(x), B1 computes z = C̃(x), the
restriction zI ∈ {0, 1}

p of z to the positions in I , and the restriction zĪ of z to the complement of I . It asks its
oracle for the value yI = Fg,b1,...,bp

(zI), and returns to A1 the value y = (yI)
∏

i6∈I ai . When A1 output the input
challenge value x′, B1 outputs the challenge input value z ′I = C̃(x′)I . Next, when B2 gets back the challenge
output value, which we call y′I (the reason will be clear), B2 sets y′ = (y′I)

∏

i6∈I ai and passes it as the challenge
output value to A2. Then B2 simulates oracle queries of A2 in the same way as B1 did for A1. Finally, B2 outputs
the same decision as A2.

We notice that B simulated A is a completely perfect way. Indeed, when the challenge for B was the correct
output value, B translated it to the correct output value for A. Otherwise, B raised a random element to some
(wlog, non-zero) power, which left it a radnom group element. Thus, B distinguishes with the same advantage as
A modulo the problem that B could be illegal. Namely, assume A asked t = poly(k) queries x1, . . . , xt altogether.
Then B asked t queries z1I , z

2
I , . . . z

t
I and outputted the challenge z′I . Now it could be that z′I is 4-wise dependent

on z1I , z
2
I , . . . z

t
I . If this happens (say with probability α), then we modify the behavior of B to stop simulating A

and let B output a random bit. We will show that it suf£ces to set p = O(log k) in order to make α ≤ 1/2, which
would complete the proof.

And here is the reason. Since B simulates A in a perfect way, A gets no information about I during its run.
Thus, A cannot choose its actions based on I , so we may assume that A chose some values z1 = C̃(x1), . . . , zt =
C̃(xt), z′ = C̃(x′), where x′ 6∈

{

x1, . . . , xt
}

, and only then (when the above values are £xed) the subset I was
actually chosen. Now, α exactly measures the probability that the random “p-projection” z ′I is 4-wise dependent on
the other projections z1I , . . . , z

1
I . We will apply the union bound. There are at most T = O(t3) choices for indices

s,m, r (including 0 for the empty set) which can cause the dependence of the projections. Thus, to show α ≤ 1/2
it suf£ce to show that for any three (or less, but this will only be easier) £xed indices s,m, r the probability of linear

dependence in the projection is at most 1/2T . De£ne z̃
def
= z′⊕ zs⊕ zm⊕ zr = C̃(x′)⊕ C̃(xm)⊕ C̃(xs)⊕ C̃(xr)

and v
def
= C(x′) ⊕ C(xm) ⊕ C(xs) ⊕ C(xr). Notice that since our error-correcting code E is linear, we have

z̃ = E(v). Also, since C is 4-wise independent, we have that v 6= 0. Thus, it remains to estimate the probability
that z̃I = 0, or that E(v)I = 0 when v 6= 0. But since v 6= 0, E(v) has at least δN entries which are 1. Since
I picks p out of N entries of E(v) at random, the probability of picking all 0’s (without replacement) is at most
(1 − δ)p. It remains to pick p so that (1 − δ)p = O(1/t3), and we see that setting p = O(log k) suf£ces indeed
(recall that k is our security parameter, t is polynomial in k and δ is a constant). This completes the proof.

We remark that since error-correcting code can in principle approach a rate of 1, using Theorem 2 we can get a
PRF construction with £nal expansion N = (2 + ε)` based of the sf-DDH assumption of order O(log k).

3.2 Building VRFs

So far we saw how to construct plain PRFs based on sf-DDH assumption. We now show how extend the above
techniques to get a VRF. As before the construction is parameterized by some encoding C : {0, 1}` → {0, 1}L.

• Gen(1k): runs (G, q, g) ← Setup(1k), picks random a1, . . . , aL+1 ∈ Zq, sets h = gaL+1 , y1 = ha1 ,. . .,
yL = haL . Outputs public keyPK = (G, q, g, h, y1 = ha1 , . . . , yL = haL), secret key SK = (g, a1, . . . , aL).

• ProveSK(x): outputs (σ1, . . . σL), where σ0 = g and σj = g
∏

{i≤j|C(x)=1}ai for j = 1 . . . L. In particular,
the value σL is FSK(x), while (σ1, . . . , σL−1) is the proof πSK(x).

• VerifyPK(σ1, . . . , σL): sets σ0 = g and checks, for every 1 ≤ i ≤ L, that (σi−1, σi, h, yi) form a DDH-tuple
(recall, DDH is easy!) when C(x) = 1, ot that σi−1 = σi is C(x)i = 0. Accept if all the tests pass.

10



To satisfy the de£nition of VRFs (De£nition 1), we need to examine uniqueness, provability and pseudorandom-
ness. The £rst two properties are very easy. Uniqueness follows from the fact that discrete logs are unique in
G (and that our assumed algorithm for DDH will never accept an invalid tuple), while provability is obvious by
construction.

Thus, we only need to examine the pseudorandomness property. Luckily, a lot of machinery has been already
developed in Section 3.1. Essentially, the main difference we have is that when the adversary asks Prove(x), not
only does he get F (x) = G(C(x)), but he also gets “for free” the proof values G(I) for all I ∈ Prefixes(C(x)),

where for a set J ⊆ [L] we de£ne Prefixes(J)
def
= {∅, J ∩ [1], J ∩ [2], . . . , J ∩ [L− 1], J}. Additionally, the pub-

lic key gives the adversary the values G({L+ 1}), G({L+ 1, 1}), . . . , G({L+ 1, L}). We denote this collection
of L+1 subsets of [L+1] involving element L+1 by Pub(L+1). With these in mind, we easily get the following
analog of Lemma 1.

Lemma 2 Given encoding C : {0, 1}` → {0, 1}L, assume that for any w 6∈ {x1, . . . , xt} the predicateR satis£es
R(C(w),Prefixes(C(x1)), . . . ,Prefixes(C(xt)), Pub(L + 1)) = 1. Then our construction is a VRF, under the
gDDH assumption of order L+ 1 relative toR.

Next, we can appropriately generalize the notion of 4-wise independence to that of 4-wise pre£x-independence.
Namely, a vector J is 4-wise pre£x independent from vectors I1 . . . It if there exist no 1 ≤ p, r, s,≤ t and
I ′p ∈ Prefixes(Ip), I ′r ∈ Prefixes(Ir), I ′s ∈ Prefixes(Is) such that J ⊕ I ′p ⊕ I ′r ⊕ I ′s = 0. A collection {I1 . . . It}
is said to be 4-wise pre£x independent if every vector I i is 4-wise pre£x independent from the remaining vectors.
Finally, we will say that the above collection has pre£x-distance at least 3, if for any i 6= j and I ′j ∈ Prefixes(Ij),
we have that Ii and I ′j differ in at least 3 positions when viewed as binary vectors of length L (in particular, every
Ii has weight at least 3). Then, we get the following analog of Theorem 1.

Theorem 4 Assume C : {0, 1}` → {0, 1}L is such that the collection
{

C(x) | x ∈ {0, 1}`
}

is 4-wise pre£x-
independent and has pre£x-distance at least 3. Then our construction is a VRF under the weak (and thus regular)
sf-DDH assumption of order L+ 1.

Proof: By Lemma 2, we only need to show that no vector C(w) is linearly dependent on 3 (or fewer) vectors
z1, z2, z3 inside the sets Prefixes(C(x1)), . . . ,Prefixes(C(xt)), Pub(L + 1). Assuming the contrary, if none of
z1, z2, z3 comes from Pub(L+1), we would exactly get that the collection

{

C(x) | x ∈ {0, 1}`
}

is 4-wise pre£x-
dependent, which is a contradiction. Otherwise, some zi’s (say, z1) is one of {{L+ 1} , {L+ 1, 1} , . . . , {L+ 1, L}}.
Since these are the only sets containing element (L + 1), in order to “cancel” (L + 1) one other zi (say, z2) also
comes from this collection, which means that z1 ⊕ z2 is some subset of I of [L] or cardinality at most 2. The
only way we can now have C(w) ⊕ I ⊕ z3 = 0, is if some z3 was a pre£x of some C(xj) (where xj 6= w)
which differs from C(w) in at most 2 coordinates. But this is exactly what is ruled out by the fact the collection
{

C(x) | x ∈ {0, 1}`
}

has pre£x-distance at least 3.

CONSTRUCTING THE ENCODING. It remains again to construct a 4-wise pre£x-independent encoding of pre£x
distance at least 3. We do it by giving a simple generic transformation from any regular 4-wise independent
encoding C : {0, 1}` → {0, 1}L, such as the encoding (x3‖x) considered in the previous section. We will assume
without loss of generality that every two distinct elements C(x) and C(w) differ in at least two positions. For
example, this is true with the 4-wise independent encoding (x3‖x) constructed in the previous section. However,
even if originally false in C, one can always increase L by 1 by adding a “parity” bit to C (i.e., the XOR of all the
bits of C(x)) and get the required distance at least 2 between distinct codewords. Also, for a technical reason we
will exclude the zero vector 0` from the domain of our new encoding.

Lemma 3 If C is 4-wise independent (and has distance at least 2), then C ′(x) = (C(x)‖1‖x‖1) is 4-wise pre£x-
independent and has pre£x-distance at least 3.
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Proof: Below we will refer to the two 1’s in the de£nition of C ′ as “middle” and “last”. We start with showing the
pre£x distance. Take any x 6= w and consider any pre£x I of C ′(w). This pre£x either “crosses” both the middle
and the last 1, only the middle 1, or none of them. In the £rst case (i.e., we look at C ′(w) itself), we get distance
three between C ′(x) and C ′(w) since C(x) differs from C(w) in at least two locations, and x differs from w in at
least one more location. In the second case, C(x) still differs from C(w) in at least two locations, and now also
I does not have the last 1 which C ′(x) has. Finally, in the last case (no 1’s are crossed), I does not have both 1’s
that C ′(x) has, and also in between the 1’s x is non-zero (this is where we exclude 0`) while the pre£x I is zero,
giving distance at least 3 again.

Next, we show the 4-wise pre£x independence. Take any x,w1, w2, w3 where x 6∈ {w1, w2, w3}, and let
z1, z2, z3 be some pre£xes of C ′(w1), C

′(w2), C
′(w2) such that (C(x)‖1‖x‖1)⊕z1⊕z2⊕z3 = 0. Notice, in order

to cancel the last 1 of C ′(x), at least one of the pre£xes, say z1 has to be full; i.e., z1 = C ′(w1) = C(w1)‖1‖w1‖1.
Since the middle 1’s cancel out in C ′(x) ⊕ C ′(w1), we have two possibilities for them to cancel in the full sum
C ′(x)⊕C ′(w1)⊕ z2⊕ z3. Either both pre£xes z2 and z3 cross the middle 1, or none does. In the £rst case, taking
the “C-pre£xes” we get that C(x) ⊕ C(w1) ⊕ C(w2) ⊕ C(w3) = 0, which contradicts the fact that C is 4-wise
independent. In the second case, we get that the identity parts between the 1’s yield x ⊕ w1 = 0, i.e. x = w1,
which is again a contradiction.

Applying the above Lemma to the 4-wise independent code C(x) = (x3‖x) used in Theorem 2, we get:

Theorem 5 The encoding C ′(x) = (x3‖x‖1‖x‖1) de£nes a VRF mapping ` bits (except 0`) to an element of G,
which is secure under the (weak) sf-DDH assumption of order 3`+ 3.

REDUCING THE ORDER. Similarly to Theorem 3, we apply an “outer” error-correcting code to reduce the order
of the sf-DDH assumption we need for Theorem 5. However, we need to be sure that our construction preserves
pre£x-independence. Here is one direct way of doing it if we start — as in Lemma 3 — from any regular 4-
wise independent (but perhaps not pre£x-independent) C : {0, 1}` → {0, 1}L with minimum distance 2. Let
E1 : {0, 1}L → {0, 1}N1 and E2 : {0, 1}` → {0, 1}N2 be two linear error correcting codes, both correcting some
constant fraction of errors. We de£ne the £nal encoding C̃(x) = (E1(C(x))‖1‖E2(x)‖1) which maps ` non-zero
bits to N1 + N2 + 2 = O(`) bits. By carefully combining the arguments in Theorem 3 with the technique in
Lemma 3, we get the following corollary whose proof we omit to avoid repetition.

Theorem 6 Assume (weak) sf-DDH assumption holds for any order p = O(log k). Then the code C̃ above de£nes
a VRF.

As earlier, we remark that since error-correcting codes can in principle approach a rate of 1, using Theorem 5 we
can get a VRF construction with £nal expansion N = (3+ε)` based of the sf-DDH assumption of order O(log k).

Finally, we remark that with an extra overhead of 2 in the expansion of C̃ (and a large polynomial loss in exact
security), we can reduce our PRF and VRF constructions in both Theorem 3 and Theorem 6 to using the full target
sf-DDH assumption of order O(log k). Since we have no evidence that full-target sf-DDH is a signi£cantly better
assumption than regular sf-DDH, it is not clear if losing these overheads is worthwhile. Thus, we leave the details
of this extension to the full version.

4 Distributed VRF

In this section we show that our VRF construction can be easily made distributed, which results in the £rst DVRF
construction. Our construction is extremely simple and reminds DPRF construction of Nielsen [Nie02] based
on regular DDH. However, the fact that DDH is easy implies we can make our construction non-interactive (i.e.,
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servers do not need to know about each other) and more ef£cient than that of Nielsen. We start by presenting our
model, and then show our simple construction.

THE MODEL. We assume there are n servers S1, . . . , Sn and that we have a regular VRF V = (Gen,Prove, Setup)
which we want to distribute. First, we de£ne the syntax of the new generation algorithm Gen ′(·) run by the trusted
party. Gen′(1k) not only outputs the public/secret keys PK and SK for V , but also a pair of public/secret key
(PKi, SKi) for each server Si. The global secret key SK is then erased, each server Si gets SKi, and the values
(PK,PK1, . . . , PKn) are published. When a user U approaches the server Si with input x, the server determines
if the user is quali£ed to learn the value/proof of F (x). How this is done is specifed by the application at hand
and is unimportant to us. If U is successful, though, we say that Si was initiated on input x, and U and Si engage
in a possibly interactive protocol. To successfully complete this protocol, the user might have to simultaneously
interact with several servers in some possibly prede£ned order (see below), but the servers do not need to interact
to each other or know each other’s state. Given a threshold t of the systems, the robustness property states that
if U contacts s servers on input x, and at least at least (t + 1) of these servers are honest (plus, of course, each
honest server accepts the user’s request), then at the end of the protocol the user learns the unique correct output
of Prove(x); i.e., the value F (x) and the proof π(x). This should hold even if the remaining (s − t − 1) of the
contacted servers are malicious. We notice also that while the user U needs to know the “local’ public key PKi

of server i in order to interact with server Si, any outside party only needs to know the “global” public key PK in
order to verify the consistency of F (x) and π(x). In other words, the veri£cation algortihm Verify does not have
to be changed from the non-distributed setting.

The security property of the DVRF protocol states that for any t indices i1, . . . , it and for any adversary
A = (A1, A2) who “breaks” the security of DVRF by “corrupting” servers Si1 , . . . , Sit (see below), there ex-
ists an adversary B = (B1, B2) which breaks the pseudorandomness property of our original VRF, as given
by De£nition 1. We now de£ne what it means to break the security of DVRF. In addition to the public key
(PK,PK1, . . . , PKn), A learns the values SKi1 , . . . , SKit of the corrupted servers. Then, A1 runs in the £rst
stage, in which it is given the ability to interact with any honest servers Sj on arbitrary inputs and in any manner
that A1 desires. However, we keep track of the set of inputs I which were initiated by A1. At the end of the phase,
A1 outputs the challenge input x (and the state information for A2). Then A2 is given back a challenge yb (for
random b), which is either the value y0 = F (x) or a random element y1 in the range of F . A2 can then again
interect with honest servers, just like A1 did. At the end, A2 outputs the guess b̃ and succeeds if b̃ = b and neither
A1 nor A2 initiated the input x with any of the servers. A breaks the scheme if it succeeds with non-negligible
advantage over 1/2.

CONSTRUCTION. In Section 3.2 we de£ned a general candidate for VRF parametrized by any encoding C.
We now show how to make such construction distributed for any C for which the basic construction is a VRF.
The construction is quite simple, but it shows how convenient it is to have veri£ability (given by the easiness of
DDH) “for free”. Recall that we had SK = (g, a1, . . . , aL); PK = (G, q, g, h, y1 = ha1 , . . . , yL = haL); and
ProveSK(x) = (σ1, . . . σL), where σ0 = g, σj = σ

aj

j−1 if C(x)j = 1 and σj = σj−1 otherwise.

To distribute this process, for every j = 1 . . . L we use Shamir’s (t + 1, n)-secret sharing [Sha79] over Zq to
split each aj into n shares (aj,1, . . . , aj,n), so that any t + 1 of these shares suf£ce to recover aj , while t or fewer
shares give no information about aj . We set the secret key SKi of server i to (a1,i, . . . , aL,i), and its public key
PKi to (y1,i = ha1,i , . . . , yL,i = haL,i). To compute Prove(x), the user U needs to contact at least (t + 1) honest
servers. The protocol with the contacted Si’s proceeds in rounds. Assuming inductively that the value σj−1 is
known to both the user and the servers (with the base being σ0 = g which is known to everybody), we show how
to compute σj . If C(x)j = 0, σj = σj−1, so we are done. Otherwise, each server Si sends the value σj,i = σ

aj,i

j−1

to the user. The user locally checks that (σj−1, σj,i, h, yj,i) form a proper DDH-tuple. If they do not, U discards
the share and stops interacting with Si. Upon receiving at least (t + 1) correct shares, U uses the corresponding
Lagrange interpolation in the exponent to compute the (necessarily correct) value σj , and sends σj to all the servers
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it is communicating with. Each server Si, upon receiving σj , checks if (σj−1, σj , h, yj) form a valid DDH-tuple.
If they do not, the server stops the interaction with U . Then the protocol proceeds to the next round until the entire
output is computed.

SECURITY. The security of the above scheme is quite straightforward. Robustness is immediate since every share
is checked for consistency. As for pseudorandomness, consider any successful distributed adversary A = (A1, A2)
who corrupts servers i1 . . . it. We build B = (B1, B2) for our original VRF as follows. B picks random values
aj,is ∈ Zq for every j ∈ [L] and s ∈ [t], and gives the resulting secret keys SKi1 , . . . , SKit to A. It then computes
the induced public keys PKi1 , . . . , PKit and uses its own public key ha1 , . . . , haL to compute the remaining
public keys PKi for all non-corrupted users. This is done by performing the appropriate Lagrange interpolation
in the exponent which computes the value yj,i from yj , yj,i1 , . . . , yj,it . It hands all these public keys to A, after
which B1 starts running A1. When A1 initiates any server on input x, B1 asks for the value Prove(x), and uses
the response (σ1, . . . , σL), together with the knowledge of SKi1 , . . . , SKit , to compute all the relevant shares σj,i

(by again doing straightforward Lagrange interpolation in the exponent; details are obvious and omitted). This
allows B1 to simulate all the responses to A1. After B1 outputs the same challenge x′ as A1, B2 gets the output
challenge y′, which it forwards to A2 as well. Then B2 simulates A2’s interaction with the servers in exactly the
same way B1 did it for A1. Finally, B2 outputs the same guess b̃ as A2, which completes the reduction and the
proof of security.

EFFICIENCY. The above protocol is quite ef£cient. The communication complexity is O(t2`k), and the round
complexity is L = O(`). This is more ef£cient than the complexity of the (non-veri£able) DPRF construction
of [Nie02] since no server interaction or expensive interactive zero-knowledge proofs are needed.

Finally, we remark that we can achieve proactive security as well (i.e., periodically refresh the sharing of the
secret key to withstand “mobile” attacks [OY91]) by using standard share renewal techniques (see [HJJ+97]).
Essentially, each server (veri£ably) distributes 0’s to other servers, and all servers locally add these shares to their
old secret shares (also correspondingly updating the public shares).
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