
Power of a Public Random Permutation and its

Application to Authenticated-Encryption

Kaoru Kurosawa

Department of Computer and Information Sciences,
Ibaraki University,

4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
Tel/Fax. +81-294-38-5135

E-mail. kurosawa@mx.ibaraki.ac.jp

Abstract

In this paper, we first show that many independent pseudorandom
permutations over {0, 1}n can be obtained from a single public random
permutation and secret n bits. We next prove that a slightly modified
IAPM is secure even if the underlying block cipher F is publicly acces-
sible (as a blackbox). We derive a similar result for OCB mode, too.
The security proofs are based on our first result and are extremely sim-
ple. We finally show that our security bound is tight within a constant
factor.

Keywords: authenticated-encryption, DESX, IAPM, OCB mode, pseudo-
random permutation

1 Introduction

DESX was proposed by Rivest in order to strength the security of DES. It
is defined for a block cipher F over {0, 1}n as

P (x) = F (x⊕ S)⊕ S, (1)

where S is a secret mask randomly chosen from {0, 1}n. Assume that F
is ideal. Then Even and Mansour showed that DESX is secure even if the
underlying block cipher F is publicly accessible (as a blackbox) [2].
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Kilian and Rogaway [7] showed that its effective key length increases
from n − log2 µ bits to n + κ − log2 µ bits if the key K of F is kept secret,
where κ is the bit length of K and µ bounds the number of queries the
adversary can ask to the encryption oracle.

On the other hand, Jutla [5] recently proposed an authenticated-encryption
scheme, called IAPM, which consists of many DESX together with a simple
checksum. Its computational cost is significantly lower than trivial schemes
which just concatenate an encryption scheme with a MAC scheme. Jutla
proved that IAPM and his another scheme IACBC are secure against cho-
sen plaintext attack in the sense of indistinguishability (IND-CPA) and sat-
isfy authenticity of ciphertexts. (It is known that this combination implies
indistinguishability under the strongest form of chosen ciphertext attack
(IND-CCA) [1, 6].)

Some variants of IAPM and IACBC were suggested by Gligor and Don-
secu (XECB and XCBC) [3] and by Rogaway et al. (OCB mode) [9]. Halevi
showed that universal hash functions can be used for mask generation in
these schemes [4].

In this paper, we first show that many independent pseudorandom per-
mutations P1, · · · , Pm can be obtained from a single public random permu-
tation F and secret n bits. Note that Even and Mansour [2] showed that a
single pseudorandom permutation P (x) is obtained from the same crypto-
graphic resource by eq.(1).

We next prove that a slightly modified IAPM is secure even if the un-
derlying block cipher F is publicly accessible (as a blackbox). The security
proofs are based on our first result and are extremely simple. No extra cost
is required in this modification. We derive a similar result for OCB mode,
too.

We finally prove that our security bound is tight within a constant factor
under some condition.

(Related work:) Independently of our work, Listov, Rivest and Wagner in-
troduced a new cryptographic prmitive ”tweakable block cihphers” recently
[8] which contains a notion of variability. A tweakable block cipher takes a
tweak as well as a key and a message. Their second construction of tweak-
able block ciphers [8, Sec.3.1] is the same as ours (of Sec.2.1 below) except
for that the underlying block cipher F is publicly accessible (as a black-
box) in ours. In other words, our construction can be used as a tweakable
block cipher such that the underlying block cipher F is publicly accessible.
Further, their security bound [8, Thorem 2] is obtained as a special case of
ours (Theorem 2.1 and its proof below). (The complexity theoretic bound
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is obtained easily from the information theoretic bound by using a standard
technique.)

2 Power of a Public Random Permutation

Even and Mansour [2] showed that a single pseudorandom permutation P
can be obtained from a public random permutation F over {0, 1}n and a
secret n bits mask S by eq.(1).

This section shows that we can construct many independent pseudo-
random permutations P1, · · · , Pm over {0, 1}n from the same cryptographic
resource, that is, a single public random permutation F over {0, 1}n and
secret n bits.

2.1 How to construct many pseudorandom permutations

Definition 2.1 Let H be a set of hash functions h : X → {0, 1}n. We say
that H is an (ε, δ)-almost XOR universal ((ε, δ)-AXU) hash function family
if

1. for any element x ∈ X and any element y ∈ {0, 1}n,

Pr
h

(h(x) = y) ≤ δ

2. for any two distinct elements x, x′ ∈ X and any element y ∈ {0, 1}n,

Pr
h

(h(x)⊕ h(x′) = y) ≤ ε.

We show some examples.

1. Let H1 = {ha(x) = a·x over GF(2n)}. Then H1 is a (1/2n, 1/2n)-AXU
hash function family from {0, 1}n \ {0n} to {0, 1}n.

2. Let H2 = {ha(x1, x2) = ax1 + a2x2 over GF(2n)}. Then H2 is a
(1/2n−1, 1/2n−1)-AXU hash function family from {0, 1}2n \ {02n} to
{0, 1}n.

Now define m permutations P1, · · · , Pm as follows. Let H be a (ε, δ)-AXU
hash function family from X to {0, 1}n. For any distinct i1, · · · , im ∈ X, let

Sj = h(ij)
Pj(x) = F (x⊕ Sj)⊕ Sj
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Figure 1: P1, P2, . . . , Pm

for i = 1, · · · ,m, where h is randomly chosen from H. (See Fig.1.)
We will show that P1, · · · , Pm are indistinguishable from m independently

chosen random permutations Q1, · · · , Qm over {0, 1}n even if distinguishers
have oracle access to F and F−1. For example, let H = H1. Then note that
P1, · · · , Pm are constructed from a single public random permutation F and
a secret n bit a.

Let D be an adaptive distinguisher which has 2m+2 oracles. In Game0,
D has oracle access to Q1, Q

−1
1 , · · · , Qm, Q−1

m and F, F−1. In Game1, D has
oracle access to P1, P

−1
1 , · · · , Pm, P−1

m and F, F−1. In each game, suppose
that D makes at most q1 queries to F, F−1 in total and at most q0 queries
to the other oracles in total. Define

AdvD(q0, q1)
4
= |Pr(D = 1 in Game0)− Pr(D = 1 in Game1)|

and Adv(q0, q1)
4
= maxD AdvD(q0, q1). Then we prove the following theorem.

Theorem 2.1

Adv(q0, q1) ≤ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

.

Note that the right hand side of the above equation is independent of m.

2.2 Proof of Theorem 2.1

Suppose that a distinguisher D makes at most q1 queries to F, F−1 in total
and at most q0 queries to the other oracles in total. Let φ0 denote the event
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that D = 1 in Game0 and φ1 denote the event that D = 1 in Game1.
In Game1, let GOOD denote the event that the inputs to F are all

distinct and the outputs of F are all distinct. Let BAD = ¬GOOD. Then
we have

Pr[φ1] = Pr[φ1 ∧ ¬BAD] + Pr[φ1 ∧ BAD]
= Pr[φ1 | ¬BAD] Pr[¬BAD] + Pr[φ1 | BAD] Pr[BAD]
= Pr[φ1 | ¬BAD](1− Pr[BAD]) + Pr[φ1 | BAD] Pr[BAD]
= Pr[φ1 | ¬BAD] + Pr[BAD](Pr[φ1 | BAD]− Pr[φ1 | ¬BAD])

Hence

AdvD(q0, q1) = |Pr[φ1]− Pr[φ0]|
≤ |Pr[φ1 | ¬BAD]− Pr[φ0]|

+|Pr[BAD](Pr[φ1 | BAD]− Pr[φ1 | ¬BAD])|
≤ |Pr[φ1 | ¬BAD]− Pr[φ0]|+ Pr[BAD]

We first show that

|Pr[φ1 | ¬BAD]− Pr[φ0]| ≤
q0(q0 + 2q1 − 1)

2n+1
.

Suppose that D queries X = (x1, · · · , xq0+q1) to the oracles, and receives
Y = (y1, · · · , yq0+q1) from the oracles. Since D is deterministic, each of her
query xi+1 is completely determined by the previous answers y1, · · · , yi from
the oracles. Similarly, the final output of D (0 or 1) is determined by the
all answers Y = (y1, · · · , yq0+q1) which D received from the oracles. Let Γ
denote the set of Y such that D = 1.

Let Y0 be the random variable induced by Y in Game0, and Y1 be the
random variable induced by Y in Game1. Then

Pr[φ0] =
∑
Y ∈Γ

Pr[Y0 = Y ] (2)

Pr[φ1 | ¬BAD] =
∑
Y ∈Γ

Pr[Y1 = Y | ¬BAD] (3)

Define
N(q) = 2n(2n − 1) · · · (2n − q + 1).
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Lemma 2.1

Pr[Y0 = Y ] ≤ 1
N(q0)

× 1
N(q1)

(4)

Pr[Y0 = Y ] ≥ 1
(2n)q0

× 1
N(q1)

(5)

(Proof) Fix Y = (y1, · · · , yq0+q1) arbitrarily. Then X = (x1, · · · , xq0+q1) is
determined by D as shown above.

Suppose that D queries x1, · · · , xq0 to Q1-oracle and xq0+1, · · · , xq0+q1

to F -oracle. Then yi = Q1(xi) for i = 1, · · · q0, and yq0+i = F (xq0+i) for
i = 1, · · · q1. Hence

Pr[Y0 = Y ] = Pr
Q1,F

[yi = Q1(xi) for i = 1, · · · q0 and

yq0+i = F (xq0+i) for i = 1, · · · q1]

=
1

N(q0)
× 1

N(q1)

It is easy to see that this is the maximum value of Pr[Y0 = Y ]. In other
words, eq.(4) holds for any D.

Similarly, it is easy to see that eq.(5) holds for any D.
Q.E.D.

Lemma 2.2
Pr[Y1 = Y | ¬BAD] =

1
N(q0 + q1)

(6)

(Proof) Fix Y = (y1, · · · , yq0+q1) arbitrarily. Then X = (x1, · · · , xq0+q1) is
determined by D as shown above.

Suppose that D queries x1, · · · , xq0 to P1-oracle and xq0+1, · · · , xq0+q1 to
F -oracle. We first show a proof for this case. Note that

yi = P1(xi)
= F (xi ⊕ h(i1))⊕ h(i1)

for i = 1, · · · q0, and
yq0+i = F (xq0+i)

for i = 1, · · · q1. Let ai = xi ⊕ h(i1) for i = 1, · · · , q0 and aq0+i = xq0+i for
i = 1, · · · , q1. Let bi = yi ⊕ h(i1) for i = 1, · · · , q0 and bq0+i = yq0+i for
i = 1, · · · , q1. Then we have

F (ai) = bi
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for i = 1, · · · , q0 + q1. We say that h is good if all ai are distinct. Fix a good
h arbitrarily. Then we obtain that

Pr[Y1 = Y | h is good] = Pr
F

[F (ai) = bi for i = 1, · · · , q0 + q1]

=
1

N(q0 + q1)

Finally ¬BAD is the event such that h is good. Hence we can see that

Pr[Y1 = Y | ¬BAD] =
1

N(q0 + q1)

It is not hard to see that such a proof holds for any D.
Q.E.D.

Lemma 2.3

Pr[φ0] ≤ Pr[φ1 | ¬BAD]

(Proof) From eq.(4) and eq.(6), we have

Pr[Y0 = y]
Pr[Y1 = Y | ¬BAD]

≤ N(q0 + q1)
N(q0)N(q1)

≤ 1.

Hence
Pr[Y0 = y] ≤ Pr[Y1 = Y | ¬BAD]

Therefore from eq.(2) and eq.(3), we have

Pr[φ0] =
∑
Y ∈Γ

Pr[Y0 = Y ]

≤
∑
Y ∈Γ

Pr[Y1 = Y | ¬BAD]

= Pr[φ1 | ¬BAD]

Q.E.D.

Lemma 2.4

Pr[φ1 | ¬BAD]− Pr[φ0] ≤
q0(q0 + 2q1 − 1)

2n+1
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(Proof) From eq.(5) and eq.(6), we have

Pr[Y0 = y]
Pr[Y1 = Y | ¬BAD]

≥ N(q0 + q1)
(2n)q0N(q1)

=
(

1− q1

2n

)
· · ·
(

1− q1 + q0 − 1
2n

)
Let

pi
4
=

q1 + i

2n

for 0 ≤ i ≤ q0 − 1. Then we have

(1− p0)(1− p1) · · · (1− pq0−1) ≥ 1− (p0 + p1 + · · ·+ pq0−1)

= 1− 1
2n

(q0q1 +
q0(q0 − 1)

2
)

= 1− q0(q0 + 2q1 − 1)
2n+1

.

Therefore

Pr[Y0 = y] ≥ Pr[Y1 = Y | ¬BAD]
(

1− q0(q0 + 2q1 − 1)
2n+1

)
Hence from eq.(2) and eq.(3), we have

Pr[φ0] =
∑
Y ∈Γ

Pr[Y0 = Y ]

≥
∑
Y ∈Γ

Pr[Y1 = Y | ¬BAD]
(

1− q0(q0 + 2q1 − 1)
2n+1

)

= Pr[φ1 | ¬BAD]
(

1− q0(q0 + 2q1 − 1)
2n+1

)
Consequently we obtain that

Pr[φ1 | ¬BAD]− Pr[φ0] ≤ Pr[φ1 | ¬BAD]
q0(q0 + 2q1 − 1)

2n+1

≤ q0(q0 + 2q1 − 1)
2n+1

Q.E.D.
From Lemma 2.3 and Lemma 2.3, we obtain that

|Pr[φ1 | ¬BAD]− Pr[φ0]| ≤
q0(q0 + 2q1 − 1)

2n+1
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We next estimate Pr[BAD]. Note that BAD is the event in Game1 that
there exist a pair of inputs (u, v) to F or there exist a pair of outputs (u, v)
of F such that u = v. It is easy to see that there exist

(q0

2

)
+q0q1 input pairs

to F and
(q0

2

)
+ q0q1 output pairs of F . Therefore, we have

Pr[BAD] ≤ 2

(
q0

2

)
ε + 2q0q1δ

from Def.2.1.
Consequently, we obtain that

AdvD(q0, q1) ≤ |Pr[φ1 | ¬BAD]− Pr[φ0]|+ Pr[BAD]

≤ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

.

for any D.

3 Public Block Cipher Authenticated-Encryption

In this section, we first present a slight modification of IAPM. No extra cost
is required in this modification. We next, by using Theorem 2.1, prove that
the modified scheme satisfies confidentiality and message integrity even if
adversaries have oracle access to the underlying block cipher F and F−1

as well as the encryption oracle Escheme. We call such security enhanced
security.

Our security proofs are extremely simple. From Theorem 2.1, it is shown
that each block of the modified IAPM can be viewed as an independent
random permutation even against our strong adversaries. Then it is clear
that it satisfies IND-CPA. Similarly, the proof of authenticity is very simple
and intuitive.

Formally, we consider an adversary A such that AEscheme,F,F−1
.

3.1 Modified IAPM

Let H be an (ε, δ)-AXU hash function family from {0, 1}2n\{02n} to {0, 1}n.
For example, we can use H2 shown in Sec.2.1. An encryptor and a decryptor
share h ∈ H secretly.

To encrypt an L-block plaintext M = M1||M2|| · · · ||ML (with Mj ∈
{0, 1}n), the encryptor first picks a new nonce IV . Wlog, we assume that
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this nonce was never used before. The encryptor then generates L+1 masks
S1, · · · , SL and TL as follows.

Si = h(2i− 1, IV ) for 1 ≤ i ≤ L,

TL = h(2L, IV )

The ciphertext C = C0||C1|| · · · ||CL+1 is computed by setting C0 = IV, Cj =
Sj ⊕ F (Sj ⊕Mj) for 1 ≤ j ≤ L, and

CL+1 = TL ⊕ F (TL ⊕
L∑

j=1

Mj). (7)

IV
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?k+
?

F

?k+
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F

?k+
?
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Figure 2: Modified IAPM

(See Fig. 2.) To decrypt a ciphertext of L+2 blocks, C = C0||C1|| · · · ||CL+1,
the decryptor first computes the masks S1, . . . , SL and TL. He then recovers
Mj = Sj ⊕F−1(Sj ⊕Cj) for 1 ≤ j ≤ L. He next check if eq.(7) holds. If the
check passes, the plaintext is M1||M2|| · · · ||ML. Otherwise, the ciphertext
is deemed invalid.

(Remark) In Jutla’s IAPM,

CL+1 = S0 ⊕ F (SL+1 ⊕
L∑

j=1

Mj).

S0, S1, . . . , SL + 1 are generated by using a block cipher.
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3.2 Random World

To prove the enhanced security of the modified IAPM by using Theorem
2.1, we introduce a random world as follows.

For each (j, IV ), two random permutations Q(j,IV ) and R(j,IV ) are chosen
independently. Both the encryptor and the decryptor have oracle access to
them.

To encrypt an L-block plaintext M = M1||M2|| · · · ||ML, the encryptor
first picks a new nonce IV . The encryptor computes the ciphertext C =
C0||C1|| · · · ||CL+1 as C0 = IV, Cj = Q(j,IV )(Mj) for 1 ≤ j ≤ L, and

CL+1 = R(L,IV )(
L∑

j=1

Mj). (8)

To decrypt a ciphertext of L + 2 blocks, C = C0||C1|| · · · ||CL+1, the
decryptor computes Mj = Q−1

(j,IV )(Cj) for 1 ≤ j ≤ L. The decryptor next
checks if eq.(8) holds. If the check passes, the plaintext is M1||M2|| · · · ||ML.
Otherwise, the ciphertext is deemed invalid.

It is clear that our scheme of 3.1 is indistinguishable from the random
world from Theorem 2.1. This means that the security proofs are reduced
to those in the random world, which makes our proofs extremely easy.

We denote the encryption oracle in the random world by Erandom.

3.3 Enhanced Confidentiality

We will show that no adversary can distinguish two encryption oracles,
Escheme-oracle and Erandom-oracle, even if he has oracle access to F, F−1.
The adversary works as a distinguisher between them in this subsection.

Theorem 3.1 Suppose that an adversary A asks at most α queries to the
encryption oracle, totaling at most µ blocks, and asks at most q1 queries to
F and F−1. Let q0 = α + µ. Then

|Pr(AEscheme,F,F−1
= 1)− Pr(AErandom,F,F−1

= 1)|

≤ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

. (9)

(Proof) It is easy to see that we can use A as a distinguisher of Theorem
2.1. Therefore, we have eq.(9) from Theorem 2.1. Q.E.D.
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3.4 Enhanced Message Integrity

We say that an adversary A forges if A outputs a valid C ′ (that is, C ′ satisfies
eq.(7) in the real world, or it satisfies eq.(8) in the random world) and A
never queried the corresponding plaintext M ′ to the encryption oracle. We
will show that this probability is negligible.

Lemma 3.1 In the random world, suppose that an adversary A asks at
most α queries to the encryption oracle and asks at most q1 queries to F
and F−1. Then

Pr(A forges in the random world) ≤ 1
2n − 1

.

(Proof) Suppose that A queried M i = M i
1|| · · · ||M i

L and received Ci =
Ci

0||Ci
1|| · · · ||Ci

Li ||Ci
Li+1 from the encryption oracle Erandom for 1 ≤ i ≤ q0,

where Ci
0 = IVi.

Let U be the set of all random permutations invoked by Erandom in this
process.

Next suppose that A output C ′ = C ′
0||C ′

1|| · · · ||C ′
L′ ||C ′

L′+1 finally, where
C ′

0 = IV ′. Then A succeeds in forging iff

C ′
L′+1 = R(L′,IV ′)(

∑
j

M ′
j), (10)

where M ′
j = Q−1

(j,IV ′)(C
′
j) for 1 ≤ j ≤ L′.

(Case 1) Suppose that IV ′ 6∈ {IV1, . . . , IVm}. Then R(L′,IV ′) of eq.(10) is a
random permutation chosen independently of U and Q(1,IV ′), . . . , Q(L′,IV ′).
Therefore,

Pr[eq.(10) holds] = 1/2n.

(Case 2) Suppose that IV ′ = IVi for some i ∈ {1, . . . , q0},
(Case 2-a) If L′ 6= Li, then R(L′,IV ′) of eq.(10) is a random permutation
chosen independently of U and Q(1,IV ′), . . . , Q(L′,IV ′). (Especially, it is in-
dependent of R(Li,IVi).) Therefore,

Pr[eq.(10) holds] = 1/2n.

(Case 2-b) If L′ = Li, then it must be that (C ′
0, C

′
1, . . . , C

′
L′ , C ′

L′+1) 6=
(Ci

0, C
i
1, . . . , C

i
L′ , Ci

L′+1). Let j0 be the smallest j such that C ′
j 6= Ci

j .
If j0 = L′ + 1, then (C ′

0, C
′
1, . . . , C

′
L′) = (Ci

0, C
i
1, . . . , C

i
L′) and C ′

L′+1 6=
Ci

L′+1. In this case,
∑

j M ′
j =

∑
j M i

j and

Ci
L′+1 = R(L′,IV ′)(

∑
j

M ′
j).
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Therefore, eq. (10) does not hold clearly.
Suppose that 1 ≤ j0 ≤ L′. Fix

Q(1,IV ′), · · · ,
j0
∨, · · · , Q(L′,IV ′), R(L′,IV ′)

arbitrarily. Then Q(j0,IV ′) is chosen independently of them under the con-
dition such that

Q−1
(j0,IV ′)(C

i
j0) = M i

j0 .

Therefore, M ′
j0

= Q−1
(j0,IV ′)(C

′
j0

) is uniformly distributed over {0, 1}n\{M i
j0
}

because C ′
j0
6= Ci

j0
. Then

∑
j M ′

j in eq.(10) can take 2n − 1 possible values.
Hence

Pr[eq.(10) holds] = 1/(2n − 1).

Q.E.D.

Theorem 3.2 In our scheme of Sec.3.1, suppose that an adversary A asks
at most α queries to the encryption oracle, totaling at most µ blocks, and
asks at most q1 queries to F and F−1. Let q0 = α + µ. Then

Pr(A forges) ≤ 1
2n − 1

+ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

.

(Proof) We can construct a distinguisher D for Theorem 2.1 from the ad-
versary A as follows. Note that D can simulate Escheme/Erandom and verify
eq.(7)/eq.(8) if it is a distinguisher of Theorem 2.1. Then D outputs 1 if A
succeeds in forging and 0 otherwise.

Therefore, it holds that

|Pr(A forges in the real world)− Pr(A forges in the random world)|

≤ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

from Theorem 2.1. Then we obtain Theorem 3.2 from lemma 3.1.
Q.E.D.

4 Extension to OCB mode

OCB mode was proposed by Rogaway et al. [9]. It is a refinement of IAPM
such that it works for messages of any bit length and therefore returns a
ciphertext of minimal length.
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Figure 3: Modified OCB

In this subsection, we present a slight modification of OCB mode and
prove its enhanced security.

Let H be an (ε, δ)-AXU hash function family from {0, 1}3n \ {03n} to
{0, 1}n. An encryptor and a decryptor share h ∈ H secretly.

To encrypt an L-block plaintext M = M1||M2|| · · · ||ML (with Mj ∈
{0, 1}n), the encryptor first picks a new nonce IV . Wlog, we assume that
this nonce was never used before. The encryptor then generates L+1 masks
S1, · · · , SL and TL as follows.

Si = h(IV, 2i− 1, n) for 1 ≤ i ≤ L− 1,

SL = h(IV, 2i− 1, |ML|),
TL = h(IV, 2L, n),

where |ML| denotes the bit length of ML. The ciphertext C = C0||C1|| · · · ||CL+1

is computed by setting C0 = IV, Cj = Sj ⊕ F (Sj ⊕Mj) for 1 ≤ j ≤ L− 1,
and

CL = the first |ML| bits of SL ⊕ F (SL)⊕ML

CL+1 = TL ⊕ F (TL ⊕
L∑

j=1

Mj). (11)

To decrypt a ciphertext of L + 2 blocks, C = C0||C1|| · · · ||CL+1, the
decryptor first computes the masks S1, . . . , SL and TL. He then recovers

14



Mj = Sj ⊕ F−1(Sj ⊕ Cj) for 1 ≤ j ≤ L− 1 and

ML = CL ⊕ (the first |CL| bits of SL ⊕ F (SL)).

He next check if eq.(11) holds. If the check passes, the plaintext is M1||M2|| · · · ||ML.
Otherwise, the ciphertext is deemed invalid.

(Remark) In the original OCB mode,

CL = the first |ML| bits of F (TL)⊕ML,

CL+1 = F (SL ⊕
L∑

j=1

Mj),

S1, . . . , SL and TL are generated by using a block cipher.

We can define a random world similarly to Sec.3.2. Then we can prove
the following enhanced security. Suppose that an adversary A asks at most
α queries to the encryption oracle, totaling at most µ blocks, and asks at
most q1 queries to F and F−1. Let q0 = α + µ. Then

Theorem 4.1 If A works as a distinguisher, then

|Pr(AEscheme,F,F−1
= 1)− Pr(AErandom,F,F−1

= 1)|

≤ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

. (12)

Theorem 4.2 If A tries to make a forgery, then

Pr(A forges) ≤ 1
2n − 1

+ 2

(
q0

2

)
ε + 2q0q1δ +

q0(q0 + 2q1 − 1)
2n

.

The proofs will be given in the final paper.

5 Lower Bound

In this section, we prove that Theorem 2.1 is tight within a constant factor
if q1 = 0 and H satisfies some property. This means that Theorem 3.1 and
Theorem 4.1 are tight within a constant factor under the same condition.
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Definition 5.1 Let H be a set of hash functions h : X → {0, 1}n. We say
that H is an XOR universal hash function family if for any two distinct
elements x, x′ ∈ X and any element y ∈ {0, 1}n,

Pr
h

(h(x)⊕ h(x′) = y) = 1/2n.

Theorem 5.1 In the model of Sec.2.1, suppose that H is an XOR universal
hash function family. If (

q0

2

)
1
2n

< 0.158,

then

Adv(q0, 0) ≥ cq2
0/2n

for some constant c.

A proof is given in Appendix A. Then we obtain the following corollary.

Corollary 5.1 In each of IAPM, the modified IAPM, OCB mode and the
modified OCB mode, suppose that an XOR universal hash function family
is used. If an adversary A asks at most µ blocks to the encryption oracle,
where (

µ

2

)
1
2n

< 0.158,

then
|Pr(AEscheme = 1)− Pr(AErandom = 1)| ≥ cµ2/2n

for some constant c.
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A Proof of Theorem 5.1

We consider a distinguisher D who asks the ith query xi to Pi′-oracle/Qi′-
oracle such that i′ = i mod m for 1 ≤ i ≤ q0, where xi is randomly chosen.
Let yi denote the answer from the oracle. For simplicity, we show a proof
for q0 ≤ m. The proof for q0 > m is similar.

In Game1, let ai denote the input to F in the ith query. Then

ai = xi ⊕ Si

F (ai) = yi ⊕ Si.

17



If ai = aj , then F (ai) = F (aj). In this case,

xi ⊕ Si = xj ⊕ Sj ,

yi ⊕ Si = yj ⊕ Sj .

Hence
xi ⊕ yi = xj ⊕ yj . (13)

Equivalently,
F (ai)⊕ F (aj) = ai ⊕ aj .

Now our distinguisher D outputs 1 if and only if eq.(13) holds.
First in Game0, it is easy to see that

Pr(D = 1 in Game0) ≤
(

q0

2

)
1
2n

.

Next in Game1, let E0 denote the event that ai = aj for some i 6= j.
Then Pr(D = 1 | E0) = 1. Therefore,

Pr(D = 1 in Game1) = Pr(D = 1 | E0) Pr(E0) + Pr(D = 1 | ¬E0) Pr(¬E0),
= Pr(E0) + (1− Pr(E0)) Pr(D = 1 | ¬E0).

Propposition A.1 If xy ≥ 0, then

(1− x)(1− y) ≥ 1− x− y.

Propposition A.2 If 0 ≤ x ≤ 1, then

1− x ≤ e−x ≤ 1− (1− 1/e)x.

Theorem A.1 Let E1, · · · , Ek be any events. Define

pi
4
= Pr(¬Ei | E1, · · · , Ei−1).

If p1 + p2 + · · ·+ pk ≤ 1, then

0.632(p1 + · · ·+ pk) ≤ Pr(¬E1 ∨ · · · ∨ ¬Ek) ≤ p1 + · · ·+ pk.

(Proof) It is clear that

Pr(E1 ∧ · · · ∧ Ek) = Pr(E1) Pr(E2 | E1) · · ·Pr(Ek | E1, · · · , Ek−1)
= (1− p1)(1− p2) · · · (1− pk)
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First from Proposition A.1, we have that

(1− p1)(1− p2) · · · (1− pk) ≥ 1− (p1 + · · ·+ pk).

Next from Proposition A.2, we have that

(1− p1)(1− p2) · · · (1− pk) ≤ e−p1e−p2 · · · e−pk

= e−(p1+p2+···+pk)

≤ 1− (1− 1/e)(p1 + · · ·+ pk)

Therefore,

0.632(p1 + · · ·+ pk) ≤ Pr(¬E1 ∨ · · · ∨ ¬Ek) ≤ p1 + · · ·+ pk

because Pr(¬E1 ∨ · · · ∨ ¬Ek) = 1− Pr(E1 ∧ · · · ∧ Ek).
Q.E.D.

We first compute Pr(D = 1 | ¬E0).

Lemma A.1

Pr(D = 1 | ¬E0) ≥ 0.632

(
q0

2

)
1
2n

.

(Proof) Suppose that ¬E0 occurs. That is, ai 6= aj for any i 6= j. Let Eij

be the event that
F (ai)⊕ F (aj) 6= ai ⊕ aj .

Let
pij = Pr(¬Eij | E12, · · · , Ei,j−1).

Then it is easy to see that

pij = Pr(F (ai)⊕ F (aj) = ai ⊕ aj | E12, · · · , Ei,j−1)
≥ 1/2n.

Therefore, from Theorem A.1,

Pr(¬E12 ∨ · · · ∨ ¬Eq0,q0−1) ≥ 0.632

(
q0

2

)
1
2n

.

Hence

Pr(D = 1 | ¬E0) ≥ 0.632

(
q0

2

)
1
2n

.

Q.E.D.
We next compute Pr(E0).
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Lemma A.2 If ε = 1/2n and(
q0

2

)
1
2n

< 0.136,

then

0.632

(
q0

2

)
1
2n

≤ Pr(E0) ≤
(

q0

2

)
1
2n

.

(Proof) Let Eij be the event that ai 6= aj for i 6= j. Note that ai = aj if and
only if

xi ⊕ Si = xj ⊕ Sj .

Therefore, Eij is the event that

Si ⊕ Sj 6= xi ⊕ xj .

Let
pij = Pr(¬Eij | E12, · · · , Ei,j−1).

Then

pij = Pr(Si ⊕ Sj = xi ⊕ xj | S1 ⊕ S2 6= x1 ⊕ x2, · · · , Si ⊕ Sj−1 6= xi ⊕ xj−1)
≥ Pr(Si ⊕ Sj = xi ⊕ xj)
= 1/2n.

On the other hand,

pij ≤
Pr(¬Eij)

Pr(E12, · · · , Ei,j−1)
.

Pr(¬E12 ∨ · · · ∨ ¬Ei,j−1) ≤
(

q0

2

)
1
2n

.

Hence

Pr(E12, · · · , Ei,j−1) ≥ 1−
(

q0

2

)
1
2n

≥ 0.864.

Therefore,

pij ≤
1

1− 0.864
1
2n

≤ 1.16
1
2n

.

Finally from Theorem A.1,

0.632

(
q0

2

)
1
2n

≤ Pr(E0) ≤ 1.16

(
q0

2

)
1
2n

.
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Q.E.D.
Consequently, in Game1,

Pr(D = 1) ≥ 0.632

(
q0

2

)
1
2n

+ (1− 1.16

(
q0

2

)
1
2n

)0.632

(
q0

2

)
1
2n

= 1.264

(
q0

2

)
1
2n

− 0.733(

(
q0

2

)
1
2n

)2.

Therefore,

Adv(q0, 0) = |Pr(D = 1 in Game1)− Pr(D = 1 in Game0)|

≥ 0.264

(
q0

2

)
1
2n

− 0.733(

(
q0

2

)
1
2n

)2

=

(
q0

2

)
1
2n

(0.264− 0.733

(
q0

2

)
1
2n

).

If (
q0

2

)
1
2n

< 0.136,

then

Adv(m, 0) ≥ 0.164

(
q0

2

)
1
2n

.
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