
OAEP++ : A Very Simple Way to Apply OAEP
to Deterministic OW-CPA Primitives

Kazukuni Kobara and Hideki Imai

Institute of Industrial Science, The University of Tokyo
4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505 Japan

Tel: +81-3-5452-6232
FAX: +81-3-5452-6631

E-mail: {kobara,imai}@iis.u-tokyo.ac.jp

Abstract. We prove in the random oracle model that OAEP++, which
was proposed by us at the rump session of Asiacrypt 2000, can generate
IND-CCA2 ciphers using deterministic OW-CPA cryptographic primi-
tives. Note that OAEP++ differs from OAEP++ proposed by Jonsson
in [4]. While OAEP++ requires a non-malleable block cipher, OAEP++
does not require such additional functions. The security reduction of
OAEP++ is as tight as that of OAEP++.

Keywords random oracle model, provable security, OAEP, IND-CCA2,
OW-CPA

1 Introduction

In [6], Shoup showed that OAEP [2] is not a sufficient conversion, even in the
random oracle model [1], to generate an IND-CCA2 cipher from a deterministic
cryptographic primitive satisfying OW-CPA. Currently, it is known that PDOW-
CPA (Partial-Domain One-Wayness against CPA) is a sufficient condition for
OAEP to generate an IND-CCA2 cipher from a deterministic cryptographic
primitive in the random oracle model [3].

Since PDOW-CPA is a stronger assumption1 than OW-CPA, it is worthwhile
to loosen the assumption to OW-CPA with small costs. A couple of solutions
have already obtained by modifying OAEP slightly. One is OAEP+ proposed by
Shoup [6]. Another is OAEP++ proposed by Jonsson [4]. The other is OAEP++
[5]. The advantages of OAEP++ are: (1) It does not require any additional func-
tions such as non-malleable block ciphers. (2) It can encrypt any long message.
(3) The security reduction is as tight as that of OAEP++.

In this paper, we give a security proof that OAEP++ can generate IND-
CCA2 ciphers in the random oracle model using deterministic OW-CPA primi-
tives.
1 In some primitives, such as RSA, the gap between PDOW-CPA and OW-CPA is

small [3].

2 Notations

We use the following notations in this paper:

Prep(m) : Preprocessing to a message m, such as data-compression, data-
padding and so on. Its inverse is represented as Prep−1().

Hash(x) : One-way hash function of an arbitrary length binary string x to
a fixed length binary string.

Gen(x) : Generator of a cryptographically secure pseudo random sequences
of arbitrary length from a fixed length seed x.

Len(x) : Bit-length of x.
Msbx1(x2) : The left x1 bits of x2.
Lsbx1(x2) : The right x1 bits of x2.
Const : Predetermined public constant.
Rand : Random source which generates a truly random (or computation-

ally indistinguishable pseudo random) sequence.
E(x) : Encryption of x using a deterministic OW-CPA primi-

tive function.
D(x) : Decryption of x using a deterministic OW-CPA primi-

tive function.
k1 : Bit-length of the full domain input of E(x).
k′1 : Bit-length of the output of D(x).

3 OAEP++ Conversion

OAEP++ is a slightly extended version of OAEP, proposed in [5] to fix the bug in
OAEP. The description of OAEP++ is given in Fig. 1. When k1 = Len(y1||y2),
i.e. Len(y4) = 0, it is equivalent to OAEP. Thus IND-CCA2 is satisfied in the
random oracle model under the assumption of PDOW-CPA of E() [3]. Even when
Len(y1||y2) > k1 > Len(y1), IND-CCA2 is satisfied under the same assumption
as PDOW-CPA since we can see that the underlying primitive function E ′()
takes (y3||y4) as its input and then outputs (E(y3)||y4).

When k1 ≤ Len(y1), IND-CCA2 is satisfied under the assumption of OW-
CPA. Note that one can always satisfy k1 ≤ Len(y1) by increasing Len(y1), i.e.
by increasing either Len(Const) or Lem(m̄). The corresponding security proof
is given is the next section.

4 Security Proof

The following theorem holds on the OAEP++:

Theorem 1 To break the indistinguishability of encryption of OAEP++ using
CCA2 is polynomial equivalent, in the random oracle model, to break OW-CPA
of the underlying deterministic function when k1 ≤ Len(y1) holds.

Encryption of m:

r := Rand

m̄ := Prep(m)

y1 := (m̄||Const)⊕Gen(r)

y2 := r ⊕Hash(y1)

(y3||y4) := (y1||y2)

c := (E(y3)||y4)

return c

Decryption of c:

(y5||y4) := c

(y1||y2) := (D(y5)||y4)

r := y2 ⊕Hash(y1)

(m̄′||Const′) := y1 ⊕Gen(r)

If Const′ = Const,

return Prep−1(m̄′)

Otherwise return ⊥
(1)

Fig. 1. OAEP++ with a deterministic encryption function where Len(y2) = Len(r),
Len(y3) = k1, Len(y5) = k′1 and ⊥ means the given cipher is invalid.

This theorem can be proven by showing Lemma 3 is true. Before we show it, we
describe the one-wayness, the indistinguishability of encryption, random oracles,
and Lemma 2, respectively.

4.1 One-Wayness

In the notion of the one-wayness, an adversary A is given a ciphertext of a
random plaintext, and then tries to find the whole preimage of the ciphertext.
If A only has access to encryption oracles, experiment is in the adaptive-chosen-
plaintext scenario.

4.2 Indistinguishability of Encryption

In the notion of the indistinguishability of encryption, an adversary A selects
two distinct plaintexts m0 and m1 of the same length in the find stage, and then,
in the guess stage, A is given c which is the encryption of mb where b is either
0 or 1 with the probability of 1/2. Then A tries to guess b. The advantage of
A is defined by 2Pr(Win)− 1 where Pr(Win) denotes the expected probability
of A guessing b correctly. If A has a decryption oracle D (which rejects invalid
ciphertexts or decrypts any other valid ones than the target one c), it is called
that this experiment is in the adaptive-chosen-ciphertext scenario. Otherwise, if
A does not have it, it is called that this experiment is in the adaptive-chosen-
plaintext scenario.

4.3 Random Oracle

A random oracle is an ideal hash or an ideal generator which returns truly
random numbers distributed uniformly over the output region for a new query,
but it returns the same value for the same query. On such random oracles, the
following lemma is true.

Lemma 1 Suppose that f is a random oracle. Then it is impossible to get any
significant information on f(x) without asking x to the oracle, even if one knows
all the other input-output pairs of f except x.

It is obvious that Lemma 1 is true since the output value of f is determined
truly at random.

4.4 Adaptive-Chosen-Ciphertext Security

Lemma 2 (Adaptive-Chosen-Plaintext Security) Suppose that there ex-
ists, for any Hash and any Gen, an algorithm A which accepts m0, m1 and c
of conversion OAEP++ where c is the ciphertext of mb and b ∈ {0, 1}, asks at
most qG queries to Gen, asks at most qH queries to Hash, runs in at most τ
steps and guesses b with advantage of ε. Then one can design an algorithm B
which accepts a ciphertext c̄ of the primitive PKC, runs in τ ′ steps and decrypts
it with probability ε′ where

ε′ ≥ ε− qG

2Len(r)
,

τ ′ = τ + Poly(n, qG, qH)

and Poly(n, qG, qH) denotes a polynomial of n, qG and qH .

Proof.
The algorithm B can be constructed as follows. First the algorithm B simu-

lates both Gen and Hash referred by the algorithm A. From the assumption of
A in Lemma 2, A must be able to distinguish b with the advantage of ε for any
Gen and any Hash as long as the algorithm B simulates them correctly.

B begins by initializing two lists, G-list and H-list, to empty. These G-list
and H-list are the tables of inputs and the corresponding outputs for describing
Gen and Hash, respectively. It runs A as the find-stage mode simulating A′s
oracles as follows. When A makes an oracle call h of Hash, B provides it with a
random string H, and adds h and H to the H-list. Similarly when A makes an
oracle call g of Gen, B provides it with a random string G, and adds g and G
to the G-list. Let (m0,m1) be the output of A.

Let y4 = (y5||y2), i.e. (y1||y2) = (y3||y5||y2). B chooses b ∈ {0, 1}, r and
(y5||y2) at random, and then defines both Hash and Gen so that the ciphertext
of mb should be (c̄||y5||y2) where c̄ is a ciphertext of the primitive PKC which
B wants to decrypt. That is,

Gen(r) def= (Prep(mb) || Const)⊕ (y3||y5) (2)

Hash(y3||y5)
def= y2 ⊕ r. (3)

and B adds r and (Prep(mb)||Const) ⊕ (y3||y5) to the G-list, and (y3||y5) and
y2⊕r to the H-list. B runs A as the guess-stage mode. For these Gen and Hash,

A must be able to distinguish b with the advantage of ε from the assumption in
Lemma 2 as long as B simulates them correctly.2

Can B simulate them correctly for any queries? The answer is “no” since B
does not know y3, and thus B cannot simulate Gen correctly when r is asked to
it. We consider the following two events:

– AskH denotes the event that (y3||∗) is asked to Hash among the qH queries
to Hash and that this query is performed before r is asked to Gen where ∗
denotes any string.

– AskG denotes the event that r is asked to Gen among the qG queries to
Gen and that this query is performed before (y3||∗) is asked to Hash.

Since Pr(AskG ∧AskH) = 0 in the above definition, the following holds

Pr(AskG ∨AskH)
= Pr(AskG) + Pr(AskH). (4)

Next, we estimate the upper-limit of Pr(Win), the probability of A guess-
ing b correctly. Since the mapping from (r||Prep(mb)||Const) to (y3||y5||y2) is
bijective defined by Gen and Hash where Lemma 1 holds, one cannot get any
information on the connectivity between (y3||y5||y2) and (r||Prep(mb)||Const)
without asking r to Gen or asking (y3||y5) to Hash. That is, one cannot guess b
with a significant probability after the event (¬AskG∧¬AskH). After the other
event, i.e. after the event (AskG∨AskH), A might guess b with more significant
probability. By assuming this probability to be 1, the upper-limit of Pr(Win) is
obtained as follows:

Pr(Win) ≤ Pr(AskG ∨AskH)

+
(1− Pr(AskG ∨AskH))

2

≤ Pr(AskG ∨AskH) + 1
2

. (5)

From the definition of advantage, i.e. Pr(Win) = (ε + 1)/2, the following rela-
tionship holds

Pr(AskG ∨AskH) ≥ ε. (6)

Since r is chosen at random by B, A cannot know it (without asking (y3||y5)
to Hash). Thus the probability of one query to Gen accidentally being r is
1/2Len(r), and then that of at most qG queries is given by

Pr(AskG)

≤ 1−
(

1− 1
2Len(r)

)qG

≤ qG

2Len(r)
. (7)

2 If A distinguishes b only for certain combinations of Hash and Gen, then the fault
must be in either Gen or Hash, or in both. This implies this fault can be easily
removed just avoiding these combinations of Gen and Hash. Otherwise, i.e. if A
distinguishes b for any Hash and any Gen, the fault must be in the conversion
structure itself.

The algorithm B can simulate both Gen and Hash correctly unless the event
AskG happens. And then, after the event AskH, B can recover the whole plain-
text of the target ciphertext c̄ of the primitive PKC. From (4), (6) and (7), the
lower-limit of this probability is given by

Pr(¬AskG ∧AskH)
= Pr(AskH)
= Pr(AskG ∨AskH)− Pr(AskG)

≥ ε− qG

2Len(r)
. (8)

The number of steps of B is at most τ + (TEnc + TH) · qH + TG · qG where
TG is both for checking whether a query to Gen is new or not and for returning
the corresponding value, and then TH is that of Hash. TEnc is the number of
steps for checking whether a new query hj to Hash satisfies the event AskH by
checking whether the Hamming weight of z := c̄⊕Lsbk(hj)G′ is τ or not. Since
these parameters, TEnc, TG and TH can be written in a polynomial of n, qG and
qH , the total number of steps of B is also written in a a polynomial of them.

2

Lemma 3 (Adaptive-Chosen-Ciphertext Security) Suppose that there ex-
ists, for any Hash and Gen, an algorithm A which accepts m0, m1 and c of
OAEP++, asks at most qG queries to Gen, asks at most qH queries to Hash,
asks at most qD queries to a decryption oracle D, runs in at most τ steps and
guesses b with advantage of ε. Then one can design an algorithm B which ac-
cepts a ciphertext c̄ of the primitive PKC, runs in τ ′ steps and decrypts it with
probability ε′ where

ε′ ≥ ε− qG

2Len(r)
− qD(qG + 1)

2Len(r)
− qD

2Len(Const)
,

τ ′ = τ + Poly(n, qG, qH , qD)

and Poly(n, qG, qH , qD) denotes a polynomial of n, qG, qH and qD.

Proof.
From the assumption of A in Lemma 3, A must be able to distinguish the

given ciphertext with advantage of ε as long as B simulates them correctly. How
to simulate both Gen and Hash is the same as in the proof of Lemma 2. The
decryption oracle D can be simulated using the following plaintext-extractor. It
accepts a ciphertext, say (c̄′||y′5||y′2), and then either outputs the corresponding
plaintext or rejects it as an invalid ciphertext.

It works as follows. Let gi and Gi denote the i-th pair of query and its answer
for Gen. And then let hj and Hj denote the j-th pair of query and its answer
for Hash. From the queries and the answers obtained while simulating Gen and
Hash, the plaintext-extractor finds y′3 satisfying below:

y′3 = Msbk1(hj) (9)
c̄′ = E(y′3) (10)

If found, it evaluates H ′ := Hash(y′3||y′5), G′ := Gen(H ′ ⊕ y′2) and then checks
whether LsbLen(Const)(G′⊕y′2)⊕(y′3||y′5)) = Const. If so it outputs MsbLen(m′)(G′⊕
y′2)⊕ (y′3||y′5)). Otherwise, it rejects (c̄′||y′5||y′2).

If A asks a valid ciphertext to D without asking (y′3||∗) to Hash, it rejects
the valid ciphertext, and therefore does not simulate D correctly. However it is
a small chance for A to generate it without asking it. Since the definition of
“valid” is to satisfy

LsbLen(Const)(Gen(Hash(y′3||y′5)⊕ y′2)
= Const⊕ LsbLen(Const)(y′3||y′5) (11)

and, from Lemma 1, it is impossible for A to know whether (11) is true or not
without asking (y′3||y′5) to Hash.

We evaluate the possibility that one ciphertext c′ = (c̄′||y′5||y′2) can be valid
without asking (y′3||y′5) to Hash. We consider the following events

– AskG’ denotes the event that (Hash(y′3||y′5) ⊕ y′2) is asked to Gen among
at most qG queries from A.

– AskH’ denotes the event that (y′3||∗) is asked to Hash among at most qH

queries from A.
– ValidR1 denotes the event that the given ciphertext satisfies

Hash(y′3||y′5)⊕ y′2

= Hash(y3||y5)⊕ y2, (12)
LsbLen(Const)(y′3||y′5)
= LsbLen(Const)(y3||y5), (13)
(y′2,MsbLen(m′)(y′3||y′5))
6= (y2,MsbLen(Prep(mb))(y3||y5)) (14)

and thus (11) where y2, y3 and y5 are variables of a valid challenge ciphertext
satisfying (11).

– ValidC1 denotes the event that the given ciphertext satisfies both (11) and

Hash(y′3||y′5)⊕ y′2 6= Hash(y3||y5)⊕ y2. (15)

– Valid1 denotes the event that the given ciphertext satisfies (11). Note that

Pr(Valid1)
= Pr(ValidR1 ∨ValidC1)
= Pr(ValidR1) + Pr(ValidC1|¬ValidR1)
·Pr(¬ValidR1). (16)

– Fail1 denotes the event that the above plaintext-extractor outputs a wrong
answer against one given ciphertext to D.

Since it does not return any plaintext from an invalid ciphertext, and also it
returns the correct answer after the events AskH’. Thus

Pr(Fail1) = Pr(Valid1|AskG’ ∧ ¬AskH’)
·Pr(AskG’ ∧ ¬AskH’)
+Pr(Valid1|¬AskG’ ∧ ¬AskH’)
·Pr(¬AskG’ ∧ ¬AskH’) (17)

where

Pr(AskG’ ∧ ¬AskH’) ≤ qG

2Len(r′)
(18)

Pr(Valid1|AskG’ ∧ ¬AskH’) ≤ 1 (19)
Pr(¬AskG’ ∧ ¬AskH’) ≤ 1 (20)

and

Pr(Valid1|¬AskG’ ∧ ¬AskH’)
= Pr(ValidR1|¬AskG’ ∧ ¬AskH’)

+Pr(ValidC1|¬ValidR1 ∧ ¬AskG’ ∧ ¬AskH’)
·Pr(¬ValidR1|¬AskG’ ∧ ¬AskH’). (21)

Since Pr(ValidR1|¬AskG’ ∧ ¬AskH’) = 1
2Len(r′) and Pr(ValidC1|¬ValidR1 ∧

¬AskG’ ∧ ¬AskH’) = 1
2Len(Const) , the upper-limit of Pr(Fail1) is given by

Pr(Fail1) ≤ qG + 1
2Len(r′)

+
1

2Len(Const)
. (22)

Next, we consider the following event Fail where

– Fail denotes the event that the above plaintext-extractor outputs at least
one wrong answer against at most qD queries to D.

The upper-limit of Pr(Fail) is given by

Pr(Fail) ≤ 1− (1− Pr(Fail1))qD

≤ qD(qG + 1)
2Len(r′)

+
qD

2Len(Const)
. (23)

Unless either Fail or AskG happens, B can correctly simulate the oracles re-
ferred by A. In addition, when AskH happens, B can recover the whole plaintext
of c̄, the ciphertext of the primitive PKC. The lower-limit of this probability
Pr(AskH ∧ ¬AskG ∧ ¬Fail) is given by

Pr(AskH ∧ ¬AskG ∧ ¬Fail)
= Pr(AskH ∧ ¬AskG)
−Pr(AskH ∧ ¬AskG ∧ Fail)

≥ Pr(AskH ∧ ¬AskG)− Pr(Fail)

≥ ε− qG

2Len(r)
− qD(qG + 1)

2Len(r)
− qD

2Len(Const)
. (24)

The number of steps of B is at most τ + (TEnc + TH) · qH + TG · qG + TD · qD

where TEnc, TG and TH are the same as the parameters in the proof of Lemma
2. The number of steps TD is that of the knowledge-extractor to verify whether
(11) holds and then to return the result. Since these parameters, TEnc, TG, TH

and TD can be written in a polynomial of n, qG, qH and qD, the total number
of steps of B is also written in a polynomial of them.

2

5 Conclusion

We proved in the random oracle model that a slightly extended version of OAEP,
i.e. OAEP++, can generate IND-CCA2 ciphers using deterministic OW-CPA
cryptographic primitives when k1 ≤ Len(y1) holds. OAEP++ has the follow-
ing advantages: (1) It does not require any additional functions such as non-
malleable block ciphers. (2) It can encrypt any long message. (3) The security
reduction is as tight as that of OAEP++.

OAEP++ is also easily extensible to multiple encryption of any combination
of both deterministic and probabilistic cryptosystems. Extension is performed
as follows, first one enlarges the length of either Const or m̄ so that y1 can be
divided into n pieces of full domains of all the n underlying cryptosystems. For
the probabilistic cryptosystems, randomness is deterministically generated from
Hash(r||index) where index is a unique description of each probabilistic cryp-
tosystem, and then the integrity of the randomness is checked after recovering r
in the decoding process.

References

1. M. Bellare and P. Rogaway. “Random oracles are practical: A paradigm for designing
efficient protocols”. In Proc. of the First ACM CCCS, pages 62–73, 1993.

2. M. Bellare and P. Rogaway. “Optimal asymmetric encryption”. In Proc. of EURO-
CRYPT ’94, LNCS 950, pages 92–111, 1995.

3. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. “RSA-OAEP is secure under
the RSA assumption”. In Proc. of CRYPTO 2001, LNCS 2139, pages 260–274, 2001.

4. J. Jonsson. “An OAEP variant with a tight security proof draft 1.0”. In IACR
ePrint archive 2002/034: http://eprint.iacr.org/2002/034, 2002.

5. K. Kobara and H. Imai. “OAEP++ – another simple bug fix in OAEP –”. In Rump
Session at Asiacrypt 2000, 2000.

6. V. Shoup. “OAEP Reconsidered”. In Proc. of CRYPTO 2001, pages 239–259, 2001.

