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Zusammenfassung der Dissertation

Als Koblitz-Kurven bezeichnet man hyperelliptische Kurven vom Geschlecht g, die iiber
einem Korper kleiner Ordnung definiert sind, allerdings iiber einem Erweiterungskorper
dieses Korpers betrachtet werden. Ein grofler Vorteil dieser Kurven ist es, dass die
Klassenzahl einfach bestimmbar ist. Um zu garantieren, dass die Pohlig-Hellman-Attacke
nicht funktioniert, muss die Gruppenordnung durch eine grofie Primzahl teilbar sein, so
dass es wichtig ist, die Gruppenordnung zu kennen. Fiir eine beliebige Kurve iiber einem
Primkorper kann diese allerdings noch nicht in der Gréflenordnung der kryptographischen
Sicherheit bestimmt werden. Die Arbeit liefert iiber Korpern der Charakteristik 2,3 und 5
Kurven vom Geschlecht 2,3 und 4, deren Klassenzahlen einen Primfaktor in der gewiinschten
Groflenordnung haben. Die vollstandigen Listen sind im Internet offentlich zuganglich
gemacht worden

(siehe http://www.exp-math.uni-essen.de/~lange/KoblitzC.html).

Da fiir diese Kurven Korper der Charakteristik zwei besonders interessant sind, jedoch bislang
noch niemand fiir diese Korper explizite Formeln fiir die Arithmetik in den Divisorklassen-
gruppen bestimmt hat, werden diese fiir Kurven vom Geschlecht zwei ermittelt. Fiir Kurven
grofleren Geschlechts wiirden solche Formeln eine noch umfangreichere Fallunterscheidung
bedeuten, so dass der allgemeine Algorithmus von Cantor schneller ist.

Der Frobeniusautomorphismus des endlichen Korpers hat eine natirliche Fortsetzung
auf die Funktionenkoérper und damit auch auf die Divisoren. Werden die Elemente des
Erweiterungskorpers beziiglich einer Normalbasis dargestellt, so bedeutet die Operation des
Frobenius nur zyklisches Vertauschen, welches keine Kosten verursacht. Die Hauptoperation
im ElGamal-Kryptosystem, beim Diffie-Hellman-Schlisselaustausch und auch beim Signieren
ist die Berechnung des m-Fachen eines Gruppenelements. Ublicherweise wird hierzu die
double-and-add-Methode benutzt, die eine binire Entwicklung von m voraussetzt. Die Ope-
ration des Frobeniusendomorphismus lasst sich auch auf den Divisorklassen in der (iiblichen)
Darstellung mit Hilfe zweier Polynome quasi kostenlos durchfithren. Um diesen Kostenvorteil
ausnutzen zu konnen, wird der Multiplikator m nun zur Basis 7 entwickelt, wobei 7 eine
komplexe Zahl ist, so dass die Anwendung des Frobenius genau der Multiplikation mit 7
entspricht. Hierdurch kann eine Beschleunigung der Arithmetik erzielt werden. Koblitz hatte
ein solches Verfahren fur elliptische Kurven vorgeschlagen, in einer Folgearbeit von Solinas
wird fiir elliptische Kurven die grofitmogliche Beschleunigung erreicht. Gemeinsam mit C.
Giinther und A. Stein habe ich das Konzept auf hyperelliptische Kurven verallgemeinert und
zwei Kurven vom Geschlecht 2 iiber Korpern der Charakteristik 2 untersucht. Hierbei wurde
eine Beschleunigung um einen Faktor von 5 bzw. bei mehr Vorberechnungen von 7 erzielt.

Ich habe die entsprechenden Ergebnisse auf beliebige endliche Korper und hyperelliptische
Kurven hoheren Geschlechts verallgemeinert. In der Dissertation habe ich das Problem



der Endlichkeit solcher Darstellungen untersucht und ein Verfahren angegeben, das es
erlaubt, die Endlichkeit fir eine gegebene Klasse von Kurven nachzuweisen, und dieses fiir
etliche Beispiele durchgefiihrt. Es werden Algorithmen geliefert, die eine solche Entwicklung
berechnen und die leicht an die Bediirfnisse der Implementationsumgebung angepasst werden
konnen, und zwar insofern, als je nach vorhandenem Speicherplatz mehr oder weniger
Vorberechnungen gemacht werden, wobei sich Vorberechnungen durch eine Beschleunigung
auszahlen. Die Arbeit gibt Lingenabschitzungen fiir die erwahnten Entwicklungen, eine
Strategie, um die Linge zu reduzieren, und beschiftigt sich mit dem Auftreten von peri-
odischen Entwicklungen. All diese Abschitzungen werden mit einer Fiille experimenteller
Daten belegt, so dass erkennbar wird, dass fiir die betrachteten Erweiterungskorper bereits
die asymptotischen Ergebnisse mit hoher Genauigkeit zutreffen. Die Beschleunigung ist fiir
Kurven hoheren Geschlechts und groflerer Charakteristik grofler, jedoch wird dann auch
mehr Speicher benotigt. Den Fall, dass gar kein Speicher zur Verfiigung steht, habe ich
ebenfalls behandelt und dabei theoretische Abschitzungen tiber die dennoch zu erwartende
Beschleunigung geliefert.

Auflerdem stelle ich eine alternative Konstruktion des Systems vor, bei der — anstatt eine
zufillig gewahlte Zahl mit den angegebenen Algorithmen zu entwickeln — als Schliissel eine
Entwicklung fester Lange gewahlt wird, deren Koeffizienten aus einer beschrankten Menge
stammen. Ich habe untersucht, wie sich die ublichen Protokolle fiir diese Konstruktion
ibertragen lassen, mich mit Kollisionen beschaftigt und die Sicherheit gegen einen aus
Arbeiten von Nguyen und Shparlinski verallgemeinerten Angriff untersucht.

Im letzten Teil der Arbeit wird der konstruktive Weil-Descent beschrieben. Ausgangspunkt
ist eine hyperelliptische Kurve vom Geschlecht 2, definiert iiber einem hinreichend grofien
primen Grundkérper F,, so dass p* ~ 2190 ist, deren Klassenzahl fiir die Kurve iiber Fps
einen grofien Primfaktor der Ordnung p* hat. Wird nun der Weil-Descent durchgefiihrt
und zieht man nur solche Elemente in Betracht, die in der Spur-Null-Varietit liegen, so
erhilt man eine Abelsche Varietit mit einer Gruppe der Ordnung der grofilen Primzahl.
Das Gruppengesetz und auch die Ausnutzung des Frobeniusendomorphismus kann man von
der ursprunglichen Kurve ubertragen. Somit erhalt man eine weitere Gruppe, die in der
Kryptographie genutzt werden kann und die zusitzlich eine Arithmetik unter Ausnutzung
des Frobeniusendomorphismus ermoglicht. Fiur diese Gruppe schlage ich das Verfahren
vor, das fir die Koblitz-Kurven oben als alternative Konstruktion beschrieben wurde. Die
Komplexitiat der Berechnung von Vielfachen einen Gruppenelements wird fiir die Spur-Null-
Varietiat und algebraische Gruppen gleicher Sicherheit bestimmt. Ist der Korper so gewalt,
dass es ein kleines Element 7 gibt, das keine dritte Potenz ist, so ist die Arithmetik in dieser
Varietat schneller als in der Divisorklassengruppe einer hyperelliptischen Kurve, die uber
einem Primkorper definiert ist und gleiche Gruppengréfle hat. Vergleichen mit elliptischen
Kurven ist die Arithmetik stets langsamer.

Hiermit erkliare ich, dass ich diese Arbeit selbstdndig verfasst und keine anderen als die
angegebenen Quellen verwendet habe.

Tanja Lange
Essen, den 21.08.2001
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Chapter 1

Introduction

Due to the emerging market of electronic commerce public key cryptosystems gain more and
more attention. Unlike for military purposes there is a need of flexible user groups. Besides
RSA most cryptosystems and protocols like the Diffie-Hellman key exchange [9] and the
ElGamal cryptosystem [11] are based on the discrete logarithm as the underlying one-way
function. Given a cyclic subgroup of an abelian group generated by g and an integer m one
can compute g™ = b. If (g) is a group suitable for cryptographic applications, then it is
computationally hard to retrieve m for given b and g. m is called the discrete logarithm of b
to the base g. The problem of determining m given b and g is called the discrete logarithm
problem. A group is suitable if

1. the group operation is fast,

2. the group order can be computed efficiently,
3. the discrete logarithm problem is hard,

4. the representation is easy and compact.

Two common kinds of groups used in practice are the multiplicative group of a finite field and
the group of points on an elliptic curve C over a finite field. The first group comes equipped
with the fast arithmetic developed for finite fields but also with a subexponential algorithm
for computing the discrete logarithm. Since this index calculus attack does not carry over
to the elliptic curves, only general techniques like Pollard’s rho and kangaroo method (see
[565, 58, 59, 75]) apply, unless the curve has a special structure, for example is supersingular
(see Frey and Riick [14] and Menezes, Okamoto, and Vanstone [44]) or the group order is
divisible only by small primes, thus weak under the Pohlig-Hellman attack [56]. But there is
a big drawback — an addition on an elliptic curve takes 2 multiplications, 1 squaring, and 1
inversion in the underlying field. To obtain a speed-up for the main operation — computing
m-folds — Koblitz [34] proposed the use of a special kind of curves. These Koblitz or subfield
curves are curves defined over a comparably small finite field F,. They are then considered
as curves over a large extension field Fy», where n is prime. The arithmetic makes use of
the fact that if the curve C is defined over F; and P = (z,y) € Fgn x Fyn lies on C then
the point o(P) = (z9,y9) lies on C, too, as can be seen by direct computation. Note that
this only holds since the curve is defined over the small field. ¢ is a map on the curve that
induces an endomorphism on the Jacobian of C' called the Frobenius endomorphism. On

1



2 1. INTRODUCTION

the coordinates of the points it operates like the Frobenius automorphism of the underlying
field Fy» over F,. These curves have thoroughly been studied by Koblitz [34, 35], Meier
and Staffelbach [43], Miiller [48], Smart [66], and Solinas [67, 68], where the last reference
contains a detailed analysis of the maximal speed-up achievable for curves over Fs.

In [33] Koblitz proposed the Picard group Pic’(C/F,) of a hyperelliptic curve as a further
group suitable for cryptographic applications. The advantages over the elliptic curves are
the smaller field size and the larger variety of curves to choose from. The representation of
the group elements is given by polynomials of bounded degrees. Hence, the group satisfies
requirement 4. But there are several disadvantages:

At the moment no-one is able to compute the group order of a randomly generated
hyperelliptic curve over a prime field with group order ~ 2!69. The best result obtained for
curves of genus two is a curve over the prime field F, with p = 10* 4 51 by Gaudry and
Harley [22] which leads to a group order ~ 103% ~ 229 which is smaller than recommended
for cryptographic applications. Hence, one is forced to take special curves. Generalizing
Atkin, Spallek [69] suggested the use of curves with complex multiplication, so called
CM-curves. This approach was investigated in more detail by Weng [76]. She generalized it
to work also for genus 3 curves, but in both cases the curves are defined over finite prime
fields of odd characteristic or small extension fields (of degree at most 12). We propose a
different class of curves here which allows to work in characteristic 2 as well.

Furthermore the group operation for a generic hyperelliptic curve is slower than for an
elliptic curve. For larger genus there exists an index-calculus like method for computing the
discrete logarithm by Adleman, DeMarrais, and Huang [1], Miiller, Stein, and Thiel [49], and
Enge [12]. Gaudry [21] modified this algorithm and gave a detailed analysis showing that
his attack is faster than Pollard’s rho method for ¢ > 4. For smaller genus only the generic
attacks apply provided that the group order is sufficiently large and that one avoids curves
for which special attacks are known.

In this thesis we investigate hyperelliptic Koblitz curves. The idea of elliptic Koblitz curves
was generalized by Giinther, Lange, and Stein [26]. In that article we investigate two special
examples of binary curves of genus 2. We show in that paper that also in the hyperelliptic
case the Frobenius endomorphism can be used to achieve fast arithmetic, i.e. to speed up
scalar multiplication. This generalization offers a larger variety of curves to choose from. To
compare: There are up to isogeny only two non supersingular elliptic curves over Fy whereas
one can choose from 6 different curves of genus 2 over Fy, and there are even much more
curves for higher genus. We provide a list of suitable curves for genus 2,3, and 4 in this
paper.

We give a detailed analysis that the Frobenius endomorphism gives rise to a speed-up of at
least a factor of 4 (for ¢ = g = 2) and much more if many precomputations can be stored.
The speed-up increases with g and g.

For Koblitz curves it is interesting to work over a field of even characteristic. In the case of
odd characteristic it is reported that explicit formulae are faster than Cantors algorithm.
However, no-one has generalized these equations to even characteristic so far.

A further important advantage of Koblitz curves is that due to the construction the group
order can be determined very efficiently. Since the group order corresponding to the field
of definition F; always divides the group order over F . the best one can hope for are



almost prime orders, i.e. orders being a product of this inevitable factor and a large prime.
Experiments with various subfields and genera give evidence that among the Koblitz curves
there are many providing a group of cryptographic relevance.

Hence, firstly the computation of m-folds is sped up considerably and can thus be regarded
as fast. Secondly the group order can be computed very easily. The group elements can
be represented by two polynomials of degree at most g over Fy», thus the representation is
compact and easy.

To the third point: For fixed n the Picard group of Koblitz curves over Fy» comes along with
an automorphism group of order at least 2n — due to the Frobenius automorphism of order
n and inversion. This can be used for cryptanalysis. The attack of Gallant, Lambert, and
Vanstone [18] designed for elliptic curves was extended to hyperelliptic curves. Duursma,
Gaudry, and Morain [10] make use of equivalence classes in Pollard’s rho method and
obtain a speed-up of y/n compared to a Picard group without automorphisms except for
the inversion. This can be dealt with by choosing n some bits larger (at most 4 bits in the
range considered here). Gaudry [21] used this automorphism group to speed-up his variant
of the index-calculus method by n?. For genus 2 and 3 this does not affect the security of
our system. But for genus 4 we need to be aware of that effect and either avoid these curves
or choose a larger exponent.

Furthermore there is an attack on anomalous curves investigated by Semaev [63] (see also
Satoh and Araki [62], and Smart [65]) for elliptic and by Riick [61] for hyperelliptic curves.
This works for groups of order a multiple of p” where p is the characteristic of the ground
field. But the hyperelliptic Koblitz curves we use do not lead to a curve which is weak under
that attack since we work in the subgroup of large prime order and the characteristic of the
fields is small, thus we always work in the prime to p part.

Certainly one has to be aware of the Frey-Riick attack [14]. It can be applied whenever the
order of ¢", i.e. the cardinality of the finite field one works in, modulo [ is small, where [ is
the order of the subgroup of the Picard group. Thus one has to compute this order before
accepting a curve. All the examples of curves proposed here satisfy this requirement.

The Weil descent attack described for elliptic curves in [23] applies also to hyperelliptic
curves. Thus we need to ensure that we consider curves over fields where the exponent is a
prime and for characteristic 2 is not of the form 2! — 1 (see [46]) — or more generally — leads
to a curve with such a large genus that the attack gets infeasible. Although Gaudry, Hess,
and Smart [23] say that their attack does not work for curves defined over the ground field,
one can modify the curve to get an isogenous one defined over the extension field.

However we only consider prime degree extensions, since otherwise the class number would
contain more prime factors.

Hence, Koblitz curves provide a large source of hyperelliptic curves for every genus with
an easy to compute group order and they allow the use of fields over characteristic two
which is advantageous in implementations. And the security requirements are fulfilled as well.



4 1. INTRODUCTION

Remark:

1. Although our approach is described for curves over arbitrary fields and of arbitrary
genus in applications they are most likely used over small fields with ¢ < 7 and genus 2,
3 or 4, since for larger genus the groups are insecure and for larger field size the number
of precomputations to be stored increases and we loose too much due to inevitable
factors of the group order.

2. We only consider the case of hyperelliptic curves, but all this generalizes to arbitrary
abelian varieties, thus especially to those attached to Cg-curves, as soon as the action
of the Frobenius endomorphism can be used efficiently. This holds since we only work
with the characteristic polynomial not with the curves themselves.

Naumann [51] and Diem [7] propose a further abelian group constructed by means of algebraic
geometry for use in cryptography. They start with an elliptic curve defined over the prime
field F), and consider it over F,s. Then they impose the condition 0?(P) + o(P) + P =0 on
the points and obtain the Trace-zero-hypersurface. It is an abelian variety of dimension 2
defined over the above prime field which is not isogenous to the Jacobian of a curve. Hence,
it is a new way to construct suitable groups. The drawback is that to perform the arithmetic
one can only make use of the formulae for the elliptic curve over Fjs which involves more
variables than would actually be needed, but the group has the advantage that we can also
make use of the Frobenius endomorphism to speed up the computation of m-folds and the
security is equivalent to that of a curve defined over a prime field.

In the second part of the thesis we investigate the trace zero subgroup in case of a genus
two curve defined over a comparably large prime field (p ~ 2%0) considered over F,s. This
group can be viewed as a 4-dimensional abelian variety over the prime ground field, but
still we can use the Frobenius endomorphism of the original curve. We show that the
curve itself and the divisor classes belonging to the ground field lie outside this group. Like
for elliptic curves one can use the arithmetic from the larger divisor class group for F s
and also the speed-up from the endomorphism. We compare the complexity of computing
m-folds in this group to other groups with similar parameters like the Divisor class group of a
genus two curve over Fy, p ~ p? prime, and an elliptic curve over the prime field Fyr,p' ~ p.

The remainder of this paper is organized as follows. In the next chapter we provide the
necessary mathematical background, followed by a chapter on the computation in the Picard
group in the case of even characteristic. The next chapter deals with the computation of the
group order. We include some experimental data concerning group orders of Koblitz curves
over several finite fields. Chapter 5 is the core of this thesis dealing with the arithmetic in the
Picard group for Koblitz curves. Section 5.1 is devoted to the standard ways of computing
m-folds which will be used to compare our results with. In Section 5.2 we show how to make
use of the Frobenius endomorphism to achieve a speed-up in computing m-folds. Sections
5.3, 5.4 and 5.5 give details on the algorithms and theoretical results concerning the length
and density of expansions related to the Frobenius endomorphism. The following section
lists some results on Koblitz curves and gives numerical evidence for the assumptions. In
Section 5.7 we compare the new method with the standard double-and-add method. Then
we investigate what happens if we cannot store precomputed values. In the following section
we deal with a different set-up for cryptosystems based on Koblitz curves which is useful in



implementations.

In Chapter 6 we deal with the trace zero subgroup, where in the first section we show which
kinds of divisor classes can lie in this subgroup, then we try to find equations describing the
subgroup using less variables, i.e. such that the length of an element is not too large for a
group of order p*. In Section 6.4 the computation in the subgroup is investigated in more
detail, and in the next section we compare the efficiency of the group operation in this group
to others obtained using algebraic geometry which have similar security parameters. Finally,
we present some examples in Section 6.5. To conclude we deal with side-channel attacks and
give an outlook on what can be done as well in Chapter 7.

After finishing this thesis it was brought to our attention that Lee [38] has also generalized
the results of Giinther, Lange, and Stein [26] to arbitrary characteristic. His paper does not
contain a proof of the finiteness and length of the representations obtained. Furthermore he
uses larger ground fields than we recommend. We say more about this in Section 5.8.
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Chapter 2

Mathematical Background

This section provides the necessary background on algebraic curves with emphasis on hyper-
elliptic curves. Usually the results are stated for arbitrary curves respectively functions fields
and the examples deal with the special case. Many results presented here have analogies in
number theory. We decided to take a more algebraically motivated approach, hence, starting
from function fields since the arithmetic we use later is based on this representation. On the
other hand we make use of the geometric background as well to derive results concerning
the structure. In the following we state the results without proofs. We follow the lines of
Lorenzini [41] and also adopt his notation. Most of the results can be found as well in the
book of Stichtenoth [73]. For the more geometric approach see Fulton [15]. You can as well
consider Gaudry’s thesis [20] which contains a nice introduction with several pictures.

The reader only interested in the computational aspects might consult the introduction by
Menezes, Wu and Zuccherato [47] to get an insight in hyperelliptic curves and skip the first
section. Furthermore Silverman’s book [64] contains a lot of the theory not only for elliptic
curves.

2.1 Notation and Definitions

Throughout this thesis let k£ denote a perfect field. Some of the results mentioned below hold
also for arbitrary fields but since we consider hyperelliptic curves over finite fields in the other
sections this means no restriction for us and eases to state the theorems. Our starting point
is the following definition.

Definition 2.1 An algebraic function field L/k in one variable over k is an eztension field
L D k such that L is a finite algebraic extension of k(x) for an element x € L, where = is
transcendental over k. The constant field is {z € L|z is algebraic over k}. It is a subfield of
L containing k and L is an algebraic function field over this field as well.

We only consider algebraic function fields in one variable L/k where k is the full constant
field. Hence, we always implicitly mean this when speaking of a function field.

Example 2.2 Let k = Fy and consider F = y> — 22 —x — 1. F is absolutely irreducible,
i. e. irreducible over k and any extension field. Thus F defines a function field as the field of
fractions of k[z,y]/(F).



8 2. MATHEMATICAL BACKGROUND

We now consider special maps from L* to the integers called valuations:

Definition 2.3 A valuation of L is a map v : L* — Z such that the following properties are
satisfied:

1. v(zy) = v(z) +v(y) for all z,y € L*,
2. v(z +y) > min{v(z),v(y)} for all z,y € L*.

A wvaluation is called surjective if v is surjective.
A wvaluation is called trivial on k if v(k*) = {0}.
v is extended to L by putting v(0) = oo.

For example the map v(z) = 0 for all x € L* is a valuation. This valuation is called the
trivial valuation. An example for a non-trivial valuation is the map k(z)* — Z where
v(a) = — deg(a) with the usual meaning of degree.

Let B be a Dedekind domain with field of fractions L. Let M be a maximal ideal of B. Then
we can define the valuation for a = g/h € L, g,h € B via v(a) = v(g) — v(h) and define v(g)
for g € B to be the largest i such that g € M*. As M/M? is nonempty there is an element
g € B with v(g) = 1. Thus to each maximal ideal corresponds a surjective valuation. Now
let v be a surjective valuation such that v(B) > 0. Consider the sets O, = {a € L|v(a) > 0}
and M, = {a € L|v(a) > 0}. Then O, is a local Noetherian domain with M, as its maximal
ideal, and M, is principal as it is generated by an « € L with v(a) = 1. Put M = M, N B.
Then M is a maximal ideal of B. This way one sets up a bijection between the set of
surjective valuations v with v(B) > 0 and the set of maximal ideals of B.

Let V(L/k) be the set of all surjective valuations of L that are trivial on k. It is this set that
we will consider as points of a curve. Before we give the formal definition let’s see how this
fits with the intuitive definition of a point as a zero of a given polynomial and a curve as a
set of these zeros plus maybe some additional elements at infinity.

Example 2.4 Assume that k is an algebraically closed field. Let F € k[z,y] be an absolutely
irreducible polynomial of degree > 1 monic in y. Put L the function field obtained as the
quotient field of k[x,y]/(F). First of all we establish a bijection between the mazimal ideals
of k[z,y]/(F) and the tuples (a,b) € k? with F(a,b) = 0. Note that the mazimal ideals in
klz,y]/(F) correspond to mazimal ideals of k[z,y] containing F.

Let a,b € k with F(a,b) = 0. P = (z — a,y — b) is a mazimal ideal in k[z,y|/(F) as
klz,y]/(x — a,y — b) is isomorphic to k and F € (x — a,y — b) as F(a,b) = 0.

Let M be a mazimal ideal of k[z,y]/(F) and let M be the corresponding mazimal ideal in
k[z,y] containing F. Put P = M N k[z]. P is a nonzero prime ideal of k[z], and as k
is algebraically closed we have P = (x — a) for some a € k. Consider the image of M in
klz,y)/(z — a) = k[y]. It is given by (y — b) for b € k, hence M = (z —a,y — b). As F € M
we have that F(a,b) =0 and M = (z — a,y — b).

Now we can associate to M = (z — a,y — b) the local ring Oy = {a € L|a is defined
at (a,b)} with mazimal ideal My = {a € Onla(a,b) = 0} of Onr. The mazimal ideal
M = (z —a,y —b) leads to a surjective valuation iff My is a principal ideal. These (a,b) are
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called nonsingular points. If all points are nonsingular, i. e. Opr is a local principal Noetherian
domain for all (a,b) with F(a,b) = 0, then klz,y]/(F) is a Dedekind domain and we can
use the above construction to establish the bijection between maximal ideals and surjective
valuations. Hence, to each nonsingular point corresponds a surjective valuation. The set of
these valuations is an example of an affine curve. But we are missing some valuations of L,
namely those that do not result from k[z,y]/(F) but from other rings contained in L.

Assume now that for an absolutely irreducible polynomial F' € k[z,y] we have that B =
klz,y]/(F) is a Dedekind domain. If k is algebraically closed we obtain each maximal ideal of
klz,y]/(F) via the zeros of F'. Let k be not algebraically closed and consider the maximal ideal
M, of O, corresponding to the valuation v with v(B) > 0. If the basis of M, N (k[z,y]/(F))
consists of polynomials of higher degree then the valuation corresponds to a class of conjugate
zeroes of F' in a finite extension of k. The connection is as follows:

Denote by k an algebraic closure of k. Let a,b € k and put

Sa(a,b) : E[iL‘,y] - Ea g(:v,y) = g(a’a b)

Denote the restriction to k[z,y] by ¢, b)- Like above one shows that for any maximal ideal
M of k[z,y] there exists a pair (a,b) € k x k such that M =Ker(¢(, ). Furthermore, let the
minimal polynomial of a over k be u(z). Since u is irreducible, k[z,y]/(u(z)) is a principal
ideal domain and M/(u(z)) is generated by a single element, say by the class of v(z,y).
Therefore M = (u(z),v(z,y)). Hence, every maximal ideal is generated by two polynomials
and both statements hold true when we restrict to the ring k[z,y]/(F) with the additional
property that F(a,b) = 0 for the tuple (a,b) € k x k such that M =Ker(¢(p))-

The correspondence of maximal ideals of k[z,y]/(F), valuations, and local principal ideal
domains is fundamental for the definition of curves.

Definition 2.5 A nonsingular complete absolutely irreducible curve X/k over k is a pair
(X,k(X)/k)) consisting in a function field k(X)/k over k, and a set X identified with the set
V(k(X)/k) through a given bijection. An element P of X is called a point. The field k(X)
is called the field of rational functions on X. FEach point P corresponds to a valuation vp
of V(k(X)/k), and a local principal ideal domain Op = Oy, , with mazimal ideal Mp. The
ring Op 1is called the ring of rational functions defined at P. An element of Op is called a
function on X defined at P. The domain of a € k(X) is the set of points in X where « is
defined. If U C X, then we let Ox (U) := NpeyOp, and we call this ring the ring of functions
on X defined everywhere on U.

Note that we have Ox(X) = k since we assume that & is algebraically closed in k(X).

The curves we consider are always absolutely irreducible, thus we implicitly mean this when
speaking of a curve.

As an example for a complete curve we consider the following definition

Definition 2.6 The projective line over k is a nonsingular complete curve P'/k such that
the field of functions k(P') is isomorphic, as k-algebra, to the field of rational functions in
one variable.

If kK = C, thus algebraically closed, all valuations of k(x) come from the ideals (z —a),a € C
except for the valuation v, which is the degree-valuation. Hence, P! /k can be identified with
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the Riemann sphere, i.e. C plus an additionally point.
In general we have

Pk = {vg(z)l9(z) € k[z], irreducible and monic } U {ve},

since the maximal ideals of k[z] are generated by the irreducible polynomials.
Usually one denotes the point vy, of P! simply by oo.

Let X/k be the nonsingular complete curve associated to the field k(X)/k. Let z € k(X)
such that k(X)/k(z) is a finite extension. Since Op is local for every P, we have that either
z € Op or 1/z € Op. Now let U and U’ denote respectively the domain of z and 1/z in X.
Then we have

X=UuU"

Furthermore Ox (U) is equal to the integral closure of k[z] in k(X). The complement of
U in X is the set of points P such that Op D k[1/x](/q), where k[1/z](;/,) denotes the
localization of k[1/x] at (1/x).

Under the ‘bijection’ occurring in the definition of a curve we can thus understand for example
that we consider the maximal ideals of Ox(U) and Ox(U’) as points with the relation to
valuations shown above.

Definition 2.7 Let X/k and Y/k be two nonsingular complete curves over k. A morphism
¢ : X — Y of nonsingular curves over k is a map given by a homomorphism of k-algebras
0* 1 k(Y) = k(X) in the following way: If P € X corresponds to the valuation vp then o(P)
corresponds in'Y to the unique surjective valuation attached to the valuation vp o @*.

The degree of ¢ is defined to be [k(X) : ¢*(k(Y))]. ¢ is called separable if the extension
E(X)/¢*(k(Y)) is separable.

If * 1 kK(Y) = k(X) is an isomorphism of k-algebras, then the corresponding morphism of
curves is called an isomorphism.

Let P € X and consider the rings associated to P and ¢(P). We define the integer ep by
Mtp(p)OP - M;P.

Definition 2.8 P € X is unramified over Y if ep = 1. Otherwise P is called ramified. The
integer ep is called the ramification index of ¢ at P. Let Q € Y. The fiber of Q) is the set of
points o~1(Q) of X mapped to Q under .

Let k(X)/k(x) be a finite extension. Then we obtain a natural morphism 7 : X — P! which
maps via the embedding 7* : k(z) — k(X). The degree of 7 is equal to [k(X) : k(x)]. Let
P € P'/k and let k(X)/k(z) be separable and finite. Consider the fiber of w over P, i.e. the
set 7 1(P). If 7 is of degree n and this set contains less then n points, then it contains at
least one ramified point of X.

Definition 2.9 A complete nonsingular curve X/k over k is called a hyperelliptic curve if it
is not the projective line and if the corresponding function field k(X) contains an element x
such that [k(X) : k(z)] = 2 and k(X)/k(z) is a Galois extension.

The map ¢ : X — X that maps P € X to the other point in the fiber of 7(P) and fizes the
ramified points is called the hyperelliptic involution.
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Alternatively one calls a curve X/k hyperelliptic if it is not the projective line and there
exists a separable morphism 7 : X — P! over k of degree 2. For char(k) # 2 a hyperelliptic
curve X/k is given via k(X) = k(z)[y]/(F), where F(z,y) = v — f(z) € k[z,y] and f(z) is
squarefree. In characteristic 2 a separable extension of degree 2 of k(z) means that we have
an Artin-Schreier extension, thus an irreducible polynomial F' is usually given in the following
form F(z,y) = y?> —y— f(z) with f(z) € k(z). Clearing denominators and changing variables
one can as well obtain a representation via F(u,v) = v + h(u)v — f(u) with h, f € k[u].
The curve is nonsingular if the partial derivatives of F' do not vanish simultaneously at any
(a,b) € k* with F(a,b) = 0, where k denotes the algebraic closure of k.

Example 2.10 Let k = Fy. The complete curve defined via F(z,y) = y*> + (z®> + z + 1)y —
x% — z* — 1 is a hyperelliptic curve.

The ramification behavior of 0o, i.e. the extensions of the degree-valuation, will be important
for the group we consider later on. Let vy, ,..., vy, denote the distinct elements in the fiber
of oo.

Example 2.11 Let char(k) # 2 and let f(z) € k[z] be a squarefree polynomial of degree d,
put fq the leading coefficient of f. Consider the function field L = k(z)(\/f(x)) and the
associated nonsingular complete curve X/k. For f = f(z)/z? and via the change of variables
t := 1/x one can study the behavior at infinity t = 0. The integral closure of k[t] in L is given

by B' = k[t][\/f(t)]. Remember that we associate to each valuation a mazimal ideal. To the
extensions of veo correspond the factors of the ideal (tB'). We have

P1Po = (£,4/f() —b)(t,4/f(t) +b) dis even and f; = b® for a b € k,
(tB") =< P:= (tB") d is even and fq # b® for all b € k,

P2 = (t,4/f(t))? d is odd.

If tB' splits into two different ideals then L/k(x) is called a real quadratic function field,
otherwise it is called imaginary quadratic. These motations are used since the respective
function fields share many properties with the corresponding quadratic number fields.

Let k' be a finite extension of k. Any curve defined over k can also be considered as a curve
over k'. One major topic of this thesis are Koblitz curves, these are curves which are defined
over a small finite field and are then considered over a large extension field. Thus we need to
define what we mean by this.

Definition 2.12 Let X/k be a nonsingular complete curve. Let k(X) denote the function
field of X, and fiz an algebraic closure k(X) of k(X). Let k'/k be an algebraic extension of
k contained in k(X). Put kK'(X) := k' - k(X) and denote by Xy /K’ the nonsingular complete
curve associated to the function field k'(X)/k'. The curve is said to be obtained from X/k
by a constant field extension or by extension of the scalars or by base change. The extension
E'(X)/k(X) is called a constant field extension.

If k'/k is a Galois extension in k one can show that the groups Gal(k'(X)/k(X)) and
Gal(k'/k) are isomorphic.

The other way round we also need to define
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Definition 2.13 Let k C E be two fields. Let X/E be a nonsingular complete curve. We
say that X /E is defined over k if the function field E(X)/E contains a function field L/k
such that EL = E(X).

Let X/k be a complete nonsingular curve and let P € X;. For o € Gal(k/k) let o(P) be such
that Opy = o(Op). Put Stab(P) := {0 € Gal(k/k)|o(P) = P}. The field of definition of P

is k(P) := k5%*(P), We call deg(P) := [k(P) : k] the degree of P.

It may happen that for two curves X/k and Y/k the curves X/k and Y/k are isomorphic as
nonsingular curves over k. Then the curve Y is called a twist of X.

Consider again B = k[z,y]/(F') for an absolutely irreducible polynomial F' such that B is a
Dedekind domain. As we have seen at the beginning, the maximal ideals M of B can be given
as Ker(p(q,)) for a pair (a,b) € kExk with F(a,b) = 0. Since M C k[z,y]/(F) we could use
any of the conjugates of (a,b) under Gal(k/k) instead of (a,b). This motivates the following
lemma.

Lemma 2.14 Let X/k be a nonsingular complete curve. Consider the map
I:X; — X, P P, such that Op := Op N k(X).

The map I is surjective and X is in bijection with the set of orbits of Xz under the action of

Gal(k/k).
We also can extend the morphisms for a base change.

Definition 2.15 Consider a morphism ¢ : X — Y of curves over k, given by the inclusion
kE(Y) C k(X). Now let k be the algebraic closure of k contained in k(X) and let k'/k be an
extension of k contained in k. Using the inclusion k'(Y) C k'(X) the morphism ¢ can be
extended to the morphism ¢' : X — Y. The morphism corresponding to k(Y) C k(X) is
denoted by .

Consider again Example 2.11.

Example 2.16 Let F(z,y) := y> — f(z) with f(z) € k[z], char(k) # 2, and f has no
multiple roots in k. We consider the function field k(X) and the corresponding morphism
7 : X — PY(E) of degree 2 which is an extension of the morphism considered above. Assume
first that deg(f) = d is odd. LetV denote the domain of = in X. By the previous example we
know that X\V consists of a single point which is mapped to co under 7, hence 7 is ramified
at this point with ramification index 2. All other points of X correspond to mazimal ideals
M of k[z,y]/(F), and since k is algebraically closed M = (z — a,y — b), F(a,b) = 0 with
image under T corresponding to (z — a). Since F is of degree 2 in y, the other ramification
points of T correspond to the d zeros of F of the form (a;,0), f(a;) = 0. Thus, the morphism
is ramified at d + 1 points with ramification index 2.

If deg(f) = e is even and the leading coefficient is a square in k, then X\V consists of two
different points mapped to oo under w. Hence, T is unramified at this point. Therefore the
only ramification points correspond to the e zeros of F' of the form (a;,0), f(a;) = 0.

Thus, in both cases the number of ramification points is 2[deg(f)/2] and if in the second
case one of the ramification points lies in k one can transform the equations such that an
isomorphic curve is described by an equation with f of odd degree e — 1. A transformation
from the first to the second case is always possible.



2.1. NOTATION AND DEFINITIONS 13

We now introduce a class group related to the curve X called the Picard group of X/k or the
divisor class group of X/k. First we need the following definition:

Definition 2.17 Let L/k be a function field and consider the set of surjective valuations of
L that are trivial on k, namely V(L/k). When V(L/k) # 0, the free abelian group Div(L/k)
generated by the set {z,|v € V(L/k)},

Div(L/k) = @UEV(L/]C)Z'T’Ua
is called the group of divisors of L/k.

An element D is written as a sum Y a,z, with a, € Z and a, = 0 for all but finitely many
v € V(L/E).

Such a divisor is called effective if a,, > 0 for all v € V(L/k).

We now attach to a function f € L* a divisor defined by the map

div, : L* = Div(L/k), f > v(f)z.
veV(L/k)

Divisors resulting from functions are called principal divisors.

Definition 2.18 The Picard group Pic(L/k) is the quotient of the group Div(L/k) by the
image of the map divy. The following sequence of abelian groups is exact:

1) — () 0 — L* 5 Div(L/k) - Pic(L/k) — (0).
veV(L/k)

Let X/k be the curve associated to the function field k(X)/k. Using the identification of
valuations and points we let Div(X/k) := ®@pcxZP.

Let P € X and consider the local principal ideal domain Op in k(X) corresponding to P.
The degree of P is defined by deg(P) = [Op/Mp : k]. Note that this definition coincides
with the one given above for elements of Xz: Let k(X)/k(x) be finite and let P be in the
domain of z. Let the maximal ideal M corresponding to P be M =Kery(, ;) and put @ € X}
the point corresponding to (z — a,y —b). Then [k(Q) : k] = [Op/Mp : k).

Definition 2.19 The degree of a divisor D € Div(X/k) is defined to be deg(D) =
> apdeg(P).

Actually it will be the subgroup Pic’(X/k) of degree zero divisors modulo the group of
principal divisors that we will use as a group in cryptography. Note that this definition
makes sense since the principal divisors have degree 0. For a finite field & and a nonsingular
complete curve X/k we have that Pic®(X/k) is finite. The order of Pic’(X/k) is then called
the class number of X/k.

Using the obvious group law would result in sums containing more and more terms if we do
not have a powerful reduction theory. Furthermore to use this group in the applications we
need some kind of unique representation of these divisor classes and an efficient group law on
the reduced classes.

Therefore we now investigate a further class group associated to the function field L/k, or



14 2. MATHEMATICAL BACKGROUND

more generally to an extension field. Let B be a Dedekind domain. Consider the following
equivalence relation on the set of non-zero ideals of B:

I = J if and only if there exist a, 8 € B\{0} such that («)I = (8)J.

These equivalence classes of the ideals modulo the principal ideals form a group Cl(B) called
the ideal class group of B.

Now let L/k be the field of fractions of B and let k¥ C B. We define

Div(B) := @vev(r/k) Ly,

v(B)>0

and
divg : I* - Div(B), f = Y v(f).

veV(L/k)
v(B)>0

Then the following map defines a group homomorphism (also called cl like above)
cl: Div(B) — CI(B), z, — class of M, N B.

In fact, this map induces a group isomorphism from Div(B)/divg(L*) (with the group-
operation addition of divisor classes) to Cl(B) (with the group-operation multiplication of
ideal classes).

For the restriction map

res : Div(L/k) — Div(B), Z AyTy Z AypTy
veV(L/k) veV(L/k)
v(B)>0
we have res o divy, = divpg.
This leads to the following lemma:

Lemma 2.20 Let k' := nvEV(L/k) Oy. The map res induces the following commutative dia-
gram with exact rows:

1) — &) — L* %% Div(L/k) — Pic(L/k) — (0)
i | } res i
1 — B — L* ™ DB — CB) — (0

We consider the case of a nonsingular complete curve X /k corresponding to the function field
k(X)/k. Let z € k(X) such that k(X)/k(z) is finite and let B be the integral closure of k[z]
in k(X). Then B is a Dedekind domain and due to the definition of a function field we have
Mvev(r/k) Ov = k. For the morphism 7 : X — P! defined above let 7 1(00) = {P1,..., P}

and define U := {P € X|Op C B}. Then 7 !(c0) is the complement of U in X.

The above lemma holds as well if we consider only the divisors of degree 0, denoted by
Div?(X). Thus we have the following commutative diagram with exact rows:
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div,

1) — ¥ — kX)) = Div’%(X) — Pic(X) — (0)
! | J res 1
1) — B* — kX)) 8 Div(B) — CIB) — (0)

We will use the correspondence between Pic’(X) and CI(B) to obtain an efficient arithmetic
since the multiplication of ideals can be performed using operations in the polynomial ring
klz,y]. And as we have seen at the beginning each maximal ideals of k[z,y]|/(F) can be
generated by two elements. The same way we can also find a representative for each class by
two polynomials. We discuss this in the next section in more detail.

Denote the map from Pic’(X) to CI(B) by ¢. It is given by

¢ : Pic’(X) — CI(B), class of Z apP H (class of Mp N B)“P.
Pex PeU

If ¢ is bijective we can identify the groups. This is the most interesting case for applications.
However this cannot be the case if B* is strictly larger than k*, hence if |7 ~1(00)| = 7 > 1,
since one can show for finite fields £ that B* has rank r — 1 and torsion group k*.

Let k(X)/k(z) be a function field and consider the fiber of oo, hence the points Pi,..., P,
of X that map to oo under w. The regulator R is an integer associated to these valuations
providing information about the group of units B*. If r = 1 we put R = 1. We do not go
into the details here since we will be concerned with the imaginary quadratic case, hence
with R = 1. The definition can be found like the other results in Lorenzini [41]. For the use
of function fields of unit rank > 1 and a comparison of both cases we refer to Paulus and
Riick [57] and several works of Stein, for example [71].

Lemma 2.21 Let X/F, be a curve defined over the finite field Fy,. Let m1(c0) =
{P1,...,P.}. Then we have the following relation between the class number, the ideal class
number and the regulator:

ICU(B)| - R = [Pic®(X)| - ] ] deg(P) - log(a)™".
i=1

Example 2.22 (Consider the setting of Example 2.11.

In the first case, i.e. the real quadratic case, r = 2 and the degree of each point at
infinity is 1. In this case the regulator is nontrivial and the groups Cl and Pic® can be
of very different cardinality. In the third case we have that r = 1, hence, R = 1 and the
point at infinity has degree 1. Thus the groups have equal cardinality and in fact Ker(p) = {0}.

Before we conclude this section we introduce a further invariant of the curves we will need —
the genus. Take for example the hyperelliptic curves in odd characteristic. For all of them
the function field can be defined via a polynomial y? = f(x), f(z) € k[z]. However we can
further discriminate by considering the degree of f. In the case of hyperelliptic curves this
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is just what the genus does. This invariant occurs for example in the formula for the size of
Pic’(X). We define it via the Theorem of Riemann-Roch. First we define a space associated
to an effective divisor.

Definition 2.23 Let D be an effective divisor. Consider the following partial order > on
Div(L):
D' > D <= D' — D is an effective divisor.

Define for a divisor D
H°(D) := {«a € L|div(a) + D > 0}.

This set actually is a finite space over k. Put h°(D) = dim H°(D).

Hence, this dimension is the same for all elements of a divisor class. We do not further
motivate the following theorem but a detailed treatment can be found in almost any book on
the topic.

Theorem 2.24 (Riemann-Roch) Let X/k be a nonsingular complete curve. Then there
exists a divisor K € Div(k(X)) and a non-negative integer g such that for all D € Div(k(X))
we have

h’(D) = deg(D) +1 — g + h°(K — D).

Definition 2.25 The integer g occurring in the Riemann-Roch Theorem is called the genus
of the curve X/k. A nonsingular complete curve of genus 1 with at least one point is called
an elliptic curve.

An important property of the genus is that it does not change with scalar extensions of the
ground field.

There are some curves where one can read off the genus from the polynomial defining the
corresponding function field.

Example 2.26 Let the curve X/k be given by a polynomial

y2 - f(x)a

where f is squarefree and char(k) # 2. Let deg(f) =29 +¢, € =1 or 2. Then the genus of
X equals g.

In characteristic 2 we have seen that the defining equation of a quadratic function field is of
the form y® + h(z)y — f(z). Let deg(f) =2g+¢, € =1 or 2. Then the genus of X equals g
and we even have that degh < g.

2.2 Algorithms for the Ideal Class Group

To summarize the previous section, we state the case of function fields we consider in this
article as a definition. Furthermore note that from now on we let £ = F, be a finite field of
characteristic p. We deal with hyperelliptic curves in imaginary representation only, hence
with those having at least one Fj-rational ramification point of 7. Thus the class number
Pic’(C/F,)| and the ideal class number |Cl| are equal.
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Definition 2.27 Let F,(C)/F, be a quadratic function field defined via an equation

Yy’ +h(z)y = f(z) in Fylz,y], (2.1)

where f(z) € Fylz] is a monic polynomial of degree 2g + 1, h(z) € Fy[z] is a polynomial of
degree at most g, and there are no solutions (z,y) € Fq X f‘q which simultaneously satisfy
the equation y> + h(z)y = f(x) and the partial derivative equations 2y + h(z) = 0 and
W (z)y — f'(z) = 0. The curve C/F, associated to this function field is a hyperelliptic curve
of genus g defined over Fy.

Furthermore we can identify points P associated to valuations vp with vp(k[z,y]/(F)) > 0
and deg P = 1 with tuples (a,b) € Fg with F'(a,b) = 0. And there is a single point not in the
domain of z. We denote it by oo like in P}(F,).

We have seen that for odd characteristic is suffices to let A(z) = 0 and to have f squarefree.
We now provide some very basic examples:

Example 2.28 Curve of genus 1 (elliptic curve) over Fig01
C: y* = 2® + 598z + 1043.
Curve of genus 2 over Fy = Fo(a), o? = a+1
C:y*+ (@ +az+)y=2"+az* + 23+ 22+ 2+ 1.
Curve of genus 3 over F100000007

C:y? = 27 —32%+ 325+ 25000003 z*
449999999 z* + 75000009
450000002  + 25000002.

Curve of genus 4 over Fqyro
C: vy +z'y=2"+28+2°+ 2.

Consider a point P # oo of C, if deg P = n then we can find a,b € Fg» such that we can
identify P with (a,b). Hence, for the points defined over a fixed extension field we can rely
on the interpretation of a point as a zero of y2 + h(z)y — f(z). We have +P = (a, —b — h(a)),
where ¢ is the hyperelliptic involution. The function (z — a) leads to a divisor P + 1P — 2c0.
Hence, we can achieve that we represent a divisor class by a divisor D = Y, | P;—roco, where
P; # oo and P; # 1P; for i # j. Furthermore one finds a representative with r < g. Note
that D defined over F4» does not imply that each F; is defined over the same field. If P; is
defined over Fqnz then all [ conjugates of P; must also occur in D. Therefore [ is bounded by g.

We have seen in the previous section that the maximal ideals of Fy[z,y]/(y? + h(z)y — f(z))
have a basis consisting of two polynomials. By the construction presented there, the first
polynomial is in Fy[z], whereas the second one is of the form y — v(z),v(z) € F4[z], since we
reduce modulo a polynomial of degree 2 in . Now consider the ideal class group, i.e. the
ideals modulo the principal ideals. In Mumford [50][page 3.17] the following representation is
introduced which as well makes explicit the correspondence of ideal classes and divisor classes:
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Theorem 2.29 (Mumford Representation)

Let the function field be given via the irreducible polynomial y? + h(zx)y = f(x), where h, f €
F,[z], deg f =29+ 1, degh < g. Each nontrivial ideal class over Fgn can be represented via
a unique ideal generated by u(z) and y — v(z), u,v € Fgn[z] , where

1. u is monic,
2. degv < degu < g,
3. ulv? +vh — f.

Let D=3, | P, —roo, where P; # o0, P; # 1P; for i # j and r < g. Put P; = (z;,y;). Then
the corresponding ideal class is represented by u = [[;_,(z — ;) and if P; occurs n; times
then (%)j [v(z)? + v(z)h(z) — f(:v)]u:x' =0,0<j<n;—1.

For short we denote this ideal by [u,v]. The inverse of a class is represented by [u, —h — v],
where the second polynomial is understood modulo = if necessary. The zero divisor is
represented by [1,0]. We now denote the ideals and ideal classes by D due to the relation to
the divisors.

The second part of the theorem means that for all points P, = (z;,y;) occurring in the
support of D we have that u(z;) = 0 and the third condition guarantees that v(z;) = y; with
appropriate multiplicity.

Addition of divisor classes means multiplication of ideal classes which consists in a compo-
sition of the ideals and a first reduction to a basis of two polynomials. The output of this
algorithm is said to be semireduced. Then we need a second algorithm, which is usually
called reduction, to find the unique representative in the class referred to above. Such an
ideal is called reduced. Due to the work of Cantor [4] (for odd characteristic only) and
Koblitz [33] there exists an efficient algorithm to do so which is similar to the computation
in the number field case. The algorithms are given in detail in several publications including
Cantor [4], Koblitz [33], Krieger [37], Menezes et.al. [47] and are therefore stated here without
further comments. The running time estimates are 17¢g + O(g) operations in F, for a generic
addition whereas doubling takes 16g% + O(g) operations (see Stein [70]). Improvements are
possible in special cases.

Algorithm 2.30 (Composition)
INPUT: D; = [ul,vl],Dg = [’U,Q,UQ],

C:y? + h(z)y = f(2).
OUTPUT: D = [u,v] semireduced with D = D1D,.

1. compute di = ged(uy,ug) = erur + esus;

2. compute d = ged(dy,v1 + v + h) =
=cdy + CQ(’Ul + vo + h),‘

3. let s1 = c1e1,89 = c1e9,83 = C3;

i.e. d = sy1u1 + soug + s3(vy + vy + h);
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4ou= "

_ SIUI’U2+S2U2Udl+SS(U1U2+f) mod w.

Algorithm 2.31 (Reduction)
INPUT: D = [u,v] semireduced.
OUTPUT: D' = [u/,v'] reduced with D = D'.

_ [-vh—v?
1. let u' = &=

v = (—h —v) mod v';

2. if degu' > g put u:=u',v:=" goto step 1;

3. make u' monic.

2.3 Cardinality of Pic’(X/F )

Note that later on we consider the case where the class group and the ideal class group are
isomorphic, however the results presented here hold in general for the Picard group Pic’(X).
Unless stated otherwise the results hold for any nonsingular complete curve X defined over
F,.

For cryptographic purposes it is necessary to know more about the group structure of the
chosen group. For example to avoid the Pohlig-Hellman attack one has to guarantee that
the class number contains a large prime factor. Let F, denote the algebraic closure of F,
contained in Fy(X). Let Fyn denote the unique subfield of Fy, of degree n over F,. Extending
the concept of extension of scalars to the Picard group we put

Ny = |Pic®(Xp, /Fgn)|-

From now on we omit the index of X unless confusion might occur.
For the group order we have the following bound depending only on the finite field and the
genus of the curve:

Theorem 2.32 (Hasse-Weil)
(qn/Q _ 1)2g <N, < (qn/2 + 1)2g_
Thus N,, = ¢"9 4+ O(¢"9=1/2)).

Denote by M, the number of points of Xg, that are defined over Fyr or a subfield Fgs, s|r.
There is a relationship between the N; and the numbers M, for 1 < r < g. The power series
Z(X/Fg,t) = exp (D2 Mpt"/n) is called the zeta-function of X/F,. The zeta function is
proved to be rational (see [41][Chapter VIII] and [73][Chapter V]). It can be written in the
form Z(X/Fy,t) = %, where L(t) is a polynomial € Z[t] of degree 2g. We are more
interested in the related polynomial P(T) = T?9L(1/T). In the following theorem we list the
most important properties of P.
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Theorem 2.33 Let the factorization of P(T) over C be P(T) = H?il(T — 7).
1. The roots of P satisfy |7;| = \/q.
2. There erists an ordering with T;14 = T;, hence, T;147; = q.

3. P(T) is of the following form

T2 4 g1 T2 + qoT?972 + ... + agT9 + qag,ng_l +o ¢ T+ ¢f.

4. For any integer n we have
29
N, =]]a-.
=1

5. For any integer n we have
My, — (¢" +1)| < g[2¢"].
6. For any integer n we have

29
Mn:qn—Fl—ZTZn
=1

7. Put ag =1 then
ia; = (M; — (¢' + 1))ao + (Mi—1 — (¢ "+ 1)ar + -+ + (M1 — (g + 1))ai
for1 <i<g.

Thus from the first g numbers of points on the curve M; one can obtain the whole polynomial
P(T) and thus the class number as P(1). To illustrate this relation: For a genus 2 curve we
have to count the number of points defined over F; and F 2 to obtain a; = M1 —¢q — 1 and
as = (My — ¢?> — 1+ a?)/2.

Hence, if the curve is defined over a small field, then we can easily obtain the polynomial
P(T) and therefore the class number for any extension field.

For further reference we give the following rather inexact definition:

Definition 2.34 A curve defined over a small finite field which is considered over a large
extension field is called a Koblitz curve.

We have just seen one advantage of Koblitz curves — P(T) can be determined easily. In
Chapter 4 we explain the details on the computation of P(T) and the class number for
extension fields for Koblitz curves.

From 1. and 5. we can obtain bounds on the coefficients of P. For example we have
lai] < g[24/q], |az| < (229)q. In more detail and in dependence on a;, Riick [60] shows for
hyperelliptic curves of genus 2 that in the case of irreducible P(T) we even have

2|a1|\/q — 29 < as < a?/4+ 2q, (2.2)

a? — 4ay + 8¢ is not a square, and some conditions on the divisibility of a; and a2 by p hold.
Furthermore the structure of P(T), i.e. 3. can be read off from 1. and 2..
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7. follows by considering the derivative of InZ(X/F,,t) in both representations - as
L

€eXp (E;.;,ozl Mnt"/n) and as ﬁ%%t)

Let P(T) = T?4a1T% ' +aoT? 2+ -+a,T9+qag 1T +---+¢91a; T+¢? correspond to

the curve X/F, and let Y/F, be a quadratic twist of X. One can show that for Y the polyno-

mial is of the form 729 —a; T?9 ' +apT? 2+ — - - -+ —a,T9+—qag 1 TI ' +— - —q9  a; T+¢9.

In cryptographic applications we usually work in a subgroup of Pic’(X/Fy») of prime order.
Since two curves having the same polynomial P(T') have the same class number over any
extension of the ground field, we can classify the curves using this polynomial. The classes will
be called isogeny classes as the Jacobian varieties of the curves are isogenous. The Jacobian
variety J associated to a curve is an abelian variety, i.e. a nonsingular, complete variety with
group operations given by regular maps. It corresponds in a functorial way to the Picard
group of the curve X such that for any field Fn C F, the group of Fn-rational points of the
Jacobian is in bijection with the group PicO(XFq JF,) G Fe/Fon) and such that for a given
F;-rational point Py of X there exists a morphism ¢ : X — J that sends Fy to the identity
element of J. This morphism induces the map Div?(X/F;) — J : Y. n;P; = 3" n;¢(P;) which
gives an isomorphism Pic®(X/F,) — J(F,). The dimension of J is the genus of X. Two
abelian varieties A and B are isogenous if there exists a surjective homomorphism A : A — B
whose kernel is finite.

There are certain curves we want to avoid, since they are weak under a special attack. For
the elliptic curves one can use the Weil pairing to map the discrete logarithm problem of the
curve over Fyn to an equivalent one in Fkn, where £ is such that the I-th roots of unity are
in F kn, and where the prime [ is the order of the group used in the cryptosystem. Thus k
is the order of ¢" modulo [. Menezes, Okamoto, and Vanstone [44] showed that for certain
elliptic curves k is always < 6 independent of the degree of extension n. This attack is a
special case of the one by Frey and Riick [14] which works as well for the Picard group of
hyperelliptic curves. Thus before accepting a hyperelliptic curve to use in cryptography one
should always check that k is large enough, i.e. > 2000/ log, ¢™.

Usually k£ depends on the extension field F;» we consider, however there are some curves that
are always weak under this attack. Galbraith [16] provides a list showing how large k can get
for so called supersingular curves depending on the genus of the curve. Since the & is relatively
small in any such case, supersingular hyperelliptic curves should be avoided. Note that this
is an abuse of notation since it is the Jacobian variety of the curve that is supersingular in
this case.

Since we do only use the concept of supersingularity to exclude some curves, we shall use the
criterion to detect them (see Galbraith [16] and Tate [74]) as a definition.

Definition 2.35 Suppose ¢ = p" and suppose J is the Jacobian variety of a hyperelliptic
curve of genus g over Fg. Suppose

P(T) — T29 + a1T29—1 NI ang 4.4 qg—lalT + qg
is the corresponding polynomial. Then J is supersingular if and only if, for all1 <i < g,
p[ri/Q] |ai-
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Note that we have to be aware of k for every curve, but usually k£ will be large depending on
n, whereas for supersingular curves it is always small.

Example 2.36 Put p = 2. Galbraith [16] shows that every nonsingular curve of the form
y' +y=f(x)

is supersingular.

2.4 The Frobenius Endomorphism

In this section we define the Frobenius endomorphism of a curve and give its characteristic
polynomial. Also in this section the results hold for arbitrary curves defined over a finite
field F,.

Let k be a perfect field of characteristic p > 0 and denote by k its algebraic closure.
Let us first motivate our studies by an example:

Example 2.37 Let F € k[z,y] be irreducible and assume that k[z,y]/(F) is a Dedekind
domain. For F =" a;jz'y’ put FO™) = Zafj z'yl. Then the map

(")« Kz, y)/(F®Y)) = kla,y)/(F), class of g(x,y) = class of g(a",y"")

is a homomorphism of k-algebras. It induces a morphism of the corresponding curves whose
restriction to the zeros of F respectively F®") maps (a,b) to (a®",b""). The image of (¢™)*
in k[z,y]/(F) is the set of p"-th powers as (¢*/?") (z,y))P" = g(«?",y*").

For a k-algebra R let Frobg : R — R,r — rP and denote by RP the image of Frobg in R.
Now let K/k(z) be a finite extension. The diagram

k" g c ok
T T T
Ob(z))" n
ko) U @t C k().

together with k(z)?" = k(zP") shows that [K : KP"] = p". The inclusion K" C K leads to a
homomorphism of k-algebras .

Definition 2.38 Let k be a perfect field. Let k(X)/k(x) be the function field of a complete
nonsingular curve X/k. Then k(X)P" /k is the function field of a complete nonsingular curve
denoted by X(pn)/k. The inclusion k(X)P" C k(X) defines a completely inseparable morphism
of complete curves over k of degree p™:

" X — X)),

Now let k = F, where ¢ = p” and let X/k be a nonsingular complete curve. Then (Frobyx))" :
E(X) — k(X)P" induces the identity restricted to k and hence leads to an isomorphism of
k-algebras. It induces an isomorphism of curves ¢ : X (?") — X. The concatenation of ¢" and
1 leads to an endomorphism of X.



2.4. THE FROBENIUS ENDOMORPHISM 23

Definition 2.39 Let X/F, be a nonsingular complete curve. The endomorphism o : X — X
given by o =1 o ¢" is called the Frobenius endomorphism of X over F,.

The map o* can be extended to a map o* : Fy(X) — Fy(X), >0, uia;/q = U0y,
where u; € F,,a; € Fy(X) and a corresponding map & : Xg, = Xp,-

In the first section we used the Galois group of k/k to define the field of definition of a point.
For finite fields £ = F, this group is generated by the Frobenius automorphism Fr of Fq over
F,, where Fr(u) = u? for u € F,. Furthermore we have seen that the groups Gal(F,/F,)
and Gal(F,(X)/F,(X)) are isomorphic. Now consider the action of Fr on the function field
Fr:Fy(X) = Fo(X), S5 uici = Y5 ; ula;, where like above u; € Fy, a; € Fy(X). One
can show that for points P € X we have that Fr(P) = &(P). Thus, let F,(X)/F,(z) be a
finite extension, hence, F,(X) = Fy(z,v)/(f), and let P correspond to a maximal ideal given
by (z —a,y —b). Then using the second map we see that &(P) corresponds to (z —a?,y — b?).
This motivates the following statement which could also have served as a definition of the
field of definition of a point.

Lemma 2.40 Let X/F,; be a nonsingular complete curve. A point P € Xp, is defined over
F, if and only if 6(P) = P.

In the case of hyperelliptic Koblitz curves C/F, we consider here, we identified the points
with oo or with a zero of the defining polynomial over an appropriate extension field. If
P # o is defined over Fyn, then P = (u,v), u,v € Fgn and (P) = (uf,v?). For the point
oo we have seen that it is defined over the ground field, hence &(00) = oo.

The Frobenius endomorphism extends to the group of divisors and hence also to the Picard
group PicO(XFq /Fq).

Example 2.41 Consider the case of imaginary quadratic function fields. Then we represent
the diwisor classes via the ideal classes. If D =Y n;P; —roo is represented by (3_;_, uizt, Yy —
S vizt) then G(D) = Y. n;5(P;) — roo is represented by (Y1_o ulz,y — 3=y viz?).

Let X/F, be a nonsingular complete curve of genus g. One can use PicO(XFq /F,) to get a
representation of Gal(F,/F,). Denote by J[m] the kernel of the multiplication by m map on
PicO(XFq/l_?‘q). If m is prime to p then J[m] is isomorphic to (Z/mZ)% as Z/mZ-module.
One can show that the natural action of Gal(F,/F,) on PicO(XFq /F,) restricts to an action
on J[m]. Denote by py, : Gal(F,/F,;) — Perm(J[m]) the group homomorphism associated to
this action. The image of p,, lies in the subgroup of endomorphisms of (Z/mZ)-modules of
J[m]. Hence the image of a Galois automorphism corresponds to a matrix of GLag(Z/mZ).
We shall be interested in the image of the Frobenius automorphism.

Let ! be a prime. The Tate module T;(X/F,) of X/F, is defined as the projective limit
of the projective system of multiplication by /-homomorphisms {J[I"*!] — J[I""]}. Using
the projective limit of the representations p;r leads to a representation p; of Ga,l(f‘q /Fy) in
GL4(Z;), where Z; denotes the [-adic integers and s = 2g for [ # p.

Let now Fr € Gal(F,/F,) denote the Frobenius automorphism. Put

P(Fr,)(T) := det(py(Fr) — T).

Then this polynomial is the characteristic polynomial of p;(F'r) in GLgg(Z;). Obviously it
has degree 2g. The following theorem will be important for our applications.
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Theorem 2.42 Let X/F, be a nonsingular complete curve of genus g > 1. Then for all
primes | # p the polynomial P(Fr,l)(T) is a polynomial with integer coefficients. Moreover
the coefficients are independent of I. In fact this polynomial is equal to the polynomial P(T) =
T?9L(1/T), where L is the numerator of the zeta-function Z(X/Fg,t).

We will make intensive use of the Frobenius endomorphism of the curve to speed up the
arithmetic in Pic’(X/F;») and use the fact that for points the maps defined above corre-
spond such that we can use the characteristic polynomial of the Frobenius automorphism of
Gal(Fy/F) also as the characteristic polynomial of the Frobenius endomorphism of Xz and
of Pic®(X/Fyn).



Chapter 3

Computing in the Divisor Class
Group for Genus 2

Like for elliptic curves it is also possible to perform the group operations using explicit
formulae in the divisor class groups of curves of larger genus. In her thesis, Spallek [69]
develops such equations for genus 2 in the most common case of divisor classes whose
representing polynomial u is of degree 2 and for odd characteristic. These formulae are
also used by Krieger [37]. Harley [29] takes a slightly different approach to optimize the
running time. In their record for computing the group order for a genus 2 curve, Gaudry
and Harley [22] make use of these formulae as they allow faster arithmetic than Cantor’s
algorithm. Harley also only considers the case of odd characteristic but allows all kinds of
divisor classes making an extensive case study. For genus two these formulae seem to be
faster than the standard algorithm, but for larger genus the number of different cases to
consider increases and the dependencies get too involved. As for our purposes the finite fields
of even characteristic are of special importance, we follow Harley’s approach and develop
formulae for characteristic two. We consider the case of genus 2 only.

To do so, we first make a case study of what can be the input of the combination algorithm
and proceed in considering these different cases. We determine the exact number of
operations needed to perform addition and doubling in the most common cases. In the other
cases the operations are usually cheaper.

From these expressions we can as well derive explicit formulae. For example instead of v(z1)
we could as well write viz1 + v9 and the modular reduction can be made explicit as well.
This is used when we implement the arithmetic. However the way we present the expressions
here is hopefully more transparent.

Note that some older articles report on the advantages of the computation in the divisor class
group in characteristic two over that in others characteristics. But they assume h = 1. Then
in the doubling step of the composition one can always take d = 1 and s; = s9 = 0, s3 = 1.
Therefore u = u? and v = v2 + f mod u. However as we stated in the previous chapter, these
curves are always supersingular and thus they should be avoided. To our knowledge no one
has cared about the arithmetic in even characteristic in other cases.

Unless stated otherwise the formulae hold independently of the characteristic, thus they allow
the computation for the more general model C : y? + h(z)y = f(z). Therefore we take care

25
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of the signs; in characteristic two 2y is understood as zero.

3.1 Different Cases

Consider the composition step of Cantors Algorithm 2.30. The input are two classes rep-
resented by two polynomials [u;, v;] each. As we consider curves of genus two the following
holds from Theorem 2.29:

1. w is monic,
2. degv < degu < 2,
3. ulv? +vh — f2
We now consider all possible cases. Without loss of generality let degu; < deguo.

1. uy is of degree 0, this is only possible in the case [u1,v1] = [1,0], i.e. for the zero
element. The result of the combination and reduction is the second class [ug, v2].

2. If u; is of degree one, then either us is of degree 1 as well or it has full degree.

(a) Assume degus =1, i.e. u; = = + u;o and the v; are constant. Then if u; = uo we
obtain for v; = —vy — h(—u1p) the zero element [1,0] and for v; = v, we double
the divisor to obtain

= ul, (3.1)
= ((f'(=u10) — vih'(—w10))x + (f'(—u10) — v1h'(—u10))u10) /(201 + h(—u10)) +v1.

Otherwise the composition leads to u = ujus and
v = ((v2 — v1)x + vou1g — v1u20)/(u10 — U20).
In all cases the results are already reduced.

(b) Now let the second polynomial be of degree two, us = 2 + ug1z + ug. Then the
corresponding divisors are given by D1 = P —oo and Dy = P+ P3— 200, P; # oc.

i. If ug(—u19) # 0 then P; and —P; do not occur in Dy. This general case will
be dealt with below in Section 3.3.

ii. Otherwise if vo(—u19) = v1 + h(—u19) then —P; occurs in Dy and the resulting
class is given by u = x + ug; — u19 and v = vo(—ug1 + u19) as —ug; equals the
sum of the z-coordinates of the points.

Otherwise one first doubles [ui,v1] by (3.1) and then adds

[z + w21 — w1, v2(—u21 + uip)], hence, reduces the problem to the case
of 2(b)i.

3. Let degu; = degug = 2.

(a) Let first u; = up. This means that for an appropriate ordering D1 = P, + P, —
200, Dy = P3 + Py — 200 the z-coordinates of P; and P; 5 are equal.

i. If v1 = —v9 — h mod u; then the result is [1,0].
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ii. If v;1 = v then we are in the case where we double a class not of order two and
with first polynomial of full degree. Again we need to consider two sub-cases:
If D1 = P, + P, — 200 where P, is equal to its opposite, then the result is 2P
and can be computed like above. P, = (zp,,yp,) is equal to its opposite, iff
h(zp,) = —2yp,. To check for this case we compute the resultant of h + 2v;
and u1.

A. If res(h + 2v1,u;) # 0 then we are in the usual case where both points are
not equal to their opposite. This will be considered in Section 3.4.
B. Otherwise we compute the ged(h+2v1,u1) = (z—zp,) to get the coordinate
of P; and double [z + u11 + zp,,vi(—u11 — zp,)].
iii. Now we know that without loss of generality P, = P3 and P, # P, is the
opposite of Py. Let v; = v;1+v40, then the result is 2P; obtained by doubling
[z — (vi0 — v20)/(v21 — v11),v1((v10 — v20)/(v21 — v11))] using (3.1).

(b) Now we consider the remaining case u; # uo. We need to consider the following
cases.

i. If res(u1,u2) # 0 then no point of D; is equal to a point or its opposite in Ds.
This is the most frequent case. We deal with it in Section 3.2.

ii. If the above resultant is zero then ged(u1,us2) = £ — zp, and we know that
either D1 = P, + P, — 200, Dy = P; + P3 — 200 or Dy contains the opposite
of P, instead. This can be checked by inserting zp, in both v; and wvs.

A. Tf the results are equal then we are in the first case and proceed by comput-
ing D' = 2(P; — o0), then D" = D'+ P, — 00 and finally D = D" + P3 — o0
by the formulae in 2. We extract the coordinates of P, and P3 by
Py = (—u11 + zp,v1(~u11 + zp,)), P3 = (—u21 + zp, v2(—u21 +zp,))-

B. In case vi(zp,) # vo(xp,) the result is P, + P3 — 200.

If one uses the resultant as recommended in 3(a)ii and 3(b)i then one needs to compute a
greatest common divisor as well to extract the coordinates of P;. However most frequently
we are in the case of resultant nonzero and thus we save on average.

3.2 Addition in Most Common Case

In this case the two divisor classes to be combined consist of 4 points different from each other
and from each other’s negative. The results of the composition Algorithm 2.30 are ujus and
a polynomial v of degree < 3 satisfying u|v? +vh — f (see Theorem 2.29). As we started with
u;i|v? + vih — f we can obtain v using Chinese remaindering;

v = w1 mod uq, (3.2)

v = v mod us.

Then we compute the resulting first polynomial «' by making (f — vh — h?)/(ujuz) monic
and taking v' = (—h — v mod u').

To optimize the computations we do not follow this literally. We now list the needed
subexpressions and then show that we obtain in fact the desired result. Again this is
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generalized from Harley.

(f — voh — v3) /us

s = (v1—v2)/uz mod uq

Il = s-ug

u = (k—s(l+h+2v))/u
v = wu made monic
v' = —h—(l+v2) mod v

The divisions made to get k£ and u are exact divisions due to the definition of the polynomials.
Let us first verify that v = | + vo = s - ug + vo satisfies the system of equations (3.2).
This is obvious for the second equation. For the first one we consider v = s - ug + v9 =
(v1 — v2)/ug - ug + v9 = vy mod u;.

Now we check that u = (f — vh — v?)/(u1u2) by expanding out

up-ug-u =ug(k —s(l+h+2v)) = f —voh —v2 —I(l + h) — 2lvy = f — vh — v°.

In the case study we have already computed the resultant of u; and uy when we arrive at this
algorithm. Hence, we can assume that %y = us mod u; and res(ts, u;) are known. However
we include the costs here as we use these expressions to compute 1/t mod u;.

In the course of computing we do not need all coefficients of the polynomials defined above.
As f = 2° + Z?:o fiz® is monic and of degree 5, uo is monic of degree 2, degh < 2, and
degvy = 1 we have that k = 23 + (f4 — u21)z? + cz + ¢/, where ¢, ¢ are some constants.
In the computation of u we divide an expression involving k by a polynomial of degree 2,
thus we only need the above known part of k. There are other coefficients we do not use
but we get them almost for free, as they are obtained by additions in the finite field. In the
following Table 3.1 we list the intermediate steps together with the number of multiplications
(M), squarings (S) and inversions (I) needed. Note that when we assume that our field is
represented via a normal basis and work in characteristic two, the squarings are virtually for
free.

In the computation of a product of polynomials we use the following Karatsuba style formula
to save one multiplication:

(az + b)(cz + d) = acz® + ((a + b)(c + d) — ac — bd)z + bd.
To reduce a polynomial of degree 3 modulo a monic one of degree 2 we use
az® +bx? +cx+d = (c— (i+7)(a+ (b—ia) —ia— j(b—ia)))z +d— j(b—ia) mod z2 + iz + j

using only 3 multiplications instead of four.

Note that the generalization to consider h # 0 in odd characteristic does not increase the
complexity as Harley obtains the same number of operations and for characteristic 2 we even
save as the squarings need not be counted.

It might happen that s is constant. Then the number of operations reduces further, the
amount depends on the coefficients of h.
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Table 3.1: Operations to Add in Pic’(C/Fy) in General Case

Expression operations needed
k= (f —voh — v2)/uy free
Subexpressions:

d= U11U21 M
tZU,go—d—FU%l—’U/lo S

Resultant:

r = UQ()(t — ’ul()) + ulo(u%1 —d+ UlO) S, 2M
Inverse of us modulo uq:

inv = ((u11 —uo1)z +1t)/r I, 2M
s = (v — v2)inv mod uy 5M
l=s-u9 3M
u=(k—s(l+h+2v2))/u S, 6M
make u monic I, 2M
v' = —h — (I + v2) mod v 3M

Total: 21, 3S, 24 M
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Table 3.2: Operations to Add in Special Case

Expression operations needed
k= (f —voh —v3)/uz 2M
r = ug mod ug M

Inverse of us modulo u;

inv=1/r I
s = (v1 — v2)inv mod uq 2M
l = S ’u,2 2M

u=(k—s(l+h+2v9))/u1 3M
4 1S monic

vV=—h—(l+v2) modu'  2M

Total: ILL12 M

3.3 Addition in Case degu; =1, degus = 2

By the above considerations we can assume that for u1 = z 4+ u19 we have that us(—u19) # 0.
In principle we follow the same algorithm as stated in the previous section. But to obtain u
we divide by a polynomial of degree 1, therefore we need an additional coefficient of k& and
save a lot in the other operations. This leads to Table 3.2.

Hence, one sees that this case is much cheaper than the general one, however it is not too
likely to happen.

3.4 Doubling

The above case study left open how one computes the double of a class where the first
polynomial has degree two and both points of the representing divisor are not equal to their
opposite. Put u = 2% + w1z + ug, v = vz + vo. Combining [u,v] with itself should result in
a class [Unew, Vnew], Where Uney = u2,

(¥*)  VUnew = v mod u

and

(xx) unew|fuﬁew + Vnewh — f-



3.4. DOUBLING 31

Then this class is reduced to obtain [u’,v']. We use the following subexpressions:

E = (f—hv—2v)/u

s = k/(h+2v) modu
I = (k—=(h+2v)s)/u
w = [—§°
v’ = wu; made monic

= —h— (su+wv) modu

Note that like above we did not compute the semireduced divisor explicitely, here vpew =
su + v. Hence, we see that () holds. To prove (x*) we consider

'Uﬁew + Vpewh — f = s2u? + 2suv + v% + hsu + hv — f= s2u? + u(hs + 2vs — k)

and
(h+2v)s — k= (h+2v)k/(h + 2v) — k = 0 mod u.

Finally one finds by
(f — Vnewh — vgew)/unew =(k—(h+2v)s)/u— $?=1-35°

that u; is in fact obtained like in the reduction algorithm.

We now list the numbers of elementary operations needed in Table 3.3; unlike in the addition
case we need the exact polynomial k£ here to compute d. Like before we include the costs to
compute i = (h 4 2v mod u) and res(h, u).

In the following we consider the worst case when h = hoz? + hyz + ho and hg, hy & {0,1} and
when the resulting s is of degree 1 and not monic. By a linear change of variables we can
achieve hy = 1 in case of nonzero hy by replacing y by h3y' and z by h3z' and dividing the
equation by hi®. Therefore for hy = 1 and hy ¢ {0,1} we state the number of operations as
well. There we also show the effects when s is constant, however usually it will be of degree
1.

If ho, h1 € {0,1} then the number of operations drops down to 21, 6S and 24 M for degs = 1
and to 11, 3S and 19 M for s constant. If like later on we assume that C is defined over Fo,
then we are in this cheaper case. For hy = 0 we can furthermore replace one multiplication
by a squaring.

In the case of odd characteristic Harley needs 2I, 6S and 24M for s of full degree and 11,
3S and 19 M otherwise. Hence, the comparison of the number of operations needed depends
heavily on the structure of h. If we take a curve defined over Fo and assume that For is
represented by a normal basis then we only need 2I and 24M for a doubling and 21 and 24M
for a general addition which is faster than for odd characteristic.
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Table 3.3: Operations to Double in Pic?(C/F )

Expression operations needed
ho,hi € {0,1}  he =1,h1 ¢ {0,1}
degs=1 § = S0

k= (f—hv—v})/u S, 6M S, 4M
d=k modu 2M 2M
Subexpressions:

h = (h+ 2v) mod u 2M free

t= h1U1 M M
Resultant res(h, u):

r = h3 +ugh? — hot 25,2M 23, 2M
Inverse of A modulo uq:

e= (hiz + ho —t)/r modu I, 2M I, 2M

s = de mod u 5M 5M
l=(k—nhs)|u 4M 2M free
' =1—s? 3S 3S S
make u' monic I, 2M I, 2M free
vV=—h—(su+v) modu’ 6M 6M 4M
Total: 91, 6S,32 M 20,6526 M 1,4S,20M

Note that for even characteristic we need only two squarings to compute u’ for s of full degree.
Furthermore in this case squarings can be assumed to be for free.



Chapter 4

Efficient Determination of the Class
Number for Koblitz Curves

For the next two chapters we only consider hyperelliptic Koblitz curves of genus g. In the
first section of this chapter we state some details for computing P(7T') in the case of Koblitz
curves. In the second section we find recurrence relations allowing to compute |Pic?(X/Fyn)|
from the coefficients of P and n. Finally we provide examples computed by these algorithms.

4.1 Computation of P(T)

By Theorem 2.33 the coefficients of P(T') do only depend on the number of points on the
curve over Fy,... ,Fys, where the curve is defined over F; and has genus g. Hence, we first
need a way to count the points.

As F, is of small cardinality since C is a Koblitz curve, this can be done by a brute-force
search using some short-cuts. Stein and Teske [72] investigated a way to compute P(T) by
determining M; only up to i = g — 1 respectively to g — 2 and computing N; (and also No
in the second case). Although the complexity of their algorithm is better we do not get into
its details since our fields and genera are of such a small size that we can count at almost no
effort even for Fy.

Note that the following ideas can be found in Koblitz [33]. First, let ¢ be odd, then C' is given
by C : y*> = f(z). a € F i leads to a single point iff f(a) = 0, hence, to P = (a,0). There are
two points with first coordinate a iff f(a) is a square in F ;. Using the quadratic character x
of Fyi with the convention x(0) = 0 we have

Mi=1+ ) (1+x(f(@)=¢+1+ Y x(f(a)).

aqui aEFqi

x(f(a)) can be computed by f (a)(qi_l)/Z. Thus in the algorithm we simply compute
Zaqui x(f(a)) and add ¢* + 1.

In case of ¢ = 2" the defining equation is C' : y? + h(z)y = f(z) and h(z) # 1 since
otherwise the curve is supersingular. If h(a) happens to be 0, then a € F, gives rise to
one point. Otherwise we make a transformation by dividing through by h(a)? which leads to
the equation v? + v = (f(a)/h(a)?), v = y/h(a). This equation is satisfied for two distinct

33
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values v iff TrFqi:Fz(f(a)/h(a)Q) = 0. If we apply the absolute trace map on both sides then
Trr 7, (? +v) = Trr 7, (v?) + Trr 7, (v) = 0 since we are working in characteristic 2
and Tqu,- F,(v?) = ’I‘r]_:‘qi:F2 (v). Thus to compute M; we do the following. For every a € F;
we first evaluate h(a) and increase M; by one if this is zero. Else we compute the trace of
f(a)/(h(a)?) and increase M; by two if this is zero. Finally we have to add one for the single
point at infinity.

To build a list of all non-isogenous classes of hyperelliptic curves we make a brute force search
through all possible curves, i.e. all polynomials f (and h in characteristic 2), first check
for nonsingularity, and then compute the polynomial P(7"). Since two curves are isogenous
iff they have the same polynomial P our algorithm stores only one representative equation.
If one chooses a curve — or rather a suitable polynomial P — it might be advantageous for
implementation to search through all isogenous curves as the addition formulae depend on
the representation of the curve.

Consider the same curve as defined over Fy» and denote the corresponding polynomial by
P(T). Since due to [Pic’(C/F4)| = P(1) the class number is highly composite unless the
polynomial for the corresponding field extension is irreducible, we would like to exclude the
cases where P is reducible. On the other hand we only compute the polynomial P of the
ground field. And it would be rather time-consuming to check all extension fields. However
we can exclude some cases. Due to formula 4. in Theorem 2.33 we have that if P is reducible
then P for any extension of the ground field is reducible, too. Hence, we only take into
account those curves with irreducible P. Some of the results are included in Section 4.3, but
most of the tabulars require to much space.

4.2 Recurrence Formulae for the Class Number

In this section we deal with the problem of evaluating an expression of the form [];_, (1 — o)
where the a; are the roots of a polynomial of degree r. This problem was considered
by Pierce [54] and Lehmer [39] for arbitrary polynomials. They give explicit formulae to
establish linear recurrence sequences to compute this expression for polynomials of degree at
most 5. However, we can make use of the special structure of our polynomials and obtain
recurrences of lower order for any degree.

In the age of computer algebra systems the more direct approach would be to factor
the polynomial over the complex numbers with a suitable precision and to compute the
expression directly. To get the result one takes the nearest integer or even better the nearest
integer divisible by []7_;(1 — ¢;), i.e. by the value of the polynomial at 1. However, our
approach has the advantage that it is fast, uses exact integer arithmetic only, and that due
to the recurrences one saves even more computing the class numbers for various extensions
subsequently.

Let
P(T) = T2 + GlTZQ_l +---+ ang + ag,qug_l + -+ alqg_lT +q7

be the characteristic polynomial of the Frobenius endomorphism associated to the hyper-
elliptic curve of genus g. In order to compute the order of Pic’(C/Fyn) we use Theorem
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2.33
g g

N =T = =) =T +¢") = (7 + 7).
i=1 i=1
For cryptographic purposes we are interested in groups which contain large prime order
subgroups. For ni|ny we immediately get by (1 —7;"")[(1 — 7,**) that NN, is divisible by Ny,.
Therefore we compute the cardinality of Pic’(C/Fyn) only for n prime in order to achieve a
big subgroup of prime order. The results for various Koblitz curves can be found in the next
section.

We know that the roots 7; of P occur in conjugate pairs and 7; - 7; = ¢. So by grouping
together these pairs we obtain g equations 72 — u; T + ¢ satisfied by the 7;, i.e. 73 + 75 = p;.
As the following formulae get very complicated dealing with the coefficients of P we now
introduce the related polynomial

g
Q) = [T — i) =T+ byT97" + -+ + by,

i=1
The coefficients Q(T') can be obtained recursively from the coefficients of the corresponding
polynomial P (because the 7; are the roots of P, and thus the symmetric expressions in
(r1 +71),-..,(7g + 74) depend only on those in 71,71, ..., 74, Ty, hence on the coeflicients of
P). This has the advantage that we can carry out the computation of the b; using exact
integer arithmetic. We first make use of the b;, and then return to the computation of these
coefficients.
To ease and speed up the computations we derive recursion formulae for the expressions
(r]' + 7') and state them in terms of the corresponding y;. In the final step we expand the
given product using (). Note that we need factor neither P nor Q.
Suppose that we already got 7" + 7" = A1, +piAop +-+ -+ uf_lAg,n, where A;, € Z, which
can be shown by induction like below.
We immediately get:

T 7L = (4 ) (7 4+ ) — (T + 7Y
= pi(Avn + pilon + -+ p 7 Agn) — q(Arn 1+ pidan 14+ pl T Agn 1)
= (_qu,nfl - bgAg,n) + ljlz'(Al,n — qAQ,nfl — bgflAg,n) 4+ 4

+u; _I(Agfl,n —qAg on1—bi1Ay,).

With the initial states A1 =2 = 7'1-0 +7"i0, Ajo=0forj#1and Az; =1 (as Til +7_'Z-1 = 1),
Aj1 =0 for j # 2 we are lead to the following definitions of linear recursions:

Al,n—|—1 = _qu,nfl - bgAg,n
A2,n—|—1 = Al,n _qAQ,nfl - bgflAg,n

Ajnt1= Ajoin —qAjn-1—bg—j11d4gn

Agan+1 = Ag_lan _quan_l - blAgan
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In the expansion of the product

9 g
[T +g = +7) = T[(+0") = (Avn + pidop + - + 5l Agn)
i=1 i=1
the terms in the u; are symmetric polynomials in p;, and therefore they can be expressed in
terms of the elementary symmetric functions, hence in the coefficients of Q.
For the implementation we explicitly computed these dependencies on the b; for genera up to
4. For example in the case of genus two this formula is

[Pic’(C/Fgn)| = (1+¢")* = (2410 — b1d2n)(1+¢") + Al — b1 A1 A + b A3 .

Thus to build the tables of group orders given in the next section we run the recurrence
sequences from n = 0 to the maximal value of interest. This is almost for free. We compute
the class number only for the cases of n prime. The evaluation of the expression in the b;’s
is also fast and we gain from computing the values for several extensions.

We now deal with the computation of Q).

Theorem 4.1 Let
29

P(T) = [[@-m)

=1

= T2 4 T2 1 ...+ agT9 + ag_qug—l +oo a1 T+ ¢f

and put ay = 1. Then the following statements hold for the coefficients of
QT) =[]y (T — pj) =TI+ 0TI + o+ by, Tj = Tguj, pij = 75+ 75, by = 1:

k .
g—2(k—1)\ ;
bor = ag — (Z ( (z )>qzb2(k—i)> )

=1

Mg -2k —i) -1\
boky1 = azky1— (Z ( ; )quQ(lc—i)—H) :
=1
Proof. The b; are the elementary symmetric functions in the pyj;, thus b; =

(175 .. <i; Mir * - pi;- We have to consider two cases for odd and even index:

g
b, = Z iy fhig *** Mgy,
11 <da <+ <dog
g
- Z (Tir + Tir)(Tiy + Tin) ==+ (Tigy, + Ty )-
11 <da<---<dog
Expanding and rearranging this product leads to the sum of all products of 2k different 7;’s
with the property that no two conjugated 7;’s occur. Hence,

29
box = E : Tj1Tja """ Thgg-

J1<j2<-<jop
no two conjugate
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Since the coefficients of P contain conjugate 7;’s, (a; = (—1)° Z?iq<...<j¢ Tj, +++ Tj;) we have to

subtract from agy any cases of two or more conjugates. Then they are expressed with respect
to the by, with k' < k.

29 29
bo = E TjrTja " " Thag — § : E : T T T Tjop—o —
J1<g2<<Jag J1<<igg_2 h<g
no two conjugate l1,l1+9#j1,---,J2k—2
29
— E E TUTU T Tl T """ Tjogg — * 7" — E T Tl " Tl Tl -
J1<<jog—4 11,l2<g I,k <g

no two conjugate l;,l;+9,7#71,...J2k—4

Once the j1 < ... < jor_9; are fixed, there are (972(1.1“*”) choices for the l1,...,l;. We have

29
J1<<J2k—2;
no two conjugate

Tl17_—l1 e Tlﬂ_-li = qZ and E Tj1 " Thop—o; — ka_QZ'. Thus

—2k+4
bor = agp — (9 — 2k +2)gbog_o — (g 9 )q2b2k—4 — = (Z) q*bo
k .
—2(k —1 .
= agp — E (g (Z )>qlb2(k—i)
i—1

The case of odd index is treated similarly. The difference lies in the fact that there is an odd
number of 7;’s to deal with. Since we consider pairs of conjugates the number of elements to
choose the respective /;’s from is decreased by 1.

g
b2k+1 = - E iy Big === Biggyq
’i1<i2<"'<i2k+1
g9
= - E : (Til + Til)(Ti2 + Tiz) T (Ti2k+1 + Ti2k+1)
’i1<i2<"'<i2k+1
2g9
= - § : Ti1Tjz2 """ Thok41

J1<j2<-<jog41
no two conjugate

29 29
= - § : TinTj2 """ Tjogr T § : § : T T Tj " Tjog—r T
J1<j2<-<Jok+1 J1<<jop_1 11<g

no two conjugate I1,l1+9#j1,---,J2k—1

2g 29
+ Z Z Tl T Tl Tl Tjr " Tjag—s + 0+ Z Z Tl Tl Tl T T
J1<<jok—3 l1,19<<g g1 1, <g
no two conjugate l;,l;+97#j1,...,j2k—3 Uisli+9#£71
g—2k+4-1 g—1
= agkt1— (9 — 2k +2—1)gbog—1 — ( 9 @°bog—3 — -+ — 3 q"by
(g -2k i) - 1) ,
= Q241 — 2; i q bz(k—z‘)+1
1=
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Table 4.1: Binary curves of genus 2

Equation of C P(T)
v 4y =a°+2° T 4+ 273 +2T? + 4T + 4
V+y=a+23+1 T4 — 273 4+ 2T% — 4T + 4
Y4+y=2+23+x T* +2T% + 4
vrazy=a°+1 T+ T3 +2T + 4
y2—|—:1:y=x5—l—x2+1 T4 — T3 —2T + 4
y 2tz )y=2+2t +2° | T+ T? +- 4
+ (P +x)y=2"+ 2! +a: T —T? 4+ 4
+ (@2 +z+ 1)y =12°+ ' T4+ 273 + 3T% + 4T + 4
+ (@ +z+)y=a+a* +1 | T*—2T% +37% 4T + 4

4.3 Examples

This section provides several examples for the characteristic polynomials and the class
number for hyperelliptic curves of genus 2,3 and 4. The algorithms described in the preceding
sections have been implemented using the computer algebra system Magma. For all the
examples we present as “nice examples” we checked that ¢"* # 1mod! for k¥ < 1(?;2027“
where [ is the large prime dividing |Pic’(C/Fy»)|. Thus these curves are secure under the
Frey-Riick attack.

The complete lists with all curves and all group orders for suitable extensions have been
made public. They can be obtained from

http://www.exp-math.uni-essen.de/~lange/KoblitzC.html.

By the results of Diem [7][Theorem 5] the variety of cardinality [Pic®(C/F»)|/|Pic®(C/Fy),
n prime, belonging to the curve is simple, unless Q((,) contains the endomorphism ring
of the Picard group, where (,, is a primitive n-th root of unity. Hence, there is no rea-
son against this number being prime. The experiments show that indeed there are many
examples where this number is prime. For details see Chapter 6, were we consider this variety.

Remark: When we speak of all isogeny classes we consider only those hyperelliptic curves
having at least one Fg-rational Weierstrass point.

4.3.1 Binary Koblitz Curves

Over F9 we can classify up to isogenies the nine classes of hyperelliptic curves of genus 2
with irreducible P(T') given in Table 4.1.

The first five examples were given in Koblitz [33]. Besides the first three classes these curves
are non-supersingular. The fourth and fifth case were studied by Giinter, Lange, and Stein
in [26] where we also give tables stating the group orders. Remember that the class number
is the same for any curve in an isogeny class. Therefore we need to care only about the
corresponding polynomial P(T). In Tables 4.2, 4.3, 4.4, and 4.5 we state the class numbers
in the remaining cases in the range of cryptographic interest.
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Table 4.2: Curve with P(T) = T* + T? + 4:

n | [Pic®(C/Fan)|
61 | 5316911983139663492953680213645327006=
2-3-28549 - 1683601 - 18436485874741919325168049
67 | 21778071482940061661933311406888688670134=
2 - 3 - 1200109695244769627 - 3024455676736879780907
71 | 5575186299632655785387655742010246170856454=
2 -3 - 89603 - 205579223 - 50443633667649128915517181261
73 | 89202980794122492566135449435595199268083726=
2-3-1607 - 230389 - 40156005041388474897223374021340127
79 | 365375409332725729550920124174223720018505058214=
2 - 3 - 47100403685197463 - 1292895533602240063852543777463
83 | 93536104789177786765035812824978038852703797931254=
2-3- 16726143 - 410175709 - 20161744307 - 11003137296258831609409
89 | 383123885216472214589586756196910238039372229984597326=
2 - 3- 49307 - 15590885966106020183 - 83063189494092733119300351841
97 | 25108406941546723055343157692645817997961288373601574818286=
2 -3 - 444649 - 1107004113769 - 8501613431704058621006174311112801040301
101 | 6427752177035961102167848369366568644401251546953123398915006=
2-3-4243646561167484411070572401 - 252446101263265107819810889340101
103 | 102844034832575377634685573909818603313575101884725372017554054=
2-3-4709161 - 39418138729 - 92339645752877062571888142037449143716984561
107 | 26328072917139296674479506920917301414787852721508015252463986134=
2-3-6421 - 74994216391141 - 9112496619561893347803980601085579631534736049
109 | 421249166674228746791672110734682597034357074384641885294339640926=
2 -3 - 34081415711260123261703 - 2060014027601229583321512687759335041888307
113 | 107839786668602559178668060348078516984115385385576512046713859188526=

2-3-227%- 1583 - 3824147 - 6778085329 - 2530945889145571847 - 3358695792503140247319023
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Table 4.3: Curve with P(T) = T* — T? + 4:
n | [Pic®(C/Fan)|

61 | 5316911983139663490276776268597429604=

22 . 1831 - 34039 - 21327224596069892980071644089

67 | 21778071482940061661378638344377642396236=

22 . 5444517870735015415344659586094410599059

71 | 5575186299632655785380203394313934582133756=

22 - 26839 - 148249 - 350300929811452465486759451374849

73 | 89202980794122492566150296745591692779759604=

22 - 8761 - 442189471 - 5756483947455991782107502725371

79 | 365375409332725729550922292183917789809461213276=

22 - 91343852333181432387730573045979447452365303319

83 | 93536104789177786765035845762706187663255567569676=

22.14922571 - 19492219 - 31262449 - 2571528586879431396168827419

89 | 383123885216472214589586757378244353769997331107203764=

22. 2671 - 53497189 - 670307974525390635096804382861885945480039

97 | 25108406941546723055343157693015513330857555182110701284884=

22 . 14551 - 431386278289236531086233896175787116535934904510183171

101 | 6427752177035961102167848369362732175776372403309219283496004=

22 - 59962489 - 1898267731 - 1204958581789 - 231501457725649 - 50609980118281999
103 | 102844034832575377634685573909850209809266881319472110901022076=

22 . 43261 - 420859 - 18751186669 - 579776615513755189 - 129896213174170756724641
107 | 26328072917139296674479506920917914744659694978766540374691502636=

22. 973257085699 - 6762877276724446297957839955469677939505181064238041
109 | 421249166674228746791672110734680861516803688819751004740148179364=

22 . 247885621 - 598722031900039 - 709581833294910782648588418537541414098739
113 | 107839786668602559178668060348078528404981769994748067802115022805204=
22 . 299464210429 - 5149674762391 - 27151900595462829709 - 643863885540809557163851
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Table 4.4: Curve with P(T) = T* + 273 + 372 + 4T + 4:

n | [Pic®(C/Fan)|
61 | 5316911977033364753140596481861826078=
2-7-8297 - 84913 - 539058824399606395941223457
67 | 21778071483463258786186409694173819439362=
2 - 7 1555576534533089913299029263869558531383
71 | 5575186299519090460509374439525583695134642=
2-7-569 - 67217532937 - 10412056438741229571321406751
73 | 89202980794660877710779236197113745019927342=
2-7- 5215121 - 38961862367 - 31357919011564553499404479
79 | 365375409332684354222911973151271502086185656786=
2-7- 765353 - 34099616155895603935412060387379745227383
83 | 93536104789160189806805423910911919572829943988546=
2-7-1677 - 16305189977 - 23564064703 - 114833530663 - 5429670992567
89 | 383123885216459517032176679352494921969133201300475502=
2 - 7 27535906720484993 - 993829332695156643037204399999982801
97 | 25108406941546475519266315021658437571181521793461683089038=
2714551 - 1233451320939473 - 99925485729323135043380964652866217079
101 | 6427752177035957907451442801389171479467324814535766520314942=
2-7-809 - 173481667802057497 - 3271364813643191699446032816977049688361
103 | 102844034832575476719110810648132974252699547665638242275462706=
2-7-1031- 95791 - 222905317476413119 - 333693133335133257838716121713570521
107 | 26328072917139294546040852041778359184739018933207502722451192098=
27 522048144436627468578695929 - 3602304992325872016040102691473537183
109 | 421249166674228723916622526297781673826606073095629781898923047134=
2723327 - 259285535870782740205972941431 - 4974779536224541687872518393713
113 | 107839786668602562144784569926136125127702549672855001914916536331214=

2-7-1583-476183 - 10218712550205474310417731984747447186313991554764219834409
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Table 4.5: Curve with P(T) = T* — 272 + 372 — 4T + 4:
n | [Pic®(C/Fan)|

61 | 5316911989245962242818683728633489154=

2 -2432681 - 2620439 - 417032842527230298484303

67 | 21778071482416864537446635953410062641118=
2-1447182983 - 7524297804162635229606840931673

71 | 5575186299746221110262294379669429762239406=

2 - 569 - 86934124925851727 - 56354270899593227398081

73 | 89202980793584107421495344917337461052555634=

2-439% - 9199 - 13288729471 - 1893198935882080472609113

79 | 365375409332767104878929811002998582341618884238=
2-245582903177 - 385470718084279 - 1929833305427033271593

83 | 93536104789195383723266271508981636974607166019998=

2-1993 - 742036103 - 31624010819082508050012911382239813681

89 | 383123885216484912146996836504217327230624063025829938=
2-191561942608242456073498418252108663615312031512914969

97 | 25108406941546970591420000365856734391746032187874605051154=

2-8303783 - 10811233 - 4301079329 - 18213582137 - 33615921137 - 53103128412343
101 | 6427752177035964296884253937344652571417716786928117811276258=

2-607 - 39491718645242373390511 - 134070862451207479415245154349528577

103 | 102844034832575278550260337171619924730902372723788419368923438=
2-1115115916567 - 1194810566153 - 38594910823239289818210723140302070969
107 | 26328072917139298802918161800057517858600061794757601863017849022=
2-857-69337-167875511 - 49240121127292757087 - 26800120525355732899584237047
109 | 421249166674228769666721695171582786991896862126155481447535141442=
2-2617 - 5233 - 6529319 - 681135151789622559551 - 3458226390504253310223905604 769
113 | 107839786668602556212551550770021002022143617259636900034540459252178=
2-457026017248411887857047 - 117979920834558666366991761541414920541129087
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Table 4.6: Binary curves of genus 3

Equation of C P(T)
v+dy=a2"+2+25+2 TS +T5+4T + 8
V¥ +ady=a"+2% T6 —T° — 4T + 8
Vrdy=a"+2%+2° +2 TO + T5 4+ 2T* 4 273 4 4T? 4 4T + 8
v+dy=2"+2°+z TS —T5 4+ 2T% — 273 + 4T? — 4T + 8
v+ (@ +2)y=2"+2%+z T6 —T* 4273 — 272 + 8
v+ (@B +2)y=2"+2*+z T6 — T4 — 273 — 272 48
V+ @+ +a)y=a2"+25+2° +2 TO +T5 +T* 4+ 373 + 272 + 4T + 8
v+ @+ +a)y=2"+25+2 T6 —T5+T* 373 +27T% — 4T + 8
Vo +y=x' 48 TO + 275 + 2T* + 273 + 4T? +- 8T + 8
Vv4+y=ac"+28+1 T6 — 275 + 2T* — 273 + 4T? — 8T + 8
2 4+y=a" + 28+ 2* T6 +2T% + 273 + 472 + 8
V+y=2"+25+2° T6 4274 — 273 4 4T? + 8
Vv ry=x +2°+z* TS +273 + 8
v +y=2a" T6 — 273 + 8
vV +y=x"+x° TO +27° + 4T* + 673 + 8T% + 8T + 8
y2+y:a:7+:c5+1 T6 — 275 + 4T* — 673 + 872 — 8T + 8
y 2+ (@B 422+ )y=3"+1° TS +2T° + 2T + T3 + 4T% + 8T + 8
+(@@+2?2+)y=2"+a8+2°+ 2t +1 | T6 - 275 + 274 — T3 + 472 — 8T + 8
+ @@+ 22+ )y =a" +25+2° TS +2T* + T3 +4T% + 8
+ (@3 + 22+ 1)y =17 T6 +27* — T3 4+ 4T? + 8
-l—(x +22+1)y=a"+1 T6 +T3+38
y2+(:1: + 2?2+ 1)y =27 + 2% + 2* T6 —T3+38
v+ (@2 +z+1)y=12"+21 TS + 275 + 3T* + 67° + 672 + 8T + 8
v+ (@ +z+)y=a"+25+25+2*+1 | T - 275 + 37* — 673 + 612 — 8T + 8

Note that 7% — T2 + 4 leads to very good groups for n = 67 and 79 and that the
magnitude of these groups is in the region of cryptographic interest. The same holds for
T* + 273 + 3T% + AT + 4 and n = 67 and for T* — 273 + 372 — 4T + 4 and n = 89.

For binary curves of genus three the classes of nonisogenous curves with irreducible P(T)
given in Table 4.6 are to be considered. According to Definition 2.35 all these varieties are
non-supersingular.

For binary curves of genus four there are 79 classes of nonisogenous curves with irreducible
P(T) only 6 of which are supersingular.

For all these curves of genus 3 and 4 we computed the class number for suitable extension
fields. This means for genus 3 all prime degrees of extension in the range of 37 — 79 and for
genus 4 in 29 — 67. Since the complete lists are to large to be included here, we only list
some nice examples. By P we denote a prime with &k binary digits.
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Curve with 76 — T° — 4T + 8, i.e. g =3

n = 37,
|Pic’(C/Fpn)| = 2596112782250361782170484757705812
= 22.649028195562590445542621189426453
= 2% Pigg
n =47,
|Pic’(C/Fgn)| = 2787592652971032115720725740533510746226316
= 22.696898163242758028930181435133377686556579
= 2° Pia
Curve with 76 +27* — T3 + 4T? + 8, i.e. g =3
n = 47,
|Pic’(C/Fgn)| = 2787593652669850012488674859650329426543978
= 2.7-199113832333560715177762489975023530467427
= 2.7. P137
Curve with T8 + T7 — T5 — 3T* — 273 + 8T + 16, i.e. g =4
n = 47,
[Pic’(C/F )| = 392319027687823966090793648631943976925199118618548227940
= 22.5.19615951384391198304539682431597198846259955930927411397
22.5. Pig3

4.3.2 Curves over F;

For larger fields the number of curves to consider increases considerably. Let k(C)/F, be
a hyperelliptic function field of genus g given by y> = f(z) As we have seen in Section 2.1
the map C/F, — P!(F,) is ramified in 2¢g + 2 points and to each 2g + 2 distinct points
T1,...,Tog+2 of P1(F,) corresponds one curve. Now two curves are isomorphic if the sets of
the corresponding 2g+2 points can be mapped onto each other by an automorphism of P! (Fy)-
Using such an automorphism ¢, we can always achieve that p(z1) = 0, ¢(x2) = 1, p(z3) = 0.
Hence, we allow the right hand side to be of the shape f(z) = z(z — 1) H?i;l(w — ;) for
distinct ;. This leads to O(q?97!) curves to consider, as the number of (2g — 1)-tuples with
multiple occurrences of one element and the number of curves identified via isogenies is of
lower order.

Therefore in this and the following subsections we only give some statistics on how many
curves were found and provide some examples of curves suitable for cryptographic applica-
tions.

For genus 2 we found 22 nonisogenous classes of Koblitz curves with irreducible polynomial
P, none of which is supersingular. In the genus 3 case there exist 145 classes containing no
supersingular ones and there are 1068 classes of ternary curves of genus 4.

For all these curves we computed the class number in the range of cryptographic interest. In
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detail: For genus 2 we computed the group order for prime degrees of extension in 53 — 89,
for genus 3 in 41 — 79 and for genus 4 in 31 — 67.

Some curves with almost prime |Pic?(C/F)|:

Curve with 7% — 273 + 272 — 6T + 9, i.e. g =2

n =59,
|PiCO(C/Fqn)| = 199667811101604967778690445389889887784425007041531467156
= 22.49916952775401241944672611347472471946106251760382866789
= 2. Pigs
n = 61,
|PicO(C/Fqn)| = 16173092699229944614352376379779099336973126813590905333204
= 22.4043273174807486153588094094944774834243281703397726333301
= 22. Pigy
n =67,
Pic?(C /)

= 8595044557171426883661551257387992338308447455624049410354582196
22 . 2148761139292856720915387814346998084577111863906012352588645549
= 22. Py

Curve with T4 + T3 + 572 + 3T + 9, i.e. g =2

n = 953,
|PiCO(C/Fqn)| = 375710212613750065911595823481614395819784966143289
19 -19774221716513161363768201235874441885251840323331
= 19- Pig3
n = 61,
|PiCO(C/Fqn)| = 16173092699229882562486817678274704604693996874416224059211

= 19.851215405222625398025621983067089716036526151285064424169
= 19 Pigg

n="T1,

|Pic’(C/Fyn)|
= 56392087339601733564494052917617861904281640159931972622598137325351
= 19-2968004596821143871815476469348308521277981061049051190663059859229
= 19 Py



46 4. EFFICIENT DETERMINATION OF THE CLASS NUMBER

Table 4.7: Numbers of nonisogenous classes of curves over F4 with irreducible P(T)
genus | number of classes | number of supersingular
2 25 4
3 240 0

Curve with 76 + 75 4+ 5T* + 4T3 + 1572 + 9T + 27, i.e. g = 3

n =59,

|Pic®(C/Fqn)|
2821383260958017515748847417606632102819352907295219754610211050703061257893692760162
231 -45506181628355121221755603509784388755150853343471286364680823398436471901511173551
2:31: Pory

Curve with 7% + 277 4 27 + 275 4 8T* + 673 + 1872 + 54T + 81, i.e. g =4
n = 31,

|Pic’(C/F )| = 145557822201415837969415424106602186437810288264500390373454
= 2-3-29-836539208054114011318479448888518312860978668186783 852721
= 2:3-29-Pigg
n =61,
|Pic’(C/Fqr)]

261568927457881775172526487607878904447598588664308319711209864388504499567973474092235288 <
119903230812624287271271574

2-3-29-150326969803380330558923268740160289912412981990981792937476933556611781360904295
4553076368505190981681748777421101

2-3-29- Pspo

4.3.3 Curves over F,

Curves over Fy allow to work in extensions of binary fields. This is advantageous in hardware
implementations. Compared to the Fy case there are more curves to choose from. But
there is a small drawback since the number of precomputations needed to obtain the speed-
up considered in the next sections grows with the field size. Furthermore one needs to be
aware of Weil descent attacks since now the field has composite degree of extension over Fa.
Galbraith [17] shows how to weaken certain curves over F4 by this strategy.

The following numbers of classes listed in Table 4.7 contain the classes of curves that are
already obtained for F'5, since every curve over F2 can be considered over Fy.

For these classes we computed the class number. For genus 2 we chose all prime extensions
in 29 — 59 and for genus 3 in 19 — 41. We did not carry out the computation for genus 4
since then the degrees of extension get even smaller — thus the computational advantages
investigated in the following sections decrease — whereas the number of defining polynomials
for the curves grows such that a brute force search trough all possible curves is rather
time-consuming.
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Some examples:
Curve with T% — T3 — 4T + 16, i.e. g =2

n = 29,
IPic’(C/F )| = 83076749829698992058942621500367388
= 22.3.6923062485808249413245218458363949
= 22.3. Py
n =41,
|PicO(C/Fqn)| = 23384026197316960486422682358066130544236740957388
= 272.3.1948668849776413373868556863172177545353061746449
= 22.3. Pig

Curve with T4 + 273 + 772 + 8T + 16, i.e. g = 2
n =59,

[Pic’(C/Fqn)|
= 110427941548649020343281285131795129969498221066698138419282824292856654
= 2-17-32478806337837947159788613274057391167499476'78432298188802436008613431
= 2:-17- Py

Curve with 76 — T° 4+ 5T7* — 973 4 2072 — 16T + 64, i.e. g =3
n =19,

|Pic’(C/Fsn)| = 20769148196260031952815209804964032
= 2.324517940566562999262737653202563
= 20. Py

|PicO(C/Fqn)| = 348449083479439714971877756379159944059328
2% . 5444516929366245546435589943424374125927
= 20. Py

4.3.4 Curves over Fj

As the field size grows the degree of the extension needed to obtain a class number of order
~ 2160 decreases. Thus these fields allow us to work with smaller extension. Furthermore we
obtain a larger variety of curves to choose from. But, as was said in the preceding subsection
the number of precomputations — thus storage — grows also. Therefore the choice of a curve
over F5 is only reasonable if these storage requirements are fulfilled. Furthermore the Theorem
of Hasse-Weil 2.32 provides a lower bound on class number in the ground field, thus on the
unused factor of the group size for the extension. This factor grows with g and gq.

Over F;5 there are 54 classes curves of genus 2 with irreducible polynomial P, none of which
is supersingular. For genus 3 we even have 916 classes.
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We have complete lists of the class numbers for all these classes in the relevant cases. For
genus 2 we considered extensions of degree 29 — 43 and for genus 3 in 19 — 29. Like in the
case of F4 we did not carry out the computation for genus 4.

Some nice examples:
Curve with T% — 4T3 + 1272 — 20T + 25, i.e. g = 2

n = 29,
[Pic’(C/F)| = 34694469522393632077212991999281685458254
= 2.7-2478176394456688005515213714234406104161
= 2:7- Py
Curve with T% — 373 + 1172 — 15T + 25, i.e. g =2
n =31,
[Pic’(C/F )| = 21684043450334881590050481456320990124273379
= 19.1141265444754467452107920076648473164435441
= 19- P39
n = 37,
|Pic’(C/Fp)| = 5293955920340537004159560753167334605889814040117519
= 19-278629258965291421271555829114070242415253370532501
= 19 Pigr
Curve with 7% + 57° 4 21T* + 5173 + 10572 + 1257 + 125, i.e. g =3
n =19,
|Pic’(C/Fsn)| = 6938889266073094641872874355228772937541
= 433 -16025148420492135431577077032860907477
= 433- P123
Curve with 76 — 27° + 37* — 872 4 1572 — 50T + 125, i.e. ¢ = 3
n = 23,
[Pic’(C/Fp)| = 1694065906185866506125847996570349388706047353412
= 22.3.7-20167451264117458406260095197266064151262468493
= 22.3.7. P53
n =29,
|Pic’(C/Fpn)| = 6462348536008289894896808635027304395262834292145210636182324

22.3.7-76932720666765355891628674226515528515033741573157269478361
= 22.3.7- P



Chapter 5

Speeding Up the Computation of
m-folds for Koblitz Curves

The second advantage of Koblitz curves is that they allow to obtain a faster way to compute
multiples of divisor classes by making use of the Frobenius endomorphism of the curve. We
first show how this computation is carried out in arbitrary groups and then investigate the
action of the Frobenius endomorphism on Pic’(C/Fy). Note that although we consider a
base extension F ;. /F; we still denote the endomorphism by o. The characteristic polynomial
P was studied in the previous chapter. Let 7 be a complex root of P. We provide a means to
compute an expansion of the integer m to the base of 7 and show how to use it to obtain a
speed-up in the computation of m-folds. The following sections deal with the finiteness, length,
and density of these expansions. These theoretical results are confirmed by examples. For
space reasons we only list results for binary curves although we made successful experiments
with other characteristics as well. In Section 5.7 we compare this ’7-adic’ method with the
binary double-and-add method and as well with the more advanced windowing method to get
estimates for the speed-up obtained depending on the degree of extension 7, the genus g and
the field size q. Considering a different set-up for the multipliers for Koblitz curves concludes
this chapter.

5.1 Standard ways of computing m-folds

We describe the standard algorithm to compute m times a group element D. The usual
approach is the binary double-and-add method. It uses the binary expansion of the integer
m. First we present the algorithm and then we provide some bounds on the density of these
expansions. This method will serve as a base to compare our new results with. Thus by a
speed-up by a factor of 7 we mean that the new algorithm is 7 times faster then the binary
double-and-add method.

The algorithm is best described using an example: Instead of computing 11D by
11D =D +---+ D we use 11 = 23 + 2! + 20 to obtain it by
| S —

11 times
11D = 2(2(2D) + D) + D,

49
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thus requiring 2 generic additions and 3 doublings instead of 9 additions and 1 doubling.
This can be formalized in the following way:

Algorithm 5.1
INPUT: D, m = Y \20 b2
OUTPUT: H = mD.

1. Initialize H := D;
2. Fori=1-21to0 do

(a) H :=2H;
(b) if b =1 then H := H + D;

3. output(H ).

To estimate the complexity of this algorithm we need bounds on the length and density of the
binary expansion of m. If the expansion of m has length [ the algorithm needs [ — 1 doublings.
[ — 1 is the largest power of 2 occurring in the expansion of m, thus [ = |logy(m)| + 1. For
every coefficient 1 occurring in the binary expansion of m an addition occurs. The probability
of a nonzero coefficient is 1/2 as there are two possible coefficients. Since the complexity of
an addition is approximately equal to that of a doubling we get an asymptotic complexity of

~ (14 %)logQ(m).

The groups we consider are finite. Thus it is useless to take m larger then the group order.
We therefore have m < [Pic’(C/F )| ~ ¢" by the Hasse-Weil Bound 2.32. Thus to compute
a multiple of a divisor class we need on average

3
~ ) gn logy(q)
group operations.

In the divisor class group we can easily compute the negative of an element. Therefore it is
useful to consider signed expansions. By a non-adjacent form (NAF) we mean an expansion
to the base of two with coefficients 0, +1 such that no two consecutive coefficients are nonzero.
Each integer has a unique NAF, its length is at most one bit longer than the usual binary
expansion and the asymptotic density is 1/3. For the computation of the expansion consider
Gordon [25] and Solinas [68].

5.2 Representing Integers to the Base of 7

In this section we provide the basic tools for an efficient method of computing m-folds of
divisor classes. Like in the double-and-add method we first expand the integer m to a given
basis using a fixed set of coefficients. We also use the fact, that the negative of a divisor class
can be computed with almost no effort.
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The most important ingredient used in this chapter is the Frobenius endomorphism ¢ of the
curve. As we stated in Section 2 we have that if a divisor class D is represented via a reduced
ideal (9_quizt,y — S29- viz?), then o(D) is represented by (N9_,ulal,y — 39—, vixh).
Furthermore this ideal is reduced as well. Thus provided that Fy» is represented with respect
to a normal basis, o(D) is computed by at most 2g cyclic shiftings of the coefficients the costs
of which can be neglected. (Even if not, this expansion leads to a speed-up since computing
the respective powers of the coefficients is relatively fast compared to the operations with
the divisor classes.) Thus this endomorphism can be used efficiently — if we know how to use
it in the arithmetic. We return to the choice of the ground field Fy» in Section 7.3. Here we
assume that the g-th power is easy to compute.

We have seen that the polynomial P introduced via the zeta-function of C' is the characteristic
polynomial of the Frobenius endomorphism of Pic’(C/F,). Remember that by the results of
Section 4.1 for Koblitz curves we easily get P(T).

Consider the hyperelliptic curve C' with characteristic polynomial of the Frobenius endomor-
phism o

P(T)=T% + a,T¥ 1 +... 4 agT9 + ag_qugfl +4a1g? T+ ¢Y.
Since P(0) = 0 we have for all divisor classes of Pic’(C/F,)

@D = —an(D) — a10.2g—1(D) e — agog(D) o a1qg_1a(D)
= —o(---o(o(o(D) + a1D) + azD) + -+ + a1¢°~ ' D).

This gives a first example where an m-fold is represented via a linear combination of o7 (D).
Now we make use of this not only for multiples of ¢9 but also for arbitrary integers. Fur-
thermore we provide a set of coefficients R such that for every integer m we can express mD
as a sum of the above kind using only these coefficients. This means that as soon as we
have precomputed and stored the multiples rD for all r € R, the computation of mD can
be performed by using table-look-ups, applications of the Frobenius endomorphism and some
additions.

Example 5.2 Let the hyperelliptic curve of genus 2 be given by the polynomial y* + (z2 +
z)y = 2% + x* + . The characteristic polynomial of the Frobenius endomorphism is P(T) =
T*—T?+4. Using the set R = {0,+1, 42,43, 45,46, £7} one obtains the following ezpansion

23D = 7D — 30*(D) — o%(D).

This leads to two additions, two table-look-ups, and 6 applications of the Frobenius endo-
morphism which is by far less than the four doublings and three additions needed using the
double-and-add method.

Let 7 be a complex root of P(T). Since both 7 and o are roots of P, representing mD as a
linear combination of the o¢(D) becomes equivalent to expanding m to the base of 7. The
elements of Z[7] are of the form ¢ =c¢y + 17+ --- + 029,17'29_1 with ¢; € Z.

To get an expansion of an integer m as m = Zé;(l) r;7* using the restricted set of coefficients
r; € R we first need a criterion for an element to be divisible by 7.

Lemma 5.3 c=cy+ci7+ -+ 029_17'29*1 is divisible by T if and only if ¢9|co.



52 5. SPEEDING UP THE COMPUTATION

Proof. Let ¢9)cy & 3éy € Z such that ¢ = ¢9%¢ + 17+ -+ + 629_17'29_1

S = (—7‘29 - a17'2.g_1 —_— e — a/ng —_— e — a[lqg_lfr)éb + T + - + C2g_17'29_1
Sc=T ((01 — alqg_lcN()) + -+ (Cg — agc~0)7'g_1 + -+ (029_1 — a160)729_2 — 50729_1)
& Tle. ]

Therefore the minimal set of coefficients R consists of a complete set of representatives of
Z/q¢9Z. Since taking the negative of a divisor class is essentially for free (to —D corresponds
[u,h —v]) we will use R = {0,+1,+2,... ,:}:[qggl]} if just a representation is needed. Note
that we would not need to include —¢9/2 in the case of even characteristic. But as we get it
for free we will make use of it. Furthermore later on in the text we shall impose conditions
to achieve a sparse representation and therefore we will use different choices of the set of
coefficients R depending on the structure of P(T).

Now we state the algorithm for expanding an element of Z[7] to the base of 7. Note that
at the moment we would only need to represent integers, but in the further sections we will

reduce the length of the representation. Thereby we stumble over this more general problem:

Algorithm 5.4
INPUT: c=c¢y+ci7+ -+ 02971729_1, P(T), the set R.
OUTPUT:7g,...,71;_1 with c = Zé;(l) rim, 1 € R.

1. Puti:=0;

2. While for any 0 < j < 2g — 1 there exists an c; # 0 do
if ¢%)co choose T; := 0;
else choose r; € R with ¢9|co — 7i;
/*in even characteristic choose r; = cg if |co| = q9/2/*
d:= (co — 1) /4";
for0<ji<g-—1do
¢j 1= ¢j41 — @177 7 Nd;
for0<j<g—2do
Cgtj *= Cgtjt1 — Ag—j—1d;
Cog—1 1= —d;
1:=1+1;

3. output (ro,...,7i—1).

The choice of r; € R might also depend on further conditions to obtain a sparse representation
of m.

5.3 On the Finiteness of the Representation

We now consider the finiteness of the 7-adic representations and establish the dependence
of the length on an expression involving m in case of a finite representation. We show that
for any curve the expansions are either finite or periodic and provide a way to find out what
happens for a given individual curve and how to deal with periods.
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To investigate the finiteness we now consider a 2¢g dimensional lattice associated to the ele-
ments of Z[7].
Consider the set of elements

29—1 2g—1
— o . .
A= E CiTiyenns E ¢y | lcj €Z
j=0 j=0

These elements form a lattice in CY, since the sum of any two and integer multiples of the
vectors are in A. Since the polynomial P is irreducible the lattice has full dimension 2g. We
now investigate the norm! of vectors in this lattice, where the norm is given by the usual
Euclidean norm of CY

N: (wl,...,xg)i—>\/|:v1\2+----|-|zvg\2,

where | . | is the complex absolute value. We can also consider this lattice as a 2g dimensional
lattice over R by the usual representation of C as R?.
By abuse of notation we write N'(c) for c = cy+c17+++-+ 029_1729*1 and speak of the norm

of ¢ since these vectors are parameterized by the integers co, ..., c2g—1. Thus then N(c) reads
g |29—-1 ] ?
RN
i=1|j=0

Now we study the behaviour of the norm of the remainders during the expansion of ¢. Showing
that the norm decreases down to a certain limit will be the important step to prove the
following theorem:

Theorem 5.5 Let C be a hyperelliptic curve of genus g and let T be a root of the characteristic
polynomial of the Frobenius endomorphism. Then the expansion of ¢ = ¢y + 17+ -+ +
cog—172971 € Z[1] to the base of T with coefficients in R = {O,il,...,i[qggl]} is either
finite or gets periodic.

Proof. We first show that for elements of bounded norm the expansion cannot lead to a
remainder with larger norm than that bound. Showing that the expansion of any element
leads to a remainder of norm bounded by that constant concludes the proof.

Let N(c) < 4 \/%g_l (respectively < 4% for even characteristic). Then using the
Triangle inequality on ¢ = r + ¢ —r =: r + /7, r € R chosen according to Algorithm 5.4,
we get N(d1) < N(c) + N(r) < N(c) + /g(¢? — 1)/2 (respectively N(c) + ,/g¢?/2) and
N(rd) = /gN (). Now direct calculation shows that A(c') is bounded by the same
constant.

Since we consider a lattice the number of elements with bounded norm is finite. Thus the
expansion of these elements of bounded norm either ends after hitting at most one time
all these elements or runs into a cycle since the choice of the r — and therefore the next
remainder ¢’ — is unique for given c. Hence, for these elements the expansion is either periodic

!There are two notions of length — the length of the 7-adic expansion and the norm of the vector, which is
often referred to as (Euclidean-)length in the literature. We hope not to confuse the reader and use norm in
the second case.
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or finite.
The following two lemmata show that expanding an element ¢ to the base of 7 leads to
a remainder ¢ with N (c') < ﬁ% (or < Y2LHL in even characteristic) after at most

2 a 2 Va1
2log, WL\/W + 1 steps concluding the proof. O

Later we shall state an algorithm to find these elements of small norm and show how to
recognize periods and how to avoid them. Hence the problem is solved in practice.

Lemma 5.6 Let g be odd. For every m € Z[t] we have a unique ezpansion

k—1
m = ZTZ'TZ +m/7*,
=0

where r; € {0,+1,+2, ... ’iq9;1}’

' \/g q?
N(m)<7\/a_1,

and

2(vq — 1N (m)
V9

Proof. Put mg := m. The expansion of m to the base of 7 leads to

k < [2log, 1.

moyg = MMIT+7T9= m272 +rm7+1ro
j—1
= E Tt 4+ myT?,
i=0

where by Lemma 5.3 the r; € {0,+1,£2,... ,:I:‘IQQ—*I} are uniquely determined.
The Triangle inequality for A leads to \/gN (m;j) < N (mj_1)+N(rj-1) < N(mj_1)+/g%5.
Hence,

N(mo) + /g(e® —1)/2X025 ¢
g2
N(mo) ﬁ ¢ —1
e 2 Jg—-1

2(/q—1)N (myg) N(m
\/5\@ o) then q(j/20)§2(\/\g§_1

N(m;) <

If we choose j > 2log, ) and the claim follows. O

For even characteristic we proceed similarly.

Lemma 5.7 Let g be even. For every m € Z[1] we have an expansion

k—1
m= E rit 4+ m'T,
=0
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where ; € {0,£1,£2,...,+%},

¢’ +1

Vi1

N(m') < g

and
2(vg — YN (m)
V9

Proof. Put mg := m. The expansion of m to the base of 7 leads to

k < [2log,

1.

moy = MTMIT+7T9= m272 +rT7+79
j—1
= E Tt 4+ myTt,
i=0

where the r; € {0,+1,+£2,... ,:I:%} are given like in Algorithm 5.4.
The Triangle inequality for A leads to /g (m;) < N(mj_1) +N(rj_1) < N(mj_1)+ /g%
Hence,

N(mo) +/3¢° /2317 ¢/
i
N (myg) 4 V9 ¢

N (m;)

S TR T2 g1
If we choose j > 2log, 2(‘/67\1/)!7/\/("&0) then N;I(J.T/nzo) < 2(&?-1) and the claim follows. O

We now investigate the norm N in more detail. Thus we state it explicitly in the coefficients
of the polynomial P(T') and express it in terms of the coefficients cq, ..., cog—1. This can be
done using the symmetric functions in the 7; and with the help of the formulae derived in
Section 4.2. Since N is the Euclidean norm its square leads to a positive definite quadratic
form.

Before we do so let us see how the proof works for elliptic curves.

Example 5.8 For curves of genus 1, i.e. elliptic curves, the finiteness was proved by
Miller [48] for even characteristic and using the same idea by Smart [66] for odd charac-
teristic. For g =1 the norm simply reads N'(c)? = ¢3 —aicocy +qc?. The lattice defined above
coincides then with the lattice spanned by 1 and 7. We present here the case of odd charac-
teristic only. Hence the set of coefficients is R = {0,%1,...,+(q—1)/2}. After showing that
the square of the norm decreases down to (\/§+2)2/4 giving a special case of Lemma 5.6 one

rearranges

N(C)2 = Cg —aicper + qc%
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by completing the square. Since the curve is assumed to be non-supersingular (= a1 # 2,/q),
and a1 is an integer, therefore a? = 0,1 mod 4, one has that 4q — a? > 3, and gets

2
jeaf < YL
V3
and
lco| < 1+2vq
IERVE]

Hence in any case |c1| < (g — 1)/2, thus c1 is in the set of remainders. But the best we can
get for |co| is |co| < (¢ —1)/2 +q. Assuming co > (¢ —1)/2 (the case of co < —(¢ —1)/2 can
be treated similarly) one can further expand to get

co+ciT=(co—¢q) + (a1 —a1)T — 72,
Then |c1 — a1 < % +2,/q < q;—l +q. If again ¢; — a1 > (¢ — 1)/2 (again the other case
follows the same lines) then

co+cm=(co—q)+ (c1 —a1))T — 7%= (co — q) + (c1 — a1 — q)7 + (—a; — 1)7% — 73.
Considering each occurrence of | — a1l —1 > (¢ — 1)/2 (by the above a1 < 0) - this can
only happen if ¢ < 14 — one finds that one needs to allow the coefficients £(q + 1)/2 for the
expansions in case of the pairs (q,a1) equal to (5,%+4) and (7,+£5).

Before we proceed we show what N '(c)? looks like after expanding the product for the cases
of small genus.

Example 5.9 For g = 2 we have for ¢ = ¢y + c17 + cp1? + ¢373

N(c)?> = 2¢2 —aicoer + (a2 — 2a2)coer — (a3 — 3(araz — a1q))cocs
+  2¢c? — ayqeico + (a2 — 2a9)qcics
+ 2¢°c3 — a1q’cacs
+ 2q3c§.

For g = 3 we have for ¢ = co + 17 + cam® + 372 + ca* + 570

N()? = 3¢ —aicoer + (a3 — 2as)coco — (a3 — 3(araz — a3))cocs
+(ai — 4(afas — a1as + a2q) + 2a3)cocs
—(a? — 5(afay — afas — @103 + ara2q + azaz — a1q))eocs

+ 3¢ — arqeica + (aF — 2az)qcics — (a3 — 3(a1az — a3))gercs
+(a — 4(a%az — a1a3 + azq) + 2a3)qcics

+ 3¢ — ar1g’caes + (a% — 2a2)q2c204 — (ai’ — 3(a1a9 — ag))q20265

+ 3¢%c3 — a1gPcsca + (a2 — 2a9)@Pescs

+ 3¢'c —arg'eucs

+ 3¢°c.



5.3. ON THE FINITENESS OF THE REPRESENTATION 57

In general A'(c)? is a quadratic form in the 2g variables cy,...,ca9—1. The coefficient of c?
is g¢* and of cicj,t < jis ¢'(¢” +1 — M,), where v = j — i and M, is the number of points
on the curve over Fy like in Section 2. Due to its origin in the interpretation as Euclidean
norm in a lattice, N2 is a positive definite quadratic form.

Finke and Pohst [13] provide the following algorithm for finding all vectors of bounded norm
in a lattice in R®, respectively for finding all arrays (zy,...,zs—1) for which the value of the
corresponding quadratic form in s variables is less than a given constant. Let the quadratic

form be given by Zf;io a;;T;Tj, a;j = aj;, and put K the bound on the norm.

Algorithm 5.10 (Finke, Pohst)
INPUT: quadratic form, bound K.
OUTPUT: all arrays (zo, ..., Ts—1) leading to values less than K.
1. /* Set up*/
for0<i<j<s—1do
Qij = Qij;
2. for0<i1<s—2do
fori+1<j<s—14do
Qji = 4ij;
G = G
fori+1<k<s—1do
fork<k<s—1do
Qki = qrl — 9kidil;

3. puti:=s—1,T;,:=K; U; :==0;

4. /*start of iteration*/
put Z := (T;/¢ii)"?; UB; := | Z = Ui|; @i := [-Z = Ui] = 1;
5. put x; ;= x; + 1;

if ¢; < UB; goto step 7;
else goto step 6;

6. put i:=1+1;

7. if i =0 goto step 8;
else1:=1—1;
Ui = Y5011 %5
T; = Tit1 — Q1)) (@it + Uig1)?;
goto step 4;

8. /*solution found*/
if £ =(0,...,0) terminate;
else output +(xg,...,Ts-1);
goto step 5.

They also prove the following upper bound on the number of elements of norm bounded by

K MKJ+S—1>

el + (B
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T
This bounds the length of the expansion in the non-periodic case, and also the length of the
period. We use the algorithm to find the elements of small norm for individual curves. For
each of them we compute the expansion. These experiments show that for each such element
c=co+-+ 2172971 of small norm we have ¢; € R for 1 < g <2g — 1 and |co| < ¢9, and
if ¢g € R the other coefficients are fairly small. If no periods occur then every such element
has an expansion of length at most 2¢g + 1, thus either all ¢; € R or the next remainder in
the expansion has all coefficients in this set. Hence, the above bound is appropriate for the
number of elements of small norm, however the expansions are by far shorter than hitting
each element.

Therefore if P(T) is such that we do not have periods, the length of the expansion of m is

bounded by [2log, W} 129+ 1.

Thus for our constant K we have at most O ((\/57 \/Qg 1)(49_1)/ 2) vectors of small norm.

Now we try to get estimates supporting the experimental results on |c;|. However, we do
not succeed in a proof since the expressions get too involved and the known bounds on the
coefficients of P(T') are too weak. But we provide a detailed example for the genus two case.
The proof would proceed as follows: Like in the algorithm we first compute the coefficients

b;; satisfying
2

2g9—1 29—1
N(C)2 = Z bii ¢ + Z bi]‘Cj
=0 j=i+1

for the quadratic form A(c)2. Then starting from the index 2¢g — 1 we obtain an upper bound
on the coefficient c,_1 and as well on the other ¢;’s depending on the value chosen for the
preceding ¢;’s, ¢ < j < 2g — 1.

For a fixed positive definite quadratic form of arbitrary degree this is the idea behind the
above algorithm given in Finke and Pohst [13]. Thus for each individual curve this can be
carried out efficiently. But using the variables a1,...,a, the expressions get rather involved.
In the following long example we restrict ourselves to curves of genus 2.

Example 5.11 In the genus 2 case the reordered equation reads:

1 2_9 —a? + 3a1as — 3 2
N2(C) = 2|c— a1+ i 22 c2 + 0+ 20102 aqu?,
4 4 4
+—a% + 16g c —a? + 2a1a9 + 4a1qc n a} — 3alas —alq + 8agqC 2
8 ' a? — 16q 2 a? — 16q °
+a‘11q — 6a2agq + 4a2¢* + 8a3q — 32¢3 <c —a3 + 5/2a1az + a1q )2
2 2+ 2 3
a7 — 16q ai — 2as — 4q
_|_a‘1lq2 - 1/4a%a%q — 5a%a2q2 + 7a%q3 + a%q + Za%q2 — 4asq® — 8¢* 2
a? — 2ay — 4q 3

Thus for this usual ordering we have

bs — qa‘fq — 1/4a24% — 5a%asq + Ta2q® + a3 + 2a3q — 4asq® — 8¢°

a% — 2a9 — 4q

2 2
Since we have that N?(c) < %(\[Z—il) (respectively < %(%) in the case of even

characteristic), that all b;; > 0, and that the other expressions are squares we get the bound
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V2 o 1 : V2 @41 1
les| < % 701 7o (respectively < %5 ) @),
Choosing an appropriate ordering we obtain individual bounds on the |c;|. Note that these

cannot occur simultaneously. The highest coefficients read in these cases:

for ca:
qa‘llq — 1/4a%a3 — 5atasq + Ta2q® + a3 + 2a3q — 4azq® — 8¢3
ai — 3a2as + 3a2q — 2asq — 4q? ’
for cy:
atq — 1/4a2a2 — 5aaxq + Ta2q? + a3 + 2a2q — 4axq® — 8¢°
at — 3a2ay + 3a2q — 2a2q — 4q? ’
and for cy:

atq — 1/4a%a3 — 5a%asq + Talq® + a3 + 2a3q — 4azg® — 8¢°
q?(a? — 2ay — 4q) '

Note that the numerators in all 4 cases are equal and that looking only at the orders the
power of q increases with growing indez.

In the genus 2 case we have the bounds from Rick (2.2) |a1] < 2|2,/q] and
2ai|\/q — 29 < ay < a?/4 + 2q. Thus we see that the denominators are negative
in both cases and we have that the integer —a? + 2as + 4q € (0,8q) and the integer
—at + 3a2ay — 3a2q + 2a02q + 4¢% € (0,8 ¢%).

Substituting a1 = a1,/q and az = onq, thus || < 4 and a1 —2 < ap < a?/4 + 2 provides
that the coefficient for c? is of order O(q%). Thus asymptotically we have |c;| < kq9=/? for
some constant k. This corresponds to our experiments providing ¢; € R for i > 1 but we shall
try to get some knowledge about the constants implied.

Now we deal with the numerator B = —atq+1/4a%a%+5a2a2q—"Ta2q? — a3 —2a3q+4asq>+8¢3.
Inserting the bounds for ag leads to B = 0, but since we have strict inequalities they are not
attained. (The bounds would lead to reducible polynomials P, what we excluded.) Thus we
have B > 0 what we knew in advance since N2 is positive definite.

The following picture illustrates the dependence of bss for cg on ay and ag for the case of
g = 5. The vertical azis gives the value of bsz(ai,as).
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i
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a1 occurs only with even exponents in B. bss grows towards the interior of the segment and is

mazimal for a; = 0 and ay = 2/3q. For this pair — which can occur only for characteristic 3 -

the value of the respective bzs is 16/9q¢" for all four cases. Hence, then we have |c;| < % (12\/;1/12.

In the following we consider bss for cs (and therefore also for cy). For c¢i1 and co similar
observations hold. Furthermore we assume a1 > 0 and provide the largest and the smallest
value assumed, hence for ay = 0 and the mazimal value of aq.
Near the upper bound of as we make the following observation:
Inserting as = (a? — 1)/4 + 2q in bss yields for the coefficient of ¢ (the same holds for c3 if
we divide by ¢°):
1 — 2a? — 32¢ + 2569 — 32a2q + af

a? +1—16q '

—1/32¢q

For a; = 0 we get 1/32(—1 + 16q)q, thus the coefficient is approzimately 1/2¢*> and for
a1 = 4,/q — 2 we get 3/32q%, thus only the estimate 3/8q3/2.

Maisner and Nart [42] investigate in more detail which pairs ai1,as satisfying the conditions
of Theorem 2.33 and leading to an irreducible polynomial P belong to a hyperelliptic curve.
For example they conjecture that the choice of az = 2q + (a? — 1)/4 does not belong to a
hyperelliptic curve. If this holds the upper bound decreases to as < a?/4 — 1+ 2q and the
constants are improved to 2¢°> and 5/3q3/ 2 respectively.

The lower bound on ag is much more subtle to handle unless q is a square. In that case
one easily gets 2¢°> — q/2 for a; = 0 and 5/4q16q;;\1/—# for a1 = 4,/q — 1 by choosing
az = a1,/q —2q + 1.

In the case q a non-square for a; = 0 we have ag > 1 — 2q, thus the bound 1/2(4¢* — 441)q.
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Now to consider the mazimal value for a1 put ay = 2(2,/q — 0), where 6 € (0,1). Hence, ¢ is
such that |2,/q] = 2,/q — 6. Then ay > 6q — 4,/q6 but from the upper bound we have as well
ay < 6g —4,/q0 + 82. Therefore putting as = 6q — 4,/q0 + €, € € (0, 62) leads to

166%q — 16ge — 8,/q8° + 8,/qde + 6% — €
c 4,/q0 — 202 + ¢ )

1/2q

Note that it is very likely that there does not exist any integer in this interval for as, we just
consider the worst case. If such an integer does not exist this means that a; < 2(2,/g—0) —1
and the bounds for as are changed adequately.

Putting e = 1/26% provides

2q — 16,/g6 + &*
8,/q — 36

3/2

3
1/8¢0° ~ 1/26%¢%/2.

for large a; and bz > k'q® for a1 = 0, where

. . 5/4 .
k and k' are constants. This provides |c3| < ﬁ\%_l respectively |c3| < %Mﬁ for odd

Thus essentially we have at least bsz > kq

characteristic and similar results for even characteristic.
The coefficients of c1 and co can be investigated in the same way leading to similar bounds.

Thus assuming the condition c3 € R to hold from the bound on bss — this is less then the above
computations provide, it just uses bzz > 2/(\/q — 1)2 - we obtain that |co| < ¢*/*rmax, where
Tmax 8 the mazimal coefficient of R, hence (¢* — 1)/2 for odd and ¢*/2 for even q. In the
same manner we get |c1| < grmaxand |co| < q"?rmax. Sure these mazimal bounds cannot be
attained simultaneously since the coefficients b;; for (i,j) # (3,3) lead to further restrictions
and furthermore the mazimal choices for e. g. co probably cannot be extended to a vector with
integer entries. This is the reason why we used the first ordering for the implementation —
to avoid too many aborted vectors, thus to reduce the running time. But using these weak
estimates provides a worst case bound on the size of these coefficients.

Furthermore in the experiments we even had ¢; € R for i > 1, thus a proof of this would lead
to |co| < R

Note that these observations generalize to arbitrary genus. But there the bounds on the a;’s
are less optimized. If the bound on biy_1)(24—1) leads to [cyg—1| < k then an appropriate
ordering of N%(c) provides

lei| < kigP9m1 =072,

with moderately adjusted constants k; and all this is in the worst case which probably cannot
happen.

One argument that can be used in the proof of the finiteness in the elliptic curve case is
that periods of length larger than one (except for a change of sign) cannot occur since
otherwise the coefficients ¢y and ¢; would be larger than allowed. Now we investigate in
which situations periods can occur at all. For the elliptic curve case the expansion can
become cyclic only if |a1| — 1 > (¢ — 1)/2 thus for ¢ < 14. For odd characteristic these are
just the cases of Example 5.8 where we included a further coefficient. For even characteristic
it was shown in [48] by Miiller that we always obtain a finite expansion if we use the set R
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as given above.

For curves of larger genus the situation is a bit different. First of all — although obvious from
the experiments and motivated by the previous example in the genus 2 case — we have no
proof how large the coefficients of ¢ with A'(c)? bounded as above can get, but we can ob-
tain some information as well, which makes it easy to check for periods for an individual curve.

In the following we assume that R consists of a complete set of remainders modulo ¢9. For
larger sets R' similar observations hold.
Assume that for
P(T) — ng + a1T29_1 4+ ang 4+t alqg_lT + qg
we have that
c = cotoTH ot ey T
= roxT(co+ 1T+ 179

with 7o € R and where N '(c)? is bounded by the constant from Lemma 5.6 or Lemma 5.7
respectively. (Otherwise we know that the norm decreases.) Without loss of generality we
assume that ¢o > 0 and therefore ¢g > [(¢? — 1)/2]. Put

d=(co—10)/q? > 0. (5.1)
The rules for expanding an element lead to a system of equations
+c¢; = cip1 —daip1g?" 0<i<g-—1
+¢; = cip1 —dagg_1-; g<i1<29-2,

:I:ng,1 = —d

where the signs are assumed simultaneously. If this system can be fulfilled for a curve with
the positive sign for (co,c1,...,c29—1) then the equations hold for the quadratic twist of the
curve with the opposite sign and the above coefficient vector with alternating signs. Thus we
restrict ourselves to the case of positive sign. Inserting all equations in the one for ¢y yields

co=—d—day — - —dag —dag_1q — -+ —darg? ",
thus co = dg? — d|Pic’(C/F,)|. Using (5.1) we obtain
ro = —d[Pic’(C/F,)|.
Since both d and |Pic’(C/F,)| are non-negative and 79 € R the crucial part to be fulfilled
for either the curve or its twist is [(¢? — 1)/2] > d|Pic®(C/F,)|. Since a lower bound on
the class number is given by the Theorem of Hasse-Weil 2.32, ¢ and d have to be such that

[(q9 —1)/2] > d(,/g — 1)*. Thus we only have this problem if ¢ is small enough.
We just have shown

Theorem 5.12 Let C' be a hyperelliptic curve over Fy of genus g and let ¢ be of norm less
than 2(1//_2% (respectively %) and put d = [(|co|+7Tmax)/q? ], where rmax is the mazimal
coefficient contained in R. Then the expansion of ¢ can become cyclic only if

[(¢° ~ 1)/2] > d[Pic°(C/Fy)],

where C is either the curve or its quadratic twist.
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Example 5.13 In the genus 2 case for odd characteristic this theorem leads to the following
tabular. In the experiments only d =1 occurred.

d g<
1 37
2 11
3 7
4 5
11 3
15 no such q

If we assume that at least c3 € R holds then by cy < ¢*/*rmax we have that d is additionally
bounded from above by d < q3/2/2. For example this leads to d < 2 forq =3 and tod < 5
for ¢ = 5, thus cutting the lower part of the tabular. If we even had ¢; € R, © > 1 and
|co| < /qTmax then d is additionally bounded from above by d < (\/q +1)/2.

For a given curve it is fairly easy to check whether the expansion can run into a cycle at all
by applying the bound of Theorem 5.12. Furthermore it shows which additional coefficients
might have to be included in the set R. Using the algorithm of Finke and Pohst we can
compute all elements of such a small norm and expand all these elements to the base of
7. However, not all the curves for which the inequality of the theorem holds lead to cyclic
expansions. In case this happens, we just need to include +d(¢? — |Pic’(C/F,)|) in our
set of coefficients and use it instead of the whole period that would follow to obtain a
finite expansion as wanted. Thus if we choose such a curve for implementation we need to
precompute and store one more element. Since d and ¢ are bounded by relatively small
constants the time for this further precomputation can be neglected.

Example 5.14 Put g = 2,q = 3. Among all the isogeny classes of curves with irreducible
P(T) only P(T) =T*+£ 273+ 27?2+ 6T +9, P(T) =T*+ T3 - 2T? £ 3T + 9, and P(T) =
T* 4+ 373 + 5T2% + 9T + 9 lead to periods. The coefficients to include are £5 in the first two
cases and £6 in the last one.

Example 5.15 In the case of even characteristic the situation is even a bit more relazed.
If we choose coefficients from {0,£1,...,+q9/2 — 1,49/2} unless co = —q9/2 (c¢f. Algorithm
5.4) then for all classes of curves of genus two over Fo (see Tabular 4.1) the expansions are
finite. For F4 we run into a cycle only for P(T) = T* + 4T3 4+ 9T% + 16T + 16. To deal with
this we include 10 in the set of coefficients.

Now we look for longer periods. Without loss of generality let ¢y > 0. Put ¢y — r9 = dg9 and
c1 — alqgfld — 11 = eqY. Then from the equation
c = coterTH ey 3 P b oy 9T % gy 1T
= ro+7(r1£7(co+ 17+ + 0297172-‘]_1))
the rules for expansion lead to the following system (again we allow a change of sign):
*¢; = Ciyo —dait2¢? "2 —eaip1g9 0<i<g-—2
+¢; Cit2 — dagg_o_; — easg_1_; g—1<i<29-3

:|:C2_q_2 —d—ea1
:l:CQQ_l = —e€.
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Inserting all this (for positive sign) in the equations for ¢y and ¢; we get

co = —d—ea; —dag—---—dg" %as —eq? la; = dg? + 7o
c1 = —e—day —eag— -+ —eq? lay = d¢? lai +eq? + 11,

where the last part comes from the definition of d respectively e. A necessary condition is
that
—(d+€)[Pic’(C/Fy)| =0 + 11

can be fulfilled for 9,71 € R.

For d = —e we get 79 = —r1, i.e. the case of period length one with a change of sign. And
from the equations above we have the same restriction on the size of d as before.

In the other cases we see as well, that e and d are of the same order and that both and ¢
have to be reasonably small. On the other hand except for d = —e = 1 this did not occur in
the experiments and the same holds for periods of higher order.

Again this can be explained by the bounds on the coefficients. If we have |cy| < \/grmax and
lc;| € R, i>1, thend < (,/g+1)/2 and |e| <1+ g+ 1/,/q in the worst case.

A different way to proof the finiteness of such expansions can be extended from Lesage [40].
He investigates expansions to the base «, where « is a root of a quadratic polynomial over Z
and the set of remainders is of cardinality |a|?, symmetric to 0. He uses difference equations
to prove the finiteness and succeeds in general for the case of non-real roots (except some
cases where one obtains periods). For a special polynomial he computes the expected length
of the expansion as well. The approach generalizes to the kind of polynomials considered here
due to the symmetry of P(T) but again the expressions for the general case involving the
a; cannot be handled. Like before it is possible to get bounds for an individual curve with
explicit coefficients.

5.4 Reducing the length of the representation

Now that we know the dependence between the length of the expansion of m and the value
of N (m), we can try to shorten the representation. We have not made use of the fact that
we are working in a fixed extension field of degree n, yet.

We now consider the action of the Frobenius endomorphism on the restricted group of
Pic’(C/Fn). For these divisor classes D we have that 0(D) = D. Thus two sums 251:_01 cid’
and Z?:_ol d;¢" represent the same endomorphism on Pic®(C/ F ;) if the corresponding sums
in Z[7] are congruent modulo 7" — 1, i.e. if

h—1 lo—1

Z et — Z d;rt € (" = 1) Z[7].
1=0 1=0

Remark: Since we consider only irreducible polynomials P and since the constant term of
P is ¢9 # +1 the polynomials P(T) and T™ — 1 are co-prime. Thus their ged over Q[T] is
one. But we are working in Z[T]. The ideal generated by these polynomials is a principal
ideal generated by an integer (since the ged over Q[T is 1).

Claim: In fact this number is equal to the cardinality of the Picard group over F .



5.4. REDUCING THE LENGTH OF THE REPRESENTATION 65

Note that this leads to a further way to compute the class number for a field extension using
integer arithmetic only. The approach described in Section 4.2 has the advantage that it
provides a fast way to compute the group order for various extensions.

Proof of claim. Write P(T) = H?ﬁ (T — 7). Then in the ideal under consideration we have
T"™ = 1. Transforming T — T™ we have to evaluate

29 29
1T =), =] = 7 = [Pi®(C/F )],
i=1 i=1
which is indeed the class number. O

To rephrase this, modulo |[Pic’(C/F,.)| these polynomials have a common linear factor.
Hence, if we consider only the cyclic group of order [/, the polynomials have a common factor
T — s in F[T], where [ is a prime factor of [Pic’(C/Fn)|. This means that the operation
of the Frobenius endomorphism on a divisor class corresponds to the multiplication of the
divisor class by the integer s modulo /. For cryptographic purposes we work in a subgroup of
prime order, anyway. From now on let [ be the large prime factor of |Pic’(C/F )|

If we restrict to the subgroup of order I we can even reduce modulo T::f =7 lypn2y
.-+ + 7 + 1 since the operation of the Frobenius cannot correspond to 1 modulo [ and [ is

prime.

Therefore we shall search for elements M € Z[7] that satisfy for a given m € Z the equation
m = M mod (7" — 1)/(7 — 1) and that the 7-adic expansion of M is as short as possible.
Hence, the value of N (M) is as small as possible.

We state the following

Theorem 5.16 Let 7 be a root of the characteristic polynomial P(T) of the Frobenius endo-
morphism of the hyperelliptic curve C of genus g defined over F,. Consider the curve over
Fyn and let m € Z. There is an element M € Z[7] such that

1. m= M mod (7" — 1)/(r — 1), and
2.

23~ DN (M)
T

2log <n+2g.

where N denotes the norm defined in the previous section.

The proof is constructive, thus it provides a way to compute such an element M. Let us fix
some notation which shall be useful for the proof and to state the algorithms. For an element
Q@ € Q let z =nearest(Q) be the nearest integer to @, if ambiguity arises it is defined to be
the integer with the least absolute value. This can be realized computationally by choosing
z=[Q—0.5]ifQ >0and z = [Q +0.5] else. We will also use nearest(.) for elements of
Q[7] where it is understood coefficient-wise.
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Proof. In the field Q[7] one can invert elements. Thus, put Q := m(r —1)/(v" — 1) € Q[7],
so Q = 229 L Q7% where Q; € Q. For 0 < i < 2g — 1 put z; =nearest(Q;) and put

29—1
z:= Z zrt and M :=m —z(" —1)/(r - 1).
Thus it is easy to see that m = M mod (7" — 1) /(7 — 1). To compute the value
z(t" —1) ™ =1 (m(r —1)
M) = - 7)) = _
N(M) N(m (T—l)) N(T—l(T"—l ?

we need an estimate on N(% —z) =N(Q — 2).

9 |29—-1 2\ 2
N@Q-2) = Z Z (Qi ZZ)T]
j=1112=0
g 2g9—1 . 2 %
j=1 =0

IN
]
/N /N N
N | —

N
)
L
2
N——
N
M

Therefore we have

N(m) =

=

(253 (=2 o)) 5o (=2 -2) )
- nf( 2 \q/gg__11 zﬂ) - g%__ll@__ll.

=0

It follows that

2log,

2 —DN(M "1
(\/_ 3 ( )<210gq<\\//__q7 —1>+210gq(qg 1) <n+2g.
O

Remark: This might not be the best choice, nevertheless it provides an efficient way to
compute a length-reduced representation which works for every genus g, ground field F,;, and
degree of extension n. For the two binary elliptic curves Solinas investigates in more detail
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an optimal way of reduction. Considering the lattice spanned by {1,7} he shows that for
each element of Q[7] there is a unique lattice point within distance less than 4/7. For larger
genus the computation of the nearest point is computationally hard to realize and we do not
loose much choosing the “rounded” elements the way presented here.
Thus from the discussion of Section 5.3 we have the following result:

Theorem 5.17 (Main result on the Length)
Let C be a hyperelliptic curve over Fq of genus g and with characteristic polynomial of the
Frobenius endomorphism P(T). Let P be such that the T-adic expansion is not periodic and

9 2 . 941 2
that for an element c of Z[r] of norm < %(\/%_1) (respectively < %(\q/(j—l) for even
characteristic) the T-adic expansion is no longer than 2g + 1. Then we have:
For every element m € Z we can compute a T-adic expansion of length k using coefficients in

the set R only, where

k<n+4g+1.

From the algorithmic point of view there are two problems left to consider:
e how to represent (7" — 1)/(7 — 1) in Z[7],
e how to invert elements of Z[7].
These question are investigated in the following subsections. In the third subsection we collect
the algorithms developed so far.
5.4.1 Representing (7" —1)/(7 — 1) in Z[7|

Let P(T) =T* +ayT* '+ +a,T94ay_1qT9 * +---+a1¢9 T+ ¢ be the characteristic
polynomial of the Frobenius endomorphism associated to the hyperelliptic curve C over F,
of genus g. Suppose that

k-1 29—1
T =dog—1 +dig1T+ - Fdog_1 177
for integers do y—1,d1 k—1,---,d2g—1,k—1, then

k 2 2
™ = dog—1T+dig17T"+ -+ dog_1 k1T 9
—1 —2 2
= —¢%dyg—1 k-1 + (dojk—1 — a1 dog—1,k—1)T + (di -1 — @27 “dog—1 6—1)7" +
29—1
o+ (dog—2k—1 — ardag_1 k—1)T0 .

This leads to an algorithm to compute the coefficients of 7% iteratively starting with 70 = 1.
Since (7" — 1)/(7 —1) = 7" '+ 7" 2 4+... + 7+ 1 we sum up the intermediate results after
each exponentiation.

Algorithm 5.18
INPUT: n € N, P(T).
OUTPUT :eq, ..., €31 € Z such that (1" — 1)/(1 — 1) =eg + e17 + -+ + egg_ 17297 in Z[7].
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1. Initialize: dg =1 and d; =0 for 1 <1 <29 —1;
eo=1ande; =0 for 1 <i<2g-1;

2. for1<k<n-—1do

(a) doig = dag—1;

(b) for2g —1>1i>g do
d; == d; 1 — azg idoid;
e = e; +d;;

(c) forg—1>i>1do )
d; :=di1 — a;q9 " dya;
e :=e; + di,’

(d) do := —q%doi4;

€0 := eg + dp;

3. output (eq,e1,...,e29—1)-

Assuming n > 2g we can as well start with dgg_1 = 1,d; = 0,7 # 29 — 1 and ¢; = 1 for all
0 <i<2g9g—1 and let k run from 2g till n — 1. For values of n < 2¢ no algorithm would
be needed as one can directly read off the result. However this way the algorithm works
universally.

5.4.2 Inversion of Elements ey + €17 + -+ - + eg,_17297! in Q[7]

Let eg+e17+ -+ + egq_172971 € Z[7] where 7 is a root of P(T'). As we only consider curves
with irreducible P(T') and as the degree of S(T) :=eg + €17 + -+~ + egg_ 17297 is less than
deg P(T) the polynomials P(T) and S(T') are relatively prime, hence gcd(S(T'), P(T)) € Q.
Since Q[T is an Euclidean domain with respect to the degree map, there exist polynomials
V(T),U(T) € Q[T] such that

ged(S(T), P(T)) = U(T)S(T) + V(T)P(T)

and degU < deg P. They can be computed using the extended Euclidean algorithm.
By inserting 7 for T' we get

(eo +e1m + - + ez 179717 = U(7)/ ged(S(T), P(T)).

If the algorithm is carried out on a restricted device like chip cards, the computation of the
extended greatest common divisor and of M := m — ze mod P can be made explicit by using
polynomial arithmetic (see von zur Gathen, Gerhard [19] for details). For example then a
sparse polynomial P is advantageous.

5.4.3 Computing 7-adic Expansions of Reduced Length

Combining our results of the previous sections we are now in a position to state an algorithm
for computing m-folds of divisor classes using 7-adic expansions of reduced length.

Let C be a hyperelliptic curve of genus g defined over F, and P(T') the corresponding
characteristic polynomial of the Frobenius endomorphism. Consider the curve over the
extension field F,n. Take the unique reduced ideal D = [u, v] in the ideal class corresponding
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to the divisor class as a representative. Assume that the coefficients of the polynomials are
represented with respect to a normal basis.

Algorithm 5.19 (Computation of m-folds using 7-adic expansions)
INPUT: m € Z,D = [u,v], u,v € Fpz], P(T), R the set of coefficients.
OUTPUT:mD represented by the reduced ideal H = [s,1], s,t € Fyn[z].

1. Precomputation: fori € R,i > 0 compute
D(i) :=1iD; /* use double-and-add/*
D(—i) := —=D(i); /* for free, can also be computed from D(i) when used/*

2. /*Compute a length reduced M € Z[t] with m = M mod (" —1)/(t —1);*/

(a) compute e := Y e;T* = (T" —1)/(T — 1) mod P using Algorithm 5.18;
(b) compute €' := e ! mod P using extended GCD;

(¢) compute z :=nearest(m -e');

(d) let M = E?ial M;T* :=m — e- zmod P;

3. /*Compute the T-adic representation of M (see Algorithm 5.4);*/

(a) puti:=0;
b) while for any 0 < j < 2g — 1 there exists an M; # 0 do
j
if ¢9|My choose i := 0;
else choose r; € R with ¢9|My — 1i;
/*in even characteristic choose r; = My if |My| = ¢9/2/*
d:= (Mo —1i)/q;
for0<j<g—1do
Mj = Mji1 — aj11097771d;
for0<ji<g-—2do
Mgij = Mgijt1 — ag—j-1d;
Mgg_l = —d,‘
1:=1+1;

4. /* compute m-fold of D;*/

(a) initialize H :== D(r;j_1);
(b) fori—2<3<0do
i. H:=o0(H); /* this means cyclic shifting /*
ii. if rj # 0 then
H:=H+ D(r;); /* this means one table-look-up
and one addition/*

(¢) output(H ).
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Remarks:

1. The determination of ¢’ (i.e. most of Step 2) depends only on the chosen curve and
not on the respective divisor class D and integer m, thus it is done only once and for
all at the set-up of the system. If the algorithm is carried out several times with the
same divisor class D (like in the first step of the Diffie-Hellman key exchange) then we
need to do the precomputations of Step 1 also only once and store them along with the
curve parameters to obtain further speed-up.

2. To obtain a sparse representation as described in the next section one changes Step 3
appropriately. If the curve is such that the expansion becomes cyclic after the coeffi-
cient -y, then include D(vy) := D in the precomputations and choose M as coefficient
whenever |My| = .

3. Note that when we restrict ourselves to the fixed extension Fy» we can obtain a fi-
nite representation with restricted coefficients in any case since we can use 7 — 1 for
computing the expansion as well. However these expansions would be much longer.
Furthermore we took this approach (first considering the finiteness and dependence of
the length on N') to give a motivation for the chosen strategy of reducing the length
and to save the relation (7™ — 1)/(7 — 1) for the reduction.

5.5 Density of the Expansion

Besides the length the second important quantity to consider is the density of the representa-
tion. By density we mean the number of nonzero coefficients occurring in the representation
divided by the length of the representation.

Naturally the density will depend heavily on the choice of the set R and therefore on the
number of precomputations. As stated before the minimal set R simply to make possible the
expansion is {0, 1, £2,... ,i[%l}. Using this set, we get a zero coefficient only at random,
hence with a probability of 1/¢9. (Remember T|co + -+ cag—17297! & ¢9|cp.) Therefore the
asymptotic density in that case is (¢ — 1)/¢9.

We can also double the number of remainders R’ = {0, +1,...,+¢% — 1} and use the fact that
we can choose from two elements.

Example 5.20 We used this in [26] for a genus two curve over Fy by the following choice
R' = {0,+1,+2,43}. Let ¢ = cy + 17 + o2 + ¢c373. Choose the remainder 1 € R' in the
following way:

1. If 4| co, then 7 | ¢ and we clearly use r = 0.

2. If 4 1 ¢y, then we have ezxactly two choices for r and we can try to make one of the
subsequent cy’s divisible by 4:

(a) If2 | c1, then there is exactly one r € R such that 4 | co—r and 4| ((co—1)/2+c1),

namely
ccmod4\¢gmod8| 1 2 3 5 6 7
0 1 2 3 =3 -2 -1
2 -3 -2 -1 1 2 3

Using these values for r, the actual r is not zero but the next one will be zero.
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(b) If 2 ¢1, then we are only able to make the third successor of the actual cy at the
latest be divisible by 4 by using.

camod2\¢cgmod8| 1 2 3 5 6 7
0 1 2 3 -3 -2 -1
1 -3 -2 -1 1 2 3

This strategy produces expansions m = Eé;(l) rimt with coefficients r; in R', where

TiTi41Ti42Ti4+3 = 0 (1 € {Ozig.g. L= 4})
The asymptotic density is 575 -

The idea can be carried over to the general case as long as p /a;. It leads to expansions
satisfying that among any 2g coefficients there is at least one of value 0. Anyhow for larger
genus and field size the interdependencies to be aware of while choosing the next coefficient
become rather involved.

But by using other choices of R we can try to obtain more zero coefficients on the cost of more
precomputations. This might be preferable if storage is no problem and the computations
are to be carried out very often with the same divisor. Consider for example the curves with
characteristic polynomial of the following form:

P(T) =T% + a,T9 + ¢°.

Let ¢ = p". If pl97/2] does not divide ag, then this curve is not supersingular and might be seen
as the next best thing with respect to a sparse representation. (If also a, were = 0 mod plor/2]
then the 7-adic expansion would become rather simple, but these curves are not suitable for
cryptography.) Consider the division step in the expansion of ¢y +¢17+ -+ -+ 029,1729_1 and
choose 7 € R to ensure ¢9|cy — r. Then we get:

coterT+ ey 179 =

=r+7(c1 + o+ + (cg — c‘;;’"ag)T-"*l 4oy T — C‘;—;TTZ‘J*I)).

The next g —1 coefficients of the representation are not influenced by r at all. Thus we obtain
g non interacting strands. Taking R to be a complete set of representatives modulo ¢29 we

can force ¢, — c‘j];Tag to be divisible by ¢ provided that ¢ and a4 are relatively prime.

We observe that for ¢ even R = {0, £1,£2,... ,i% — 1}\{+£ multiples of ¢¥} and for g odd

R={0,£1,%£2,..., :I:ng{1 H\{% multiples of ¢9} are minimal choices needing (¢9 —1)q9/2—1

precomputations to ensure that we obtain at least one zero coefficient for every nonzero one.

The proportion of nonzero coefficients visa zeros is 1 : 1 + qig + q%\‘] + --- (the first one from

the construction, the others by probability). Thus we get an asymptotic density of Qq;g—__ll.

The same strategy and set R work if for 1 < ¢ < g we have ¢9 |a,~q9*i, because then the
remainder of the former ¢, — QO(I;—Tag modulo ¢Y does not change during the next g — 2 steps

of expansion. Hence, we can obtain a representation of asymptotic density 2q;gill using this
strategy whenever

PT)=T% +a, T ... + ayT9 mod ¢?, ay Z0mod g.

In the next section we provide some examples to explain the procedure for genus 2 curves
more directly and give evidence that the theoretical results hold not only asymptotically but
also for the range of n considered here.
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Remarks

1. Although we described this technique for the above sparse kind of P it is more likely
to be used for the more general case since the sparse case corresponds to elliptic curves
over Fgo via Weil descent. The arithmetic on elliptic curves is faster and the degree
of extension — ng — allows to use the Frobenius endomorphism as well, therefore these
curves are bad choices as hyperelliptic curves.

2. This might be regarded as an intelligent kind of windowing. Naturally the standard
windowing methods carry through to 7-adic windowing, i.e. to considering rg + 17 +
«+-r_17% "1 as one coefficient, too. One is naturally lead to considering sliding windows
allowing a string of zeros between any nonzero coefficients. Let the length of the window
be k like above. Then the density is k(qf—ﬁ computed from the proportion 1 :
k-4 F+ &+ =k—2+ 55
Note that the windowing method can be applied for any P(T).

Example 5.21 In [26] we considered coefficients of the form a + br and showed how
to slightly reduce the number of precomputations in the case of ¢ = g = 2. Let

R ={0,41,+2,+(1 +7),£(1 — 7),£(1 — 27), £2 + 7}

be the domain of coefficients. This choice enables us to realize a sparse T-adic expansion
in the sense that no two consecutive coefficients are nonzero. Using r as in the following
table we force cg + c1T + coT2 + c372 — 1 to be divisible by T2, i. e. the next coefficient
will be zero. If 4|cy then r =0, else take

¢ mod 4\¢comod 8| 1 2 3 5 6 7
0 I 7 —(1-27) 1-2r -2 -1
1 1+7 247 —-(1+7) 1-7 247 —(1-71)
2 1-2r -2 -1 1 2 —(1-27)
3 l—-7 247 —(1-7) 1+7 247 —(1+71)

3. The bounds on the length hold here as well, but we need to be aware of new periods
occurring.

5.6 Experimental results

This section provides several experimental results about the length and density of the 7-adic
expansions for hyperelliptic binary curves of genus 2,3, and 4.

We achieved similar results for odd characteristics as well. Furthermore we only mention
results obtained for the reduced density. Using the minimal set of coefficients the experiments
confirm the theoretical (and asymptotical) results, too.

5.6.1 Curves of genus 2 over F,

Besides the supersingular curves and the two curves considered by Gunter, Lange, and Stein
[26] there are 4 classes of curves left to investigate. All of them allow to reduce the density
by the strategy explained in Section 5.5.

To compute a 7T-adic representation we use the following algorithms to realize the strategy
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Table 5.1: Average Length and Density,Curve with 7% — T2 + 4

average | average average | average
n

length density length density

611 62.35 1 0.4393 ] 97 | 98.35 [ 0.4352
67 | 68.36 | 0.4383 | 101 | 102.36 | 0.4351
71| 72.34 | 0.4377 | 103 | 104.37 | 0.4347
73| 74.33 | 0.4375 | 107 | 108.37 | 0.4349
79 | 80.32 | 0.4368 | 109 | 110.35 | 0.4345
83 | 84.35 | 0.4363 | 113 | 114.37 | 0.4345
89 | 90.36 | 0.4361

Table 5.2: Average Length and Density,Curve with 7% + T2 + 4

average | average average | average
n

length density length density

617 62.36 [ 04393 [ 97 | 98.33 [ 0.4351
67 | 68.34 | 0.4382 | 101 | 102.35 | 0.4349
71| 72.37 | 0.4380 | 103 | 104.31 | 0.4348
73| 74.34 | 0.4369 | 107 | 108.34 | 0.4343
79 | 80.34 | 0.4368 | 109 | 110.35 | 0.4345
83 | 84.37 | 0.4365 || 113 | 114.32 | 0.4344
89 | 90.36 | 0.4362

that for each nonzero coefficient we obtain at least one zero coefficient as stated in Section
5.5. Let M = cy+c17+cat? +c373. Take R = {0,4+1,42,...,£7}\{+4}. As in all four cases
the coefficient of T is divisible by 4 we observe that there are two non interacting strands as
c1 is not influenced by the choice of r . Thus a nonzero coefficient is not necessarily succeeded
by a zero coefficient. But we obtain for each nonzero coefficient

1+1/441/16 4 = 4/3

zero coefficients (the first one from the construction, the others by probability), hence
resulting in a ratio of 1:4/3 thus in an expected density of 3/7.

Experimental results with all four kinds of curves show that the density decreases for growing
n and that a density of less than 0.434 thus slightly worse than 3/7 = 0.42857 is achieved for
extensions of degree at least n > 71.

In detail these results are given in Tables 5.1 till 5.4 which also list the average length, showing
that in fact it is bounded by n plus some constant even less than 2g.

5.6.2 Curves of genus 3 over F,

Also for the genus 3 case we made use of the strategy, that we get at least one zero coefficient
for each nonzero one. The results are stated in the following Tables 5.5 and 5.6. The expected
value for the density is 7/15 = 0.46. Again we list the average length as well.
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Table 5.3: Average Length and Density,Curve with T* + 273 4 372 4 4T + 4

average | average average | average
n

length density

61 [ 65.18 [ 0.4348 T 97 [ I01.13 | 0.4326
67 | 71.15 | 0.4343 | 101 | 105.13 | 0.4324
71| 75.17 | 0.4339 || 103 | 107.19 | 0.4321
73| 77.09 | 0.4338 | 107 | 111.15 | 0.4322
79| 83.16 | 0.4333 | 109 | 113.13 | 0.4321
83 | 87.14 | 0.4331 | 113 | 117.18 | 0.4323
89 | 93.18 | 0.4327

length density

Table 5.4: Average Length and Density,Curve with T — 273 + 372 — 4T + 4

average | average average | average
n

length density

61 | 65.18 | 0.4346 97 1 101.19 T 0.4326
67 | 71.20 | 0.4342 || 101 | 105.15 | 0.4326
71| 75.17 | 0.4340 | 103 | 107.18 | 0.4324
73| 77.16 | 0.4339 | 107 | 111.21 | 0.4320
79 | 83.19 | 0.43344 || 109 | 113.18 | 0.4318
83 | 87.17 | 0.4331 || 113 | 117.13 | 0.4320
89 | 93.17 | 0.4328

length density

Table 5.5: Average Length and Density,Curve with 78 — 7% + 8

average | average average | average

length density

371 4021 104874 1] 61 [ 64.20 [ 0.4793
41 | 44.30 | 0.4848 || 67 | 70.23 | 0.4783
43 | 46.23 | 0.4848 || 71 | 74.23 | 0.4777
47 | 50.30 | 0.4828 || 73 | 76.24 | 0.477
53 | 56.29 | 0.4810 || 79 | 82.24 | 0.4764
59 | 62.27 | 0.4795

length density

Table 5.6: Average Length and Density,Curve with 78 + 7% + 8

average | average average | average
n

n

length density length density

37 ] 40.21 | 0.4876 || 61 | 64.24 | 0.4792
41 | 44.30 | 0.4844 | 67 | 70.24 | 0.4781
43 | 46.21 | 0.4848 || 71 | 74.23 | 0.4776
47 | 50.23 | 0.4825 || 73 | 76.22 | 0.4772
53 | 56.27 | 0.4812 || 79 | 82.22 | 0.4764
59 | 62.25 | 0.4793
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Table 5.7: Average Length and Density,Curve with 78 4+ 7% + 16

average | average average | average

n n

length density
29 1 34.02 ] 0.5042 || 47 | 51.86 | 0.5046
31 | 35.87 | 0.5154 || 53 | 57.90 | 0.4977
37 | 41.95 | 0.5018 || 59 | 63.69 | 0.4984
41 | 45.63 | 0.5101 || 61 | 65.94 | 0.4962
43 | 47.66 | 0.5034 || 67 | 71.72 | 0.4969

length density

Table 5.8: Average Length and Density,Curve with 7% — T* + 16,additional coefficient

average | average average | average
n

n

length density length density

2917 40.22 104781 [ 471 57.90 | 0.4816
31 | 41.90 | 0.4802 | 53 | 64.17 | 0.4810
37 | 48.23 | 0.4794 || 59 | 70.24 | 0.4806
41 | 51.96 | 0.4801 || 61 | 72.20 | 0.4810
43 | 54.29 | 0.4793 || 67 | 78.22 | 0.4813

5.6.3 Curves of genus 4 over F,

Finally we consider genus 4 curves. Here we use two different strategies to compare the effects.
First we reduce the density by the strategy of Section 5.5. These results are stated in Tables
5.7 and 5.8. In the second case we have to add a further coeflicient since the expansion allows
a period of length 1. To compare we make use of a combination of the windowing technique
with 7-adic expansions, allowing the coefficients to be of the form a + br with |a|, [b] < ¢9/2.
The corresponding facts can be found in Tables 5.9 and 5.10.

In all cases the average length is bounded by n plus some small constant however the re-
sults motivate that it might be preferable to use the usual windowing method. But in this
implementation the number of precomputations was not optimized, thus there are more pre-
computations to store to achieve these results. Like in [26] one can also set up the system
such that the number of precomputations for the windowing method is equal to that for the
enlarged set presented in Section 5.5. This will probably lead to results similar to our new
strategy, i.e. slightly increase the length.

Table 5.9: Average Length and Density,Curve with 78 +T% + 16

average | average average | average

n length density
29 1 31.10 | 0.4859 || 47 | 49.076 | 0.4850
31 | 33.11 | 0.4859 || 53 | 55.02 | 0.4850
37 1 39.03 | 0.4861 || 59 | 61.08 | 0.4849
41 | 43.03 | 0.4857 || 61 | 63.07 | 0.4849
43 | 45.09 | 0.4853 || 67 | 69.07 | 0.4848

length density
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Table 5.10: Average Length and Density,Curve with 78 — T* + 16

average | average average | average
n

n length density
29 1 32.72 10.4906 || 47 | 50.71 | 0.4878
31 | 34.75 | 0.4897 || 53 | 56.72 | 0.4876
37 | 40.71 | 0.4889 || 59 | 62.71 | 0.4872
41 | 44.68 | 0.4887 || 61 | 64.69 | 0.4872
43 | 46.72 | 0.4884 | 67 | 70.72 | 0.4867

length density

5.7 Comparison

In this section we compare the complexity of the 7-adic method with some standard methods
that apply to the divisor class group in general. Furthermore we present timings to confirm
the previous results.

5.7.1 Complexity compared to binary double-and-add

We first take the naive double-and-add method as basis to compare and compute the speed-up
obtained using the Frobenius endomorphism.
By Section 5.1 we know that for the standard method we have

3 lo
~ — = e
2 g 824

group operations if the binary representation is used. If we can make use of the enlarged set
of coefficients to achieve a sparse representation we have costs of approximately

g9 —1 <1
29— 1" 52

n

for the 7-adic expansion. The relation leading to the speed-up is given by

binary

>3.-¢g-1 .
T-adic 970824

If we can only use the minimal set the density is (¢9 — 1)/¢? resulting in

¢ -1

operations in the ideal class group and
3
speed-up > A log, q.

To fill these numbers with life the following Tables 5.11 and 5.12 provide some examples of
the speed-up obtained. Note that the results for the larger set also hold if one makes use of
the windowing technique with coefficients a + b7 since this leads to the same density.
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Table 5.11: ¢ =2

g | binary | 7-adic (small) | speed-up factor | 7-adic (large) | speed-up factor

2|1 3n 3/4n 4 3/Tn 7

3| 9/2n 7/8n 36/7 ~ 5 7/15n 105/14 ~ 9

4 6n 15/16n 32/5~6 15/31n 62/5 ~ 12
Table 5.12: ¢ =5

g | binary | 7-adic (small) | speed-up factor | 7-adic (large) | speed-up factor

2| 6n 24/25m 95/4 ~ 6 24/49n 49/4 ~ 12

3 In 124/125n ~9 124/249n ~ 18

4] 12 624/625n ~ 12 624/1249n ~ 24

7

5.7.2 Complexities taking into account the storage

If one also wants to take into consideration the storage, one can as well compare the results
of the 7-adic expansions with binary windowing techniques. Using the standard windowing
method one simply computes the expansion to the base of 2%, thus needing 2¥ — 2 precompu-
tations. We can even allow the coefficients to be in the above set but use a sliding window
of width k to achieve strings of zeros between the entries. A survey on these methods can be
found in Gordon’s paper [25] and in the Handbook of applied cryptography [45].

The usual windowing method leads to an expansion for m of length A ~ (logy m)/k. Thus we
need ~ \k doublings. The asymptotic density is (2% — 1)/2%. Therefore the complexity is of
order

Mk 4+ A(2F —1)/2F ~ logm(1 + (2F — 1)/(k2F)) < (k +1)/klogm,

where here log, m ~ gnlogs q.

For ¢ = 2 we have in the 7-adic method 29~! — 1 precomputations in the minimal
set and 229! — 297! — 1 precomputations for the larger one. Thus choosing k = g
in the first and ¥ = 29 — 1 in the second case is more than fair. Then we have for
the first case that the number of operations is of order gn(l + (29 — 1)/¢29) and for
the second case of order gn(1 + (229! — 1)/g229~!). Thus asymptotically the Frobenius
method is faster by a factor of g respectively 2g. Explicit numbers can be found in Table 5.13.

For larger ¢ it gets harder to find the right choice of k& to compare. We investigate ¢ = 5 as
an example. In Tables 5.14 and 5.15 we choose k such that 2¥ — 2 is greater or equal than the
number of precomputations for the 7-adic method. In the speed-up factor we used 2 instead
of log, 5, again in favor of the windowing method.

Concluding one can state that the speed-up over the windowing method is also remarkable.
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Table 5.13: ¢ = 2, comparison with windowing
g | window | T-adic (small) | speed-up factor window | 7-adic (large) | speed-up factor
2| 11/4n 3/4n 11/3 31/12n 3/Tn 217/36 ~ 6
3| 31/8n 7/8n 31/7 573/160n 7/15n 1719/224 ~ 7.6
41 79/16n 15/16n 79/15 1023/224n 15/31n 10571/1120 ~ 9.4
Table 5.14: ¢ = 5, comparison with windowing for small set
g | k| window T-adic speed-up factor
214 47/8n 24/25n 1175/192 ~ 6
3| 7| 511/64n | 124/125n 63875/7936 ~ 8
4 19 | 2559/256m | 624/625n | 533125/53248 ~ 10
Table 5.15: ¢ = 5, comparison with windowing for large set
gl k window T-adic speed-up factor
9 1535/256m 24/49n 75215/6144 ~ 12
13 32767/4096n 124/249n 263193/16384 ~ 16
18 | 1310719/131072n | 624/1249n | 1637088031/81788928 ~ 20
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5.7.3 Timings

For timings we used the binary curve C : y? 4+ (2® + z + 1)y = 2° 4+ z* + 1 with char-
acteristic polynomial P(T) = T* — 2T% + 3T? — 4T + 4 over Fayso. Its class number is
2-191561942608242456073498418252108663615312031512914969, thus this curve is appropri-
ate for applications. For the computations we used Magma. Unfortunately Magma does not
provide a representation of the finite fields using a normal basis. Thus instead of using cyclic
shiftings as proposed we square each coefficient. Thus we cannot get the whole speed-up.
We carried out 1000 random scalar multiplications using the 7-adic method with the minimal
set of coefficients R = {0,+1,+2} in Magma. For the 7-adic method we needed only one
precomputation for 2D, thus the time and space needed for this is negligible. To compare we
also used the built-in routine for computing m-folds in Magma.

The average length of the 7-adic expansion is 90.18 and the average time to compute the
expansion is 0.005318. The complete multiplication takes 0.070261 on average. The corre-
sponding time with the usual function is 0.146036 on average. Hence, we obtained a speed-up
by a factor of 2.

The program used for this comparison FrobExample and a program to play around with a
user-defined curve FrobSelf can be obtained from
http://www.exp-math.uni-essen.de/~lange/KoblitzC.html.

5.8 Alternatives

In Section 5.5 we considered different strategies to obtain sparse representations at the cost
of more precomputations. But what happens if absolutely no precomputations are allowed,
hence, not even for the minimal set R. That means that instead of retrieving 1D,: € R
by table-look-up we need to compute with probability qi];?’ an i-fold of D where the binary
length of 4 is approximately glog, ¢ — 1. Using the binary double-and-add method this takes
%(g logy g — 1) operations each time. Thus instead of % gn log, q operations using the standard
method throughout we arrive at ng;?’n%(g logy g — 1), which is still better since we consider
small g and q. Not to waste space on saving the 7T-adic expansion we perform the addition

after each step.

Algorithm 5.22 (r-adic, without precomputations)
INPUT: M € Z[r] with M = m mod (7" —1)/(1 — 1), D = [u,v]
OUTPUT: H := mD

1. Initialize H := [1,0];

2. while for any 0 < j < 2g — 1 there exists an M; # 0 do
if ¢9|My choose 1 := 0
else choose 7 € R with ¢9|My — r;
/*in even characteristic choose r = My if |My| = q9/2/*
d:= (Mo — )/a";
for0<ji<g-—1do
Mj = Mjy1 —aj1997771d;
for0<ji<g-—2do
Myyji= Myyji1 — ag—j-1d;
Mgg_l = —d;
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compute H := H 4+ rD wvia binary double-and-add;
D :=o(D);

3. output(H).

If enough storage is available to save the T-adic representation but not the precomputed values
for r;D,r; € R then the following algorithm is much faster reducing the amount of doublings
needed. We adapt the idea of Lee [38] (see below). Let the expansion of m be of length
n < A < 2n. For our choices of g and n this is to be expected by the previous sections. Using
7" — 1 = 0, we can reduce the length to n accepting coefficients that are at most twice as
large. We assume that A ~ n + 2g, therefore only the first 2g coefficients will be of size at
most twice as large. Put k := |logy(max,,cp |ri|)] + 1, for this new set of coefficients R,
hence k£ ~ glog, g + 1. Let the binary expansion of r; be r; = Zf;é rij2j .

Algorithm 5.23 (7-adic, precomputed expansion)
INPUT: D = [u,0], m = Y0 ri7%, 7 € R.

OUTPUT:H = mD
1. Initialize H := [1,0];
9. for]:k—]. to 1 do

(a) fori=n—1to 0 do
H := H +r;jc*(D);
(b) H:=2H;

3. fori=n—11t0 do
H := H + rjpo*(D);

4. output(H ).

For this algorithm we need k£ doublings and asymptotically %kn additions. Thus the
complexity is approximately %ng log, q for large n. We can do even better if we use a binary
non adjacent form (NAF) — signed binary representation with no two consecutive non-zeros
— of the 7; which has an asymptotic density of 1/3 resulting in a complexity of %ng logs q.
Note that the space requirement to compute and store the NAFs of the r; is not much larger
than storing the binary representation of the r;’s. Unfortunately the way presented in this
section does not allow to get rid of the factor g in the complexity.

In general, Lee’s [38] approach to use Koblitz curves differs from ours. Also for only
moderately large primes he does not use a normal basis representation but considers optimal
extension fields. In these fields one uses a polynomial basis but the defining polynomial of
the extension is a binomial, thus the multiplication of two field elements is as fast as possible.
The action of the Frobenius endomorphism is made efficient by precomputations and table
look-ups. Therefore he stores o’D for all powers needed. On the other hand he avoids to
store the multiples of D with the elements of the set of remainders R’ since in his case the
size of R’ is large and n is comparably small. Using this approach he is not able to exploit
the full power of using the Frobenius endomorphism on the curve, for example he lets the
Frobenius operate only on D. His algorithm is similar to the one just presented but he
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obtains the ¢*(D) via table-look-ups.

The example he provides does not seem to be optimal since the degree of extension used
is only 13, thus fairly small (and he proposes even smaller extensions — but larger than 3)
and one has to be aware of Weil descent attacks which might work for these degrees as well
since the restriction of scalars leads to a variety over the ground field with moderately large
dimension that could be handled by the index calculus algorithm. On the other hand Diem [7]
shows that for odd characteristic the generalization of the Gaudry-Hess-Smart [23] attack is
very unlikely to work faster than attacking the original system.

5.9 Koblitz Curve Cryptosystems Revisited

To use a cryptosystem or protocol based on Koblitz curves it is not necessary to start with
a secret integer m, compute its 7-adic expansion and use this to compute a secret multiple
of a group element. One can as well start with an expansion of fixed length (padding with
leading zeros if necessary) and use it as the hidden number — not caring to which integer
it corresponds if at all. If we restrict ourselves to the cyclic subgroup of order [ as usual,
then we know by Section 5.4 that for the action of the Frobenius endomorphism we have
o(D) = sD, where s is an integer modulo [. Hence, any sum ) 7;7° corresponds to an integer
modulo [. Thus instead of computing a random number smaller than the group order we
choose at random X elements from the set of coefficients R. This idea was pointed out to
me by Schroeppel. In [34] Koblitz investigates a similar set-up for elliptic curves, where he
credits the idea to Lenstra.

5.9.1 Protocols

We first care about the practicability of these new keys and show that we can still use the
standard protocols.

In the Diffie-Hellman key-exchange [9] the two parties A and B agree on a secret key in first
selecting secret integers a and b. Then A sends aD to B and receives bD, where D is the
generator of the group they work in. Then both parties can compute the common key abD
by using their own (stored) secret integer. Here, one can simply use the vector as the secret
number and the whole protocol carries through.

Nearly the same holds for the ElGamal cryptosystem. To set up the system each user selects
a secret integer, say A selects a, and then publishes this multiple of the generator, hence
EA =aD. To send a message to A, B looks up Fa and chooses a random integer k, usually
called the nonce. Then he computes both K = kD and m + kEa, where m is the message.
Now A can decrypt by subtracting a K from the second part. In this system one can replace
both, the hidden integer and the nonce by 7-adic expansions with randomly chosen coeffi-
cients. Therefore again both parties gain from the speed-up.

In the signature scheme for abelian varieties we choose an inversion-free version. For an
overview of applicable schemes consider the Handbook of Applied Cryptography [45][Note
11.70]. Let H(.) and h(.) be hash functions from the message space respectively from the first
polynomial of a divisor class to the integers modulo the group order /. The hash functions
are public. A secretly chooses a and publishes Eo = aD. To sign a message m, she chooses
a nonce k and sends p(k) = kD and pu(k,m) = aH(m) + kh(kD) mod [ together with the
message m. To check the validity of the signature one compares pD and H(m)Ea + h(p)p,
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where the addition is understood as addition of divisors. The signature is accepted if these
divisors are equal. Note that for space efficiency we need not send both polynomials for p(k),
the first one and signs to determine the corresponding y-coordinates of the points suffice once
one has agreed on a fixed ordering of the finite field. As one can see, the secret numbers
are not only taken as multiples of a divisor class but also as integers modulo [. To use the
alternative system one can start with the expansions and compute the corresponding integers
modulo [ using the correspondence of 7 and s. To compute k as an integer, we need at least
n — 3 multiplications modulo / plus some additions for the coefficients. It depends on the
device whether these modular operations can be performed faster than computing the key
as presented in the previous sections. Note that we can compute the integer and kD on
the run as we need not store the coefficients and for both computations we start from the
highest power. Thus we take n — 1 times a random element r of R and each time compute
the intermediate results o(p) + rD and sk + r mod .

To obtain a we proceed the same way, but we save a together with its expansion.

One can as well think of transmitting u(k, m) as a tau-adic expansion. But then each coeffi-
cient can be of size [ which is rather ineffective. Thus we do not recommend this.

5.9.2 Collisions

To apply this idea, we need to ensure that the corresponding multipliers occurring are equally
distributed. Respectively we need to be aware of collisions. Using the method described
so far in a group of order ! the probability of collision is 1/I. This is the probability that
two persons choose the same key if the key is chosen at random. As before we restrict
ourselves to the points of order I of Pic’(C/Fyn), where we consider the large prime I
dividing |Pic’(C/Fgn)|. Hence, there exists an integer s modulo [ such that ¢D = sD for all
divisor classes D of order [. Since we know that s™ = 1 mod [, because s corresponds to the
Frobenius endomorphism on this restricted group, and s Z 1 mod [ the highest exponent of 7
in the expansion should be less or equal to n — 2, to avoid multiple occurrences of a number.
There can be other combinations of powers of s with bounded coefficients depending on the
chosen curve, but here we try to exclude those polynomials that occur in any case.

Note that the two known equivalences 1 + s + .-+ + s»! = Omod! and
$29 418297 4. 4 agsd +---+ a1¢? 's+¢% = 0 mod [ do not lead to such a representation,
since in the first one the highest power is n — 1 and all powers s* mod [,0 < i < n — 2 are
different and also not equal to the negative of another power (n is an odd prime), the second
one contains the coefficient ¢9 ¢ R, and any combination of both still has the maximal power
of n — 1 or too large coefficients.

Using (7o, ...,7n_2) as a key we can obtain at most |R|" ! = ¢ 1) or [ — whichever smaller
— different numbers r¢ + - - - + 725" 2 mod I. This time we do not include —q9/2 in R for
even characteristic to avoid ambiguity. If I < ¢9("~1) then we know that collisions do occur.
We should exclude this case — or choose a shorter key-length if [ is that small. Since the
experiments showed that in fact there are elements with expansions longer than n — 1 not all
[ multipliers can occur.

Now assume that for a given curve considered over Fy» all m mod ! have an expansion of
length at most n+4g+ 1 and that the large prime divisor [ is of size ~ ¢"9. Thus taking only
those elements of length < n — 1 we lose at most g9 +49+1) — g9(»—1) myltipliers. But since
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we started with [ different numbers the left-over ~ ¢9" — (qg("+4g+1) — qg("_l)) is negative,
thus this bad case cannot happen. Furthermore we know from the experiments that there are
expansions of length <n — 1.

Now let N be the number of different elements < [ representable by n — 1 digits. If two
expansions represent the same number this means that they differ by a multiple of [ if the
root 7 is identified with the integer s. Hence, there exists a representation of 0 mod ! given
by so + 515 + - -+ + 5, 25" 2, where s5; € {0,%1,...,+q% — 1}. The worst thing that could
happen is that one element occurs all the possible ¢?(*~1) — N times. We now motivate that
this case is impossible to happen.

If there are several ways of representing the same multiplier this means that there exists a
representation so + s18 + - - + s,_28" "2 = 0 mod [ with very small coefficients. Thus one
can also add and subtract multiples of this representation to many other expansion. Take
one expansion (rg,...,7,_2) which satisfies r; + ts; € R for 0 < i < n — 2 for T integers t,
then this multiplier occurs at least T' times. If the length of the nontrivial representation of
0 mod [ is shorter then we also have to take into account shifted combinations.

Therefore there are several integers mod [ that are represented by different expansions. Thus
the amount of ¢9»~Y) — N multiple occurrences spreads over several elements.

Hence, one can say that the integers modulo [ represented by the vectors (rg,...,r,_2) are
almost equally distributed. Furthermore before choosing a curve one should run some experi-
ments to know whether representations of 0 mod ! of small length and with small coeflicients
exist, since this would imply that many elements occur very often in the expansions of length
< n —1, thus N would be comparably small. Hence, one should at least exclude representa-
tions of 0 involving only the digits 0,£1 (and £2 for ¢ > 2). Equivalently one can use the
method of 7-adic expansion described in the preceding sections to get statistical data on how
many of the elements allow a short representation, thus an approximation of N.

In Chapter 6 we consider the special case of n = 3 and derive conditions on the coefficients to
ensure that no collisions occur. Unfortunately the method does not generalize to the relatively
large kind of n we work with here.

Example 5.24 Consider the binary curve of genus 2 given by
C:y’+ (@@ +z+1)y=24+2"+1

with characteristic polynomial of the Frobenius endomorphism P(T) = T*—2T3++3T? —4T +4.
For the extension of degree 89 the class number is almost prime

IPic®(C/F )| = 2 - 191561942608242456073498418252108663615312031512914969.

Let 1 be this large prime number. The operation of the Frobenius endomorphism
on the cyclic group of this prime order corresponds to the multiplication by s =
—109094763598619410884498554207763796660522627676801041 mod [. Choosing a sequence
of 88 elements r; from R := {-1,0,1,2} at random and computing Eflorisi mod
[ we get the multiplier corresponding to the key (rg,...,rs7). If two sums repre-
sent the same integer modulo | then their difference has coefficients in 0,+1,+£2,+3.
To get the correct probabilities of occurrence we wused the following multi-set S :=
{-3,-2,-2,-1,-1,-1,0,0,0,0,1,1,1,2,2,3} and computed 10 000 000 such sums mod-
ulo l. The zero sum never occurred.

Hence, there is no obvious weakness and this curve is probably suitable for using this modified
set-up.
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5.9.3 Attacks

The standard algorithms for computing the discrete logarithms cannot make use of the
fact that the last digits of the base 7 expansion of the exponent are zero. Hence, only a
brute-force search throughout the keyspace can make use of the reduced amount of possible
keys. As usual the group automorphism weakens the system slightly as we remarked in the
introduction.

If we consider digital signatures we have to pay more attention. We first outline what happens
if parts of the binary expansion of the nonces are known and then show that this attack does
not apply for our case. Building upon the work of Boneh and Venkatesan [3] and Howgrave-
Graham and Smart [31], Nguyen and Shparlinski [52] invented a way to reveal the secret
signing key a if only some bits of the nonces k£ are known. Our notation and signature scheme
differ from the one presented in [52] and they deal with the case of elliptic curves only, however
we now present essentially their ideas.

The task of computing a is transformed to a hidden number problem, which can be solved
then by lattice reduction. Assume that the highest j bits of k are known, i.e. one knows
k' such that 0 < k — k' = k < /27, where as before [ denotes the prime group order. As
aH(m) = p(k,m) — kh(kD) = pu(k,m) — (k' + k)h(kD) mod I, the attacker can compute

T(k,m) = h(p(k)) " H(m), U(k,m)=—k"+ u(k,m)h(p(k))™*
from the publicly knows values and gets the problem of finding a such that
(U(k,m) — aT'(k,m) mod 1) < 1/27.

This hidden number problem can be solved assumed that one receives enough instances and
that the nearest vector problem in the associated lattice can be solved (this is probable as the
dimension is relatively low). Nguyen and Shparlinski verified this experimentally for elliptic
curves and succeeded even for a small number of known bits as 3. Hence, this attack has to
be taken serious.

Using our alternative scheme, the attacker knows that the “most significant 7-adic bits” of
k are zero, respectively as the corresponding integer s is easy to compute, that the highest
powers of s do not occur. On the other hand we can bound s as an integer from below:

We have that s29 +a;s297! +--- +agsd+--- +a1¢9 s+ ¢ =0mod !, s"—1=0mod! and
that [ ~ ¢™9. Due to the second equivalence s is at least > ¢9. Hence, the first equivalence
one cannot hold in the integers, hence, s?9 + a1s%9™1 + .-+ ags9 + -+ a1 Ls +¢7 > L.
Neglecting lower order terms we can conclude that s is even at least of order ¢"/2, i.e. 11/(29),
Therefore the above considerations reveal only that modulo [ the coefficients of s"~! till s"*J
are zero (assuming that expansions of length n + 4g + 1 could occur in an expansion of an
integer modulo I, we can use j < 4g). But this does only lead to the similar expression

(U(k,m) — aT(k,m) mod ) < (I/s’ mod I),

where we can use k' = 0 as approximation. As the right hand side is also considered modulo
I we cannot extract a hidden number problem from this and this attack fails for 7-adic
expansions.
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To conclude one can say that using this modified system saves the time needed to compute
the expansion without weakening the system.

One can restrict the key size even more by choosing a smaller set of digits for the 7-adic
expansion. This reduces the storage requirements and the possibility of collisions but for
extreme choices — like R’ = {0,+£1}, thus without precomputations — one has to be aware
of brute force attacks. If one tries to get around these by using longer keys of length n 4+ A
collisions get more likely since one has to deal with 1 + s+ -+ 4+ s"~! = 0 mod [, thus for
example the zero element occurs at least 2()‘+:,f;‘:x_1) + 1 times, where 77, is the maximal
coefficient of R'. i

Another idea is to consider only sparse representations to reduce the complexity. But this
reduces the size of the key-space as well.
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Chapter 6

Trace-Zero Variety

So far we have considered the case of very small characteristic and of large degree of
extension. The reason for this is that for larger characteristic one would need to store many
precomputed values if one follows the strategy described so far. Furthermore when the degree
of extension is in a medium range the Weil descent attack has to be taken more seriously.
However if we consider the case of large characteristic and small degree of extension, the
situation becomes interesting again. For example then the field size is still small enough to
compute the class number and the characteristic polynomial but the amount of curves is by
far larger than for small characteristics as considered so far.

Since the class number attached to the ground field always divides the class number for any
extension field, the unused factor is of size ¢9, hence fairly large. But we can try to get rid
of this factor by restricting to a subgroup. As we have seen before, all divisor classes in
the subgroup of large prime order satisfy the equation (6™ — 1)/(c — 1)(D) = 0. The last
statement is equivalent to saying that these divisor classes have trace zero. In general the
elements of trace zero form a subgroup as they are the kernel of a homomorphism and thus
they form an abelian sub-variety of dimension g(n — 1). For short we denote this abelian
variety by G. For this chapter we restrict ourselves to prime ground fields F,.

If we represent the elements of G like in the larger group Pic?(C/F,3), then the keys are
relatively long compared to the group size. We try to establish relations describing this
subgroup using fewer variables. To do so we use an explicit description of the field extension
as Fy» = F,[¢] and write each coefficient of the representing polynomials of the divisor class
via this basis. Expanding out the defining equations and sorting by the powers of ¢ we
derive a set of equations over the prime field. The strategy described so far is known as ‘Weil
restriction’ or ‘Galois descent’. For a detailed treatment in case of arbitrary characteristic
see Diem [7] and Naumann [51]. Then we similarly expand the condition to be of trace zero
and get additional equations that allow to reduce the number of variables needed. In the
case of elliptic curves the trace-zero variety was studied by Diem and Naumann (see also [8]).

We turn our attention to the special case of genus two curves defined over a prime field
and we consider an extension of degree n = 3 and appropriate large p. Requiring a group
order of 2190, p has to be of size 2%0. Therefore the characteristic is unequal to 2,3 and
5. Let the hyperelliptic curve be given by an equation of the form C : y?> = f(x), where
f =12°+ faz* + f323 + fo2? + fiz + fo € Fplz]. The change of variables z — 2’ — f4/5
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leads to a polynomial where the coefficient of z/* is zero. This is the kind of defining
equation we consider from now on, i.e. without loss of generality put f4 = 0. Furthermore
to ease the following computations we assume the case of Kummer extensions, i.e. that
p = 1mod 3, hence, to construct F,s = Fy[¢] we use the polynomial y3 — a, which is
irreducible when « is no third power in F,. As F, contains a third root of unity 7
the roots of y® — a are &,n&,n%€. To get rid of further variables, namely «, we even
assume that o® = 1, say @ = 7, and since y® — « is assumed to be irreducible, F,
does not contain ninth roots of unity, hence p = 4,7 mod 9. Note that this last restriction

is not necessary, it just saves space to write down the equations which are clumsy nevertheless.

The remainder of this chapter is organized as follows: We first investigate which kinds of
divisor classes lie in the trace zero part, then we find equations describing this part in any
case. However we do not succeed in finding shorter expansions. In the following section
we consider the efficiency of the arithmetic in this group and finally we deal with security
issues and compare the efficiency to that of groups with the same parameters. We conclude
providing an examples of a suitable curve for which the trace zero subgroup is of prime order,
the arithmetic is fast and the set of multipliers we use in the cryptosystem is of appropriate
size.

6.1 Different Kinds of Divisor Classes on Trace-Zero Variety

In the case of a genus two curve each divisor class has a unique representative of the form
D=P +P,—200,D =P —ooor D=0. We now study which kinds of divisor classes can
occur in the trace-zero variety, where the field is of degree 3 over a prime field.

First of all the zero element satisfies the trace zero relation and this is also obvious from the
fact that the relation defines a subgroup.

If the divisor class D # 0 is defined over the ground field F, — this is equivalent to
(D) = D — then D has to be of order 3 to satisfy o2(D) + (D) + D = 0. If we want
to describe this part of the group geometrically we need to deal with Cantors division
polynomials for hyperelliptic curves (see Cantor [5] for the describing equations). On
the other hand for the applications we want the subgroup to be cyclic — and not to
contain a factor from the group over the ground field. Hence, we restrict to divisor
class groups containing no class of order three over F,. This can be checked easily since
we assume that the characteristic is small enough to allow the computation of the group order.

From now on we assume that D is not defined over the ground field, hence o(D) # D. As was
stated in Section 2.2 we can associate to each divisor class two polynomials u(z), v(z) € Fs[z],
where deg(v) < deg(u) < ¢g and u is monic. Since we consider curves of genus two besides the
zero element there are only two cases left to consider — that of degu = 1 and that of degu = 2.

Let first degu = 1. Then the divisor class can be represented by P, — oo, where
Py = (z1,91) € C(Fp3) \ C(F,). As we consider a degree three extension x; cannot be in Fy,
hence, z1 # o(z1).
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In the first step of the composition of two classes (Algorithm 2.30), the great-
est common divisor of the two first polynomials is computed. In this case of
D + o(D) it is one, thus the corresponding semi-reduced ideal class is simply
(22 — (21 +o(z1))z +z10(71), (11 — 0(31))z +z10(y1) — o (21)y1)/(z1 — o(21))]. Furthermore
the first polynomial is of degree 2 and thus will not be reduced further in the reduction
Algorithm 2.31. The divisor class is in G iff this resulting class equals —o?(D) which is
represented by [z — 0%(z1), —0?(y1)]. This cannot happen as the degrees are different.

Via P — P — oo the curve is embedded into the divisor class group. Hence this result shows,

that the curve lies completely outside the variety under consideration.

To investigate the case of deg(u) = 2 we must further distinguish the ways the representing
divisor is built. Let the class of D be represented by P; 4+ P, — 200, where Py, P> may lie in a
quadratic extension of Fs. If so, then P, has to be the conjugate of P, under this extension.
Assume first that P, = o(P;), where as usual o denotes the Frobenius endomorphism
corresponding to the degree three extension. Then both points are in C(F,s). The trace zero
relation means that Py +o(P;)+o(Py+0(Py))+0?(P;+0(P;))—60c0 = 0. Rearranging leads
to 2(Py +o(P1) 4+ 0%(Py) — 300) = 0. This can happen if either P, + o (P;) +0?(P;) —300 =0
or if it is of order two. The first case is excluded by the deg(u) = 1 case and the second by
requiring additionally that Pic’(C/F,3) contains no element of order two not in Pic’(C/Fy).
The proof to exclude the case of D = 2P, — 200 follows the same lines.

We have just shown:

Theorem 6.1 Let Pic’(C/F,3) contain no elements of order 2 or 3. Then the elements of
the trace zero variety G are the divisor classes represented by

P+ P, — 2,

where Py # Py,0(P,),0%(P,) and not both Py, Py € C(Fp).

6.2 Describing Equations

As we have seen the divisor classes not defined over the ground field are represented by
[u(z),v(z)] = [z + u1z + u2,v17 + v2], u;,v; € Fys, where u|f — v2. Hence, these elements
can also be described via the remainder of dividing f —v? by a monic degree two polynomial.
This leads to an explicit description of an open affine part of Pic’(C/ F,3) by the vanishing
of the following polynomials:

Fi(ui,ug,v1,v2) = —f1+ four — fa(ul —ug) — (uf — u2)® + ufuo — urvi + 2v1vy,

Fy(ur,ug,v1,v2) = —fo+ fous — faurug — urug(uf — 2ug) — ugv? + v3.

Since the curve was defined over the ground field, f; € F,. We now expand the variables via
wj = Ujo + Uiné + Uin€?, v; = Vig + Vi€ + Vio€? where F,s = Fy[¢]. This leads to the following
system of equations that have to vanish simultaneously:

from Fi:

—Ufo — 1277U120U11U12 + 3U120U20 — U120f3 — 477U10U131 + 67]U10U11U22 — 4772U10U?2 +
6nU10U12U21 — UnoViy — 2nU10Vi1Viz + Unofo — 60*ULUD, + 3nUT U1 + 6nU11 UraUsy —
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2nU11Urafs — 2nU11 VigVie — nU11 VE + 302U Uss — 2nU1aVigVin — n?Ure Vi — U2y + Uso f3 —
2nUg1 U + 2V Voo + 2nVi1Vae + 20nViaVar — fi,

—4U§0U11 — 6’/]U120U122 + 3U120U21 —12nU;g U121 Uia 4+ 6U10U11Uag — 2U19U11 f3 + 60U10U12U22 —
2U19VioVi1 — nU10Via — U+ 4 3nUZ Use — 42U Uy + 6nU11 U12Uz1 — U1 Vg — 20U Vi Vag +
Unifo + 30U U0 — nUL fs — 2nU12VieVia — nUioVA — 2UsUs1 + Uat fs — nU3, + 2VigVar +
2V11Vao + 2nVigVay,

—4U3\ Uiy — 6UZ U2 + 3U%Uso — 120U1oU11 U2, + 6U19U11Uay + 6U19U12Us0 — 2U19U12f3 —
2U10V10Viz — UV — 4nU3 Ura + 3UE Uso — Uty f3 + 6nU11 UraUso — 2U11 VigViy — nUi Vi —
UL + 3nUB U — UiaV — 2nUreVi1Vag + Urafo — 2UsgUss — U2 + Usafs + 2VigVas +
2V11 Va1 + 2V12 Vo,

and from Fy:

—U3 Uz — 3nU2U11Usz — 3nUZ,U12Us1 — 3nU10UZ Uz — 6nU10U11Ur2U20 — 302U10U%Use +
2U10UZy — UroUso f3+4nU1oUa1 Usg — U3 Usg — 30* U U12Use — 30?Ur1 UL Uzt +4nUr1 Usg Uz +
20U U3, — nUniUsafs — n?UyUso + AnUi2Us0Uai — nU12Ua fs + 20?U1oU3%, — UV —
20Uz V11Via + Usg f2 — 2nUs1 VigVia — nUa VA — 20U VigVii — 02U V4 + Vi) + 20 Va1 Vaa — fo,

—U}Ua1 — 3UL U Uz — 3nULU12Use — 3nU1oUZ Uzg — 6nU10U11U12Us1 — 3nU10USUs0 +
4U10Uz0Uz1 — UroUar f3 + 20UvoU3, — nUR Uy — 3nUZ U1aUsg — 30?Un1U%Use + 2U11 Uz —
Un1Uso f3 + 4nU11Un Uzg — 02U Ust + AnUiaUsgUsz + 20U12U% — nU12Uss f3 — 2UsVigVar —
nUs0 Vs — Ua1 Vg — 2nUa1 Vi1 Vig + Uat fo — 20U VioViz — nUa VA + 2Vag Va1 + 0V,

—U Uy — 3ULU Uz — 3UZU12Usg — 3U10U%Usg — 6nU1oU11U12U20 — 3nU10UBUs1 +
4U10Uz0 Uz + 2U10U3, — UroUsa f3 — nUP Uz — 30U UraUa1 — 3nU11 UL Uz + 4U11 UzgUsr —
UniUsi fs + 2nUn1U% — Ul U + 2U10Us — UraUs fz + 4nUioUn Uz — 2UsVigVie —
UsoVE — 22U VioVii — U VS — Usa Vi — 20U Vi1 Vig + Usa fo + 2VagVao + V&,

where the respective first equations belong to 1, the second to ¢ and the last to £2.

We now consider the condition to be of trace zero in more detail and use the addition formulae
of Spallek [69] to compose two classes. They have been obtained making explicit what is done
in the composition and reduction algorithms. She considers only the case of deg(u) = 2 which
means no restriction in our case. By the above theorem we have that each divisor class in G
is represented by Py + P» — 200, where P; # Py, 0(P),0%(P;) and P, Py ¢ C(F,). Hence,
in adding D + o(D) we compose two classes corresponding to four distinct points. This
case is abbreviated by p1234 by Spallek. Let the corresponding ideal class of D be given by
(72 + u1T + ug, v1T + o).

We use the following abbreviations:

v = ((v2—0(v2))(u1 — o(w1)) — (v1 — o(v1))(u2 — o(u2))),
vy = ((v1 —o(v1))(o(ur)o(ug) —urus) + (v2 — o (v2)) (w1 — o(ur))(ur + o(u1)) — (u2 — o(u2))))
vy = o(v)(uz(uz — o(u2)) +uro(uz)(ur — o(u1)) — vi(o(ur)uz(ur — o(ur)) + o(uz)(uz — o(uz))

+(vo — o(v2))(uro(u1)(ur — o(u1)) — o(ur)us + uio(ug)),
n = (ug—o(ug))® = (ur — o(u1))(ugo(ur) — uro(ug))).

)+
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In G we have that D + o(D) = —0?(D), hence in the representation via polynomials the
result of the composition should be

[2% + 0% (u1)z + 0% (uz), = (0 (v1)z + 0% (v2))].
We can express the coefficients for the first polynomial via
—(u1 + o(wr)) + 203 /v — (n/v})>,

—(u2 + o (ug)) + (w1 + 0 (u1))? = wio(u1) + 2(v3 — v3 (w1 + o(ur)))/vf +
+(v3/01)? + (ur + o (w))(n/v])?.

Due to the construction of the finite field we have that u; + o(u;) + 02(u;) = 3Ujp. This
allows to simplify the equations a little leading to

3U1pv3? = 20tvs — n? and

3Us0 + 3(u1 + o(u1))Uig = (v3/v])? + 203 /v} + (u1 + o(u1))? — uro(u1).

However using these formulae the expanded equations do still cover several pages, to get a
taste: From the first equation we obtain upon dividing out 372 respectively 3:

UroUZ VE +4U10U11 U19 Va1 Vag — 2U19U11Usy VigVag — 2U10U11 Ua Vit Vag — 2U19U11 Uaa Vig Var +
3UULVE — 2U1oU12U21 Vi1 Vag — 2U10U12U21 ViaVar — 2U10U12U2 V11 Vor + UrnoUZ VS +
AU Un UssVii Vig + UngUSVE = 3(~UZULUZ, — AUZULUiaUnUsy — ULUSLUZ, —
2U10Uf’1U21U22 + 6U10U121U12U20U22 + 2U10U121U12U221 + 4U10U121V222 + 6U10U11U122U20U21 +
2qU U ULUZ, + 16U U UiaVar Voo +  6UgUnUnUs, —  6UgU1U VigVay  —
6U10U11U2Vi1Vaz — 6U10U11U22Vi2Var — 2nU10UUs1Usg + 4U10UB VS + 6U10U12U5 Usg —
6U10U12U21 Vi1 Vag —6U10U12Us1 Vig Va1 —6U10U12U Vi1 Vo1 +2U10U3, Vi3 +8U10U21 Ua Vit Via +
WigUHVE + 2U UnolUny — 2U3 UraUngUsy + 20U, UraU2, + AU, Va1 Vay — 6UZULUZ, —
AnUZ ULU2 Ugg +2U2 U1o ViR — 22U UsgUzy — 2U3 Uag Vi Vag + 22U U Usy — AUZ Ugy Vi Vag —
AU UnVigVar — 203 UxViiVar — 2nUnUlUxUse + 20UnURUE + 2nUnULBVE —
8U11U12U0Us1 Uzp—4U11U12U20 Vi1 Vao —4U11 U12Us0 Via Vor —2U11 U1o U, —2U11 U12U21 Vi1 Var —
2nU11Ur2Usy — 20U U19Use VigVag + 2011 UzgUs1 Vi3 + 4U11 UggUaa Vi1 Vig + 4U1 Uz, Vi Via +
2U11U91 Uga VE — 2U11 U Vi, — AU11Uno Va1 Voo + 20U UsgUay + 4nU3, Var Vag — 2U2,Usg Uz, —
UL U V11Var + 20UBUU% — 2nULUVieVas — AnUBUx»Vi1Vas — 4nUsUxViaVor +
4U12U0U21 Vi1 Via + 2U12U20 U VE + 2nU19Us1 U Vi3 — AU 1oUs1 Vor Vag + 4nU12U%, Vi1 Vig —
2U 15UV — 6U3 U2, + 2U3, VigVag + 4Us1 Uaa Vi1 Vag + 4Ua1 Una ViaVar + 2U3, Vi1 Var ),

UrUZ VA — 2nUroUn1U12Vih — 2U10U11U21 Va1 Var + 2nU1gUr1 U ViaVag — 2nU10U Va1 Voo +
2nU10U1oU01 VigVas  +  2nUrgU1aUsaViiVae  +  2nUnU12UsViaVor +  1U0 UL VE

277U10U21U22V122 — 277U10U222V11‘/12 = 3(—U120U121U221 + 27]U120U11U12U222 + 277U120U122U21U22 +
2U10U3 U Us1 + 20U10U3 U3, + 2nU10UZ Ur2Ua1 Use + 4U10UZ Vi — 6nU10U11 U Uz Use —
anUyoUnUZUZ, — 8nUigUn1UiaVa + 2U10Un Uy, — 6U1oU11U21 Vi1 Va1 — 2nU1oUnnUs, +
6nU10U11U2Vi2Vao  — 2nU10UiUsoUn1  —  8nUigUiVarVao  —  6nUi0UrUnU3Z,  +
6nU10U12U21 VigVos  +  6nU1oU12U22Vi1Vae  +  6npU1gU12UaoViaVar  +  2U3 U5 VE  —
AnUrgUg1Uag Vi —AnUroUsy Vi Vig — Ut Uy — 60U, U12UsgUsza — 20U Vigy 4 6nUT, Uty UagUar —
NPULULUS, — AU UiVl Vao — 2U7UsUsy — 2U7UxViVar — 4AnUfUaUs, +
AnUZ U ViaVas + 2nUE U Vi1 Vag + 20U U ViaVar + 4nUnUBLUS) + 202U UL, U1 Uss +
2nU11 UL VA +4nU11U12Us Uy +4nU11 UroUs0 Vig Vao + 20U11 Ur2U Uso +2nUs1 U12Uz Vit Vao +
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2nU11 Ur2Ua1 VigVar — 20U U12Us2 Vi1 Va1 + 2U11 UagUa1 VA — 20U UngUao Vid — 20U U3 VS —
AnU11 U1 U Vi1 Vig — 2U11 U2 Vi3 + 20U Uao Vidy + —n2 Uty U, — 202U, Vs + AU U Ua Uns +
2nUZ U Vi1V + 2nUBUViaVar + 2nURUS, — 2nUEUnViaVar + 4n2U2%UxnVisVas —
2nU12U20U21 Vi — 4nU12Us0Us0 Vi1 Vi + 20nU12Un UV + 20UvaUo1 Vs — 202U USH VS +
AnU12Un Va1 Voo — Usy +2U%, Vi1 Va1 +4nUs1 Uy — AnUs1 Usa Via Voo —2nU2, Vi1 Vao —2nU2, Via Var ),

—2U 10U Vo1 Voo —  2U10Un1U1aVE  +  2U0U11UpiViiVay  +  2U1U11 U1 VigVor  +
2U10U11 U2 V11 Vo + nU10UZ Vi, + 2U10U12Uz1 Vit Va1 — 20U Ur2Usa ViaVag — 2U10U% Vi1 Vi —
W10UnUnVi + nUnURVE = 3QULUAUnUz + 2UkUnUnUs — qURURBUZ, —

2U10U?, UagUao— 6U10UZ, Ur2UagUa1 —4AnUro U U12U%, —8U10UE Vai Vao +2nU10U11 U U1 Uag —
8U19U11 U112V —6U10U11 U3, Uz +6U19U11Us1 Vit Voo +-6U10U11 Us1 Via Va1 +6U19U11 Uae Vit Var +
2nU10UHU0Uz + 20U UBUZ + 4AnUigU Ve — 2U10UUS, + 6U1gUi2Un Vi1V +
2nU10U12U3, — 6nU1oU12U2ViaVao — 4U10UZ ViiVie — AU1gUai UV + 2nU1gUs Ve —
nUH Uy + AU UrUsy + 20U UioUanUsy — 2UP Vi + 6nU7 Uy UsoUza — nUR URUS, +
2’/]U121U12V222+4U121U20U21U22+2U121U20V11V22+2U121U20V12V21 +4U121U21VHV21 +2’I7U121U§’2—
2nU% UgaViaVag — 6nU11 Uy UsgUs1 — AnU11 U2 Va1 Vag + 4U11 Ur2Uz0 U2, + 4U11U12U20 Vi1 Var +
20U U021 U3, — 20U1U1UnVisVae + 2nU11U1oU0ViilVae + 2nU11U1oUsViaVay —
AU Ug0Un1 Vi1 Vie — 2U11UggUnpeVA — 2U1UZ VA + 20U U Uso Vs + 4U11 Uy Vor Vag —
2011 UV — Ui Usy — 20U Vs — 20Ut Us0Us, — 20UfyUsVieVao — 4nUfU3 Uz +
2nU2, U1 Vi1 Vag + 20nULUs1 VigVar + dnUUse Vi1 Var — 2U12U20 U1 Vi + 2nU1oUsoUae V5 —
AnUnoUn1 U Vi1 Vig + 2U12U01 Vi — 2nU1nURVE — 2nU1oUs0 Vs + 4U3 Usy — 203, Vir Vo —
2U3, ViaVa1 — AU Usa Vi1 Va1 — nUsy + 2nU3%,ViaVaz).

We did not succeed in finding relations among these equations that allow to reduce the number
of variables needed to represent the elements of G. Clearly — like in Pic®(C /Fp3) — one can
compute the V;; from the knowledge of all U;; and some bits determining the signs of the
second coordinates of the points involved.

6.3 Computing in the Trace Zero Variety

We now turn our attention to the arithmetic in G. Since G is a subgroup of Pic®(C/ Fp3). We
can use the equations stated in Chapter 3. However this implies that the computation in the
subgroup is as slow as in the whole group. On the other hand as finding a description using
fewer variables was not possible, obtaining addition formulae for this variety is a hopeless
task; it even is for the somewhat easier case of elliptic curves.

Remember that we represent Fp3 by a polynomial basis via the irreducible polyno-
mial y® — 7. Using Karatsuba multiplication we need 8 multiplications in the ground
field to compute a product. Squaring can be performed by either 6 squarings and 2
multiplications or 5 multiplications and 3 squarings in the ground field. It depends
on the system used which is faster, we chose the first for implementation. To com-
pute the inverse of w we make use of Cramer’s rule, i.e. wuse the resultant. Let
A = win? + win + w(3) — 3wowiwan. Then (wof? + wi€ + wo) ! = (v2€2 + v1€ + v)/A,
where vy = w? — wowp, v1 = wWin — wiwg, vo = w3 — wowyn. In total this takes 1 inversion, 2
squarings and 12 multiplications in F,.

Since we did not succeed in finding shorter representations for the elements of the trace-zero
variety, we do not need that 7 is a third root of unity. To have that y® — 5 is irreducible we
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simply need to assure that n is no third power in F,. It is highly likely that there exists
such an 7 of comparably small size that we need not count computing 7 times an element as
a multiplication but perform it by adding. When the field has been chosen to allow this the
costs reduce to 6 squarings for a squaring in F3, 6 multiplications for a multiplication and
1 inversion in the large field corresponds to 3 squarings, 9 multiplications and 1 inversion in
the small field. We thank Avanzi for pointing out this idea.

Now as we work in odd characteristic we can use Harley’s analysis for the complexity of the
operations in G (see Chapter 3). From the above considerations we know that we are always
in the general case where the first polynomials have degree two. A general addition in G
can be performed using 2 inversions, 3 squarings, and 24 multiplications in F,s whereas a
doubling needs 3 more squarings.

By the above computations this equals 162 (222) multiplications, 24 (22) squarings, and 2
inversions in F), for an addition. The numbers in brackets refer to the case when no small 7
is avaliable. To double we need 162 (228) multiplications, 42 (40) squarings, and 2 inversions
in Fp.

Note that these considerations hold true for the whole divisor class group and do not depend
on the restriction to G. However, we can try to speed up the computation in G:

Like in the first part of this thesis the Frobenius endomorphism in this variety satisfies its
characteristic polynomial inherited from Pic®(C/ F,3) and from the construction it also sat-
isfies T? + T + 1 = 0. Since now n is smaller than 2¢g we cannot use the reduction technique
described in the first part since this would lead to longer expressions than needed, and we
cannot use the asymptotic bound for the length as n but also take into account the 4g. We
proceed like in Section 5.9: Instead of using an integer m as the secret number hidden in mD
we take a tuple (r1,72) of integers and take m D + roo(D) as our secret key.

Again we need to be aware of collisions but in this special case we can show:

Theorem 6.2 Let C be a hyperelliptic curve of genus two over Fy, let T* + a1T? + aoT? +
a1pT + p? be the characteristic polynomial of the Frobenius endomorphism and consider a
base field extension of degree 8. Let D be a generator of a subgroup of prime order | of the
trace zero variety G.

Put

r := min , :
max{p? + a1p — 2a2 + a1 + L,p? + a1 —a1p — 1} ] " ged(p? — a2 + a1,a1p — az + 1)
Then the r? divisor classes roD + r10(D), 0 < r; <t are distinct.

Proof. Since for the elements of G the Frobenius endomorphism satisfies 72 + T + 1 and its
characteristic polynomial we can combine these equations to obtain

(*) (ap—az+1)T+p*—as+a; =0

by inserting subsequently the trace zero relation.
Now assume that 7o + 710 = rj + {0 as endomorphisms. Subtracting we obtain (ry — r{) +
(ri — 7)o = 0, where by construction |r; —ri| < r. We multiply this equation by aip —az +1
and use (x)

(a1p — ag + 1)(ro — rp) — (p> — aa +a1)(r1 — 1) = 0.
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By the choice of r we have |[(a1p — as + 1)(ro — 7§) — (p? — as + a1)(r1 — )| <
max{p? + a1p — 2as + a1 + 1,p*> + a1 —a1p — 1} - r < [ and therefore this equality not only
holds modulo [ but also in the integers. But again by the choice of r and as p > 3 this
implies that (rg —ry) = (r1 — 1) = 0. O

Hence, if r is comparably large — we assume [ to be of size p* and if the involved greatest
common divisor is not too large we can hope for r ~ p? — then there are sufficiently many
elements obtainable using this construction. The size of r can be computed from the
knowledge of the characteristic polynomial. We now assume that r ~ p?, thus r? ~ |G|.

Remarks:

1. For this small choice of n, () enables us to compute the s of Section 5.9 in terms of a;
and ap. This and the short length of a suitable expansion allow us to deal with collisions
and to find choices of the coefficients to avoid them. Note however that here like in that
section the length is n— 1 and one can hope that r ~ p? = p9. This resembles the set up
we have chosen before, hence giving evidence that the assumptions on the probability
of collisions made there hold true.

2. Like with the alternative set-up it is possible to use the usual protocols with this tuple
as key. For signing we again choose a scheme without inversions. Furthermore as we
have seen in the proof, the integer s modulo ! which corresponds to 7 can be computed
by two multiplications and one inversion modulo [. The value of s can be saved as a
parameter of the curve. To get the multiplier belonging to the tuple we need one further
multiplication modulo .

Put p = |[logyr| + 1 ~ 2logyp. Naumann [51] uses the following strategy to compute
roD + r1o(D) from the binary representations r; = Z?;é rij2j. As we start from the least
significant bits, we need not precompute these expansions but can as well compute them on
the run dividing by two with remainder in each step. For implementations in software where

one has no access to the binary representation of the integers this might be advantageous.

Algorithm 6.3
INPUT: D = [u,v],70, 71,75 = 35— 752/, rij € {0, 1};
OUTPUT: H = 1D + r10(D);

1. initialize T := D;
if roo = 1 then
if ri0 =0 then H :=T;
else H := —o?(T);
else if rio =1 then H := o(T);
else H :=[1,0];

2. forj=1top—1do

(a) T := 2T;

(b) if roj =1 then
ifry; =0then H:= H+T;
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else H :== H — o*(T);
else if ri; =1 then H := H +o(T);

3. output (H).

Note that in step j we have that T = 2/D and that in G the following holds:
T+ o(T) = —o*(T). o(T) and —o?(T) can be computed easily from 7.

Using this algorithm the computation of 79D + r10(D) takes p doublings and asymptotically
3/4 this number of additions, i.e. approximately 7/2log,p compositions over F,s. Note
that although we do not use a normal basis here, we can still assume the operation of the
Frobenius endomorphism to be almost for free as o(D) and ¢%(D) need only 8 multiplications
in F;, each for precomputed n?. This is cheap compared to the costs of a usual group operation.

To be more exact with probability of 1/2 we need to compute either o(T) or ¢%(T) and
therefore the computation of an m-fold in G needs

7log, p inversions, 120(113) log, p squarings and 575(797) log, p multiplications

on average, where again the numbers in brackets denote the costs for arbitrary 7.

We can also use a NAF representation of the integers r;. These representations allow co-
efficients in {0, £1} and have an asymptotic density of 1/3 and are at most one bit longer
than the usual binary expansions. We may assume that 1 and —1 occur equally often, i.e.
with probability 1/6. As the digits of r; and ry are uncorrelated we obtain the case of
ro; = r1; = 0 with probability 4/9. In all other cases we need to perform at least one addition
in G. With probability 2 - 1/9 we have ro; = £1 and r;; = 0. In all other cases we need
to compute either +c(T) or +0%(T). If both coefficients are nonzero and of opposite sign
we use +(T — o(T)) = £(2T + o%(T)), thus with probability 1/18 we need two additions.
Note here that 27" is computed the following step anyway and that due to the non-adjacency
property both 7;;,1 are zero, thus an overflow due to the carries cannot occur. This amounts
to p doublings and 11/18p additions in G plus 8/3p further multiplications in F, which is
equivalent to

6.41og, p inversions, 113.3(106.8) log, p squarings and 500.2(729.7) log, p multiplications

in F, on average which is faster than the method presented before. However a bit more
bookkeeping is needed to be aware of the carries.

6.4 Security and Comparison

Before being able to compare this group to other suitable ones we need to investigate the
security parameters. As we have seen G is contained in an open affine part of dimension
two of the associated abelian variety over F,s. The restriction of scalars transforms this to
a 6-dimensional variety over F,. Restricting to the trace zero variety forces the dimension
to drop down by two. Hence, we can view G as a four dimensional abelian variety defined
over the prime field Fj,. Other varieties of dimension four are for example the Jacobians
of hyperelliptic curves of genus four. Note however that by results of Diem usually the
resulting variety is not principally polarized, hence, does not belong to a hyperelliptic curve.
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Table 6.1: Number of Elementary Operations for Elliptic Curves, Operations in Fp»r, m ~ p*

Operation Inversion | Squaring | Multiplication
Addition 1 1 2

Doubling 1 2 2

m-fold 6logy p 10logsp | 12logep
m-fold, NAF || 5.3logyp | 9.31logyp | 10.61og, p

Varieties of dimension 4 may still be considered as sufficiently secure since Gaudry’s version
of the index calculus attack is not faster than Pollard’s rho method. However this justifies
our rather special choice of the parameters — for larger genus and/or for larger degree of
extension the resulting variety would be of larger dimension, thus less suitable.

From what was said above we can compare the arithmetic on G to that of the divisor class
group of a genus two curve defined over a field F,,, where ¢ = p'? ~ p? or ¢ = p/, p' a prime,
and also to that of an elliptic curve defined over a field of size ~ p*, this field can be assumed
to be prime or of extension degree 2 or 4.

On the one hand we need to take into consideration the efficient-to-compute group automor-
phism that can be used in the attacks. On the other hand as far as we can see one cannot
use it in G itself since we could not find shorter formulae to describe the variety and the
arithmetic on it. Therefore the attacker has to work in Pic’(C/ F,3) which is by far larger
(~ 2240), Therefore we decide to take for comparison only the curves defined over prime fields.

Since we consider the other curves over prime fields we can only use the double-and-add
method to compute m-folds (see Section 5.1) there. We also take into consideration the
effects of using a NAF of the multiplier. For both groups — the elliptic curve as well as
for the divisor class group of the genus two curve — the group-size is ~ p*, therefore we
assume that the binary representation of the multiplier is on average of length 4logyp. In
the double-and-add method we need 4 log, p doublings and 2 log, p additions, using the NAF
we need 4/3 log, p additions.

We first consider the arithmetic on an elliptic curve. For a general addition we need 1
inversion, 1 squaring, and 2 multiplications in the finite field Fp», p” ~ p*, prime. To double
a point we need one more squaring. This results in the following Table 6.1.

For the genus two curve we can make use of the formulae in Chapter 3 to perform the
arithmetic. This leads to Table 6.2.

Put k = logy A. In the prime field F') the complexity of division, multiplication and squaring
is 0(5), where the soft-O notation suppresses logarithmic terms. Therefore we can assume
that an operation in F,; takes at least 2 times as long as in F;, and in Fp» it takes at least 4
times as long. Assuming this to hold true we can make a theoretical comparison in Table 6.3.
From this Table 6.3 we see that the comparison depends heavily on the trade-off between
the complexities of inversion and multiplication in the respective ground field. But one
sees as well that the arithmetic on the elliptic curve will be faster than in the divisor class
of the genus two curve for both kinds of expansions. If one assumes that squarings take
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Table 6.2: Number of Elementary Operations for Curve of Genus 2, Operations in Fyr, m ~ p*

Operation Inversion | Squaring | Multiplication
Addition 2 3 24

Doubling 2 6 24

m-fold 12logyp | 30logyp | 144logyp
m-fold, NAF | 10.6logs p | 28logyp | 128log,p

Table 6.3: Theoretical Comparison

Inversion | Squaring | Multiplication

Elliptic Curve 24 40 48

Genus 2 Curve 24 60 288
Trace-Zero Group 7 120 575
no small 7 7 113 797
Elliptic Curve, NAF 21 37 43

Genus 2 Curve, NAF 21 48 256
Trace-Zero Group, NAF | 6 113 500
no small 5 6 107 730

All entries are to be multiplied by log, p. Entries are rounded to nearest integer.
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Table 6.4: Timings
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Inversion | Squaring | Multiplication
p~ 20 11 2.1e-05 1e-06 2e-06
p ~ 280 [ 6.5e-05 4e-06 5e-06
p ~ 2160 11 1 3e-04 1.3e-05 | 1.5e-05

Table 6.5: Experimental Costs, in Multiplications in F,,

Inversion | Squaring | Multiplication
p~240 [121/2 1/2 1
p~ 250 [ 65/2 2 5/2
p ~ 2160 1} 65 13/2 15/2

approximately as long as multiplications and consider the case of small 1 only, we obtain
that it is also faster than in G as otherwise an inversion would take more than 36 times as
long as one multiplication (respectively even 38 times for the NAF). For the comparison of G
and the genus two curve one inversion must take at least 21 times as long as a multiplication
for G to be faster using the double-and-add method or the NAF. From these considerations,
using G does not seem to be promising as elliptic curves are always faster, but we might be
able to beat genus two curves.

However the proportion of the complexities of multiplication and inversion depends on the
size of the prime field. Furthermore we will see that the computations in the larger fields
are more expensive than expected by these theoretical considerations and that the difference
between multiplication and squaring cannot be neglected. Therefore we need experimental
data to compare the efficiencies of the group operations. Using the NTL-library Blady [2]
obtains the timings in Table 6.4.

To compare the complexities we now use the above tabular to express all operations in mul-
tiplications in F,. We use this table for the exchange ratios (Table 6.5). Note that the
performance in the larger fields is not as good as we expected in the theoretical comparison,
especially the inversions are more expensive. This shows that the constants and logarithmic
terms in the complexity are relevant for our comparison.

This allows us to get the experiment-based performances in Table 6.6 for the group order of
size 2160 in all cases. We only rounded the result.

Hence, for this size of p ~ 240 we see that the arithmetic on the elliptic curve is faster
in any case. However, if we assume that a small element n € F, that is not a third
power exists, then the operations in the trace-zero variety are faster than for the genus
two curve for double-and-add and NAF. Note that the relative advantage decreases.
This is clear as the costs for the doublings remain constant and the density decreases
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Table 6.6: Experiment-Based Comparison, in Multiplications in F,

double-and-add | NAF
Elliptic Curve 5451ogs p 4871og, p
Genus 2 Curve 8101logy p 723 logy p
Trace-Zero Group || 7091og, p 625 logy p
no small 7 9271og, p 851 logs p

All entries are rounded to nearest integer.

from 1/2 to 1/3 in the genus two curve whereas in G we can only achieve to lower it
from 3/4 to 11/18. If no small n is avaliable then computing an m-fold in G is slower
than in the other groups, but choosing G we do not loose much compared to a genus two curve.

To conclude one can say that the trace zero variety can be chosen for an efficient cryptosystem
and as long as we have an appropriate n the computation of m-folds is even faster than on
a genus two curve over a prime field and we have the second advantage over the genus two
curve that we can compute the group order and still the resulting variety is defined over a
prime field.

6.5 Example

In this section we provide a curve for which the group G is suitable for cryptographic
applications.

We are very thankful to Weng for computing the following example via the CM-construction
for hyperelliptic curves studied in her thesis [76]. It is not hard to compute further examples
by simply invoking her algorithm until a curve is found such that the class number for C/F s
contains a large prime factor.

We start from the CM field defined by adjoining the roots of z* + 1422 + 5 to Q. This leads
to the curve

C : y* = 2 + 7962401853847z + 6699639715934z"> + 420660391204112"> + 49281149108367z +
51518968113431.

We consider the curve over the finite field with p = 75013447438681 elements, where the
class group is of size 5627016660495156428378904916. Note that p = 7mod 9, and that
2(r—1)/3 — 49604531110780. Therefore 2 is not a third power in F, and we can construct the
extension field F s by y3 — 2, i.e. we are in the case where the field arithmetic is fast. To fit
into our scheme of defining equations we make a change of variables and obtain

C : y? = 2% + 346722270404992° + 73462645749327x% + 2792938982291 + 22543037864275.

Over F 3 we have

|Pic0(C/Fp3)| = 178170069884878082099774294777122888103489172517617130201225512393497836950134832436
= 5627016660495156428378904916-31663327236212551408173507207346298370655198947919293721,

hence the class number for the ground field times a prime with 184 binary digits.
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The characteristic polynomial of the Frobenius endomorphism is
T* — 84803567 4 1384164354159467% — 6361407390673030504367" + 5627017296635757079255019761.

Therefore

r = min {5627017296635690579272176232, 5627017296635618662811123459}
= 5627017296635618662811123459, hence there are r? ~ 2184 different elements obtainable
by the strategy described above, which means that r? ~ |G]|.



Chapter 7

Conclusion

In this chapter we investigate to what extend the results presented in this thesis generalize
and show how to prevent certain attacks that use informations leaking from the implemen-
tation, e.g. power attacks. Finally we give an outlook on what could be done as well and
consider some prerequisites the finite field has to satisfy.

7.1 Generalizations and Practical Considerations

Throughout the whole discussion we only made use of the characteristic polynomial of the
Frobenius endomorphism and its structure. Thus all the bounds on the length and density
hold as soon as we consider an expansion to the base of a root of a polynomial of this shape.
Hence, as soon as we can make use of the Frobenius efficiently — as for superelliptic or more
general for C,, curves where the elements of PicO(X /Fg4n) are represented by polynomials
— all results carry through. This is also true for the recurrence sequences to compute the
class number given P for the ground field. In this paper we restrict to hyperelliptic curves to
shorten the explanations. The reader interested in the arithmetic of C,p curves may consult
Gurel [27] and Harasawa and Susuki [28].

To set up a system one needs a divisor class of full order [ which usually is equivalent to
requiring this divisor to be in the trace zero subgroup. Let |Pic’(C/Fy»)| = kl. Choosing a
point P = (a,b) € C/F4 at random as described in Koblitz [33], interpreting P — oo as a
representative of a divisor class, i.e. taking the reduced ideal D = [z — a,b] and computing
kD either leads to an ideal class of order [ or to the neutral element. In the second case one
has to try again with a different choice of the point.

Like in the elliptic curve case one need not store both components of the divisor class — the
first polynomial and appropriately chosen bits to remember the second coordinates of the
points involved suffice.

7.2 Side-Channel Attacks

Some devices leak information on the binary representation of the key, as the power
consumption for or the time to perform an addition is different from that of a doubling. This

101
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allows the attacker to obtain the private key when he can observe the deciphering.

In most of the schemes presented here, doublings are replaced by applications of the Frobenius
endomorphism which are almost for free. It has to be studied experimentally how this effects
the power consumption, but probably the complexity of the Frobenius endomorphism is not
negligible enough such that one can find out how many times it was applied until the next
table look-up and addition. However, as there are ¢9 — 1 nonzero coefficients the key-space
is not reduced too much from the knowledge of some bits to be zero as long as the density
is not too low and there are enough nonzero coefficients to avoid brute force search. To the
possible use of the attack of Nguyen and Shparlinski the same remarks as in Section 5.9 apply.

Like for the use of binary expansions we can introduce dummy-operations and perform a
table look-up and an addition (with an unused variable) each time the coefficient is zero
to disguise the structure of the representation of the multiplier. However, this leads to a
density of 1 and therefore to a much worse complexity. If the attacker can observe the
address of the precomputed values than we even need to compute the respective multiple
of the point like in Section 5.8. Assume now that the attacker does not have such a direct
access. However it is possible that he can observe whether the element to be added is
negated. This is very probable in characteristic two where we compute [u, —v — h], where
—v — h is reduced modulo # and h can be of the same degree as u. Then we need to store
the elements D(—i) as well in Algorithm 5.19. In this case we can avoid introducing an
unused variable by the following adaption of Hasan [30]: Using 7" — 1 = 0 in the subgroup
under consideration we reduce the length of the expansion to n allowing larger coefficients.
For large n the coefficients will all be of size less than ¢9 — 1. Put rpyn < 0 the minimal
and 7yax the maximal coefficient of this enlarged set of coefficients. Then for all coefficients
73, 0 <1 <m—1 of the expansion r; —rmin +1 is an integer > 0. We precompute the multiples
D(1),. .., D(rmax — Tmin + 1) in advance. Then X7 (r; — 7min + 1)o*(D) still computes m.D
as (—min + 1)(0™ — 1)/(c — 1)(D) = 0. But now we perform a used table-look-up and an
addition for each of the n coefficients. However, the density is 1 and this trick simply avoids
some bookkeeping.

Furthermore one can make use of the strategy of Giessmann and Lowe [24]. For the expansion
they use a nonadjacent form with base 2 and process two consequent bits per time. This
means that they consider 00, 01, 0-1, 10, and -10 as coefficients. For each double-bit they
perform 2 doublings and one addition — which is not used only in the case of the double-bit
00. Thus compared with the NAF they started with, they have the same number of doublings
but for every two coefficients they perform an addition instead of only for one third of the
coefficients. This leads to a density of 1/2 which is much better compared to 1 obtained
above using the obvious method and does not introduce a larger complexity except for a bit
of bookkeeping.

We can make use of the same method when we use the reduced density version of Section 5.5
and we lose even less as the density is increased only from (¢9 — 1)/(2¢9 — 1) to 1/2. If we
use the 7-adic windowing method then this generalizes directly. Otherwise when we use
an enlarged set of integer coefficients we do not have the non-adjacency property but only
that g of any 2g coefficients are zero. In principle the same method works when we consider
2g coefficients per time but it involves more intermediate variables. Thus using the lower
density version applies only for large enough devices, this time not only for storing the fixed
multiples but also to store variables in the computations.



7.2. SIDE-CHANNEL ATTACKS 103

In the trace-zero subgroup the situation is a bit different. If we take the double-and-add
version then in 3 of 4 cases we add a class and in 2 of 4 cases we also perform g further
multiplications in the ground field to compute the needed power of the Frobenius endomor-
phism. Thus it might be possible to dramatically reduce the search-space from the leaked
information. To avoid the second distinguishing property and to speed up the computations
we can store 0(2/D) and —o?(2/D) along with the precomputed 2/ D. If one uses the system
several times with the same D this is advantageous anyway if enough storage is available.
In any case we do not lose too much inserting dummy operations as we increase the density
from 3/4 to 1. Making use of the NAF version provides the same problems depending on
how much the attacker can observe.

We now deal with the more sophisticated differential attacks.

This kind of attacks applies if the leaked information is disguised by random noise or is even
hidden by inserting the dummy-operations referred to above, hence, to those cases where one
cannot read off the expansion directly. We assume that the attacker has access to a device
that computes m-times the input and tries to extract information on m using side-channel
information such as power consumption, time to perform the operation etc. This means that
he can observe the input of the device and some characteristic values during the computation.
The method is best described using an example. Assume that the device computes mD for
some group element D using the binary representation of m. Let A be the length of the
representation. Then the algorithm first doubles D and then adds D in case of ry_o = 1.
Then it computes two times the output of the previous step, i.e. either 4D or 6D depending
on 7)y_9. Now assume that there is a difference in the representations of 2D and 3D that
influences the performance of the doubling step; this is not too unlikely to happen, it might
be the binary representation of one coordinate for example. The respective multiples can
be computed on an additional device to find out how they differ in their representation.
Depending on the side-channel information observed during the computation in the device
under attack he now knows which intermediate result was taken and can thus recover ry_o —
at least if enough instances can be observed. Note that this attack is still possible when we
introduce not used operations as proposed before.

In more generality, assume that the attacker knows the highest coefficients r)_1,7y—2,...,7j41
of the used expansion of the multiplier m, in case of the double-and-add method these are
the bits and for Koblitz curves these are the coefficients of the 7-adic expansion. Then he
guesses a value for the next coefficient r;, chooses ¢t random elements of the group D1, ..., D;

A~1,.bi7(Dy) by an additional device, where b is the base used for

and computes Ey = 1
the expansion, i.e. 2 for the double-and-add method and ¢ for the 7-adic method. The
elements D1q,...,D; are supposed to be the observed cyphertexts the device decrypts. We
do not assume that the attacker can influence the choice of these elements. According to the
output of his device he groups the Dy, into two sets Sirue and Staise; this two-valued function
might for example be the value of a bit of E; — this depends on the information obtainable
from the leakage and the representation of Fy. Let C(k) denote the side-channel information

associated to the computation of mDy,. If the guess for r; was incorrect then the difference

(C(k)) 1<h<e —(C(k)) 1<t

Dy €Strue D}, €Sfalse

is approximately zero, as then the partition was at random. By (.) we denote the mean value.
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For a correct guess the difference is strictly different from 0. Once r; is known the same steps
are performed to extract the next coefficient. Note that for this attack to apply the attacker
must be able to observe several times the computation of a fixed multiple of changing elements.

To avoid such attacks one can insert randomness in the computation of m-times the input.
In [6] Coron generalizes the differential power attack (DPA) to elliptic curves and proposes
countermeasures. He suggests to add a random multiple of the group order to the multiplier
m before computing mD. For the double-and-add method this leads to much longer
expansions, hence to a worse running time. Using this literally in our case of Koblitz curves
does not help at all. Note that we reduce modulo (" — 1)/(7 — 1) and that the group order
is always a multiple of this in Z[7] (at least when it is almost prime as we suppose). This
means that m plus any multiple of the group order is always reduced to the same element in
Z[r]. This holds for all hyperelliptic curves independent of the genus.

Hasan [30] deals especially with elliptic Koblitz curves over Fy. As Solinas [68] showed the
T-adic expansions are of length at most n. Since we have that (7" — 1) = 0 in the group
we consider we can rotate the expansion using o 1T Ly o™ 2 o T+ 1y =
T (rp_ 1™y 2 4 -+ 117 + 13). He also investigates key masking and inserting
redundant symbols to protect the curves, but this leads to more kinds of operations the
computing device has to perform.

A different approach is given by Joye and Tymen [32] also for elliptic Koblitz curves. Instead
of reducing m modulo 7" — 1 before computing the expansion, they reduce it modulo
p(™ — 1), where p is a random element of Z[7] of bounded norm. If for the complex norm
N we have log, N(p) ~ 40 then the expansion will be of length 200 instead of 160 which
does not seem to be too bad as the expansion is still of density 1/3 when they use a NAF.
Besides one does not need to introduce further routines except for choosing a random p as
only reduction modulo an element of Z[7] and the algorithm to compute the expansion are
needed.

We think that it is even better to first compute m mod (7" — 1)/(7 — 1) as before and then
to add a random multiple a(7"™ — 1)/(7 — 1), where « is of norm less than N(p). The result
is similar to what is obtained above and m is equally hidden in the full length of the element
to expand. The important advantage is that we can make use of the precomputed values
for (" —1)/(r — 1) and (v — 1)/(7™ — 1) in Z[7] and only need to compute the product
a(t™ —1)/(7 — 1) in Z[7] additionally. Using this for p like above also results in expansions
of length 200 but the computation of the expansion is faster.

In the case of higher genus curves we can use the same approach, except that finding elements
of bounded norm is not as immediate as for the elliptic case due to the structure of the
norm (see Section 5.3 for details). However, slightly reducing the space for these random
elements a we can choose those where the coefficients o = ¢g + -+ + 029_17'2971 satisfy
(Z?i_ol lejlv/@)? < 282/(,/g — 1)%; this means that we can choose all ¢; at random under
the condition that |c;| < 2(672)/2/(¢9 — 1), where L is the chosen parameter to guarantee
enough security. The expansions will be longer by +L. If we use a new random « each time
the algorithm is invoked the information of the expansion of the multiplier should be well
hidden.



7.3. OUTLOOK 105

7.3 Outlook

When choosing a Koblitz curve for “real-life” application one should not only look for the
right order and the other security issues pointed out here but also make sure that the finite
field is such that the arithmetic can be performed efficiently. Thus the choice of curves —
or more correctly field extensions — is reduced. First of all we need to ensure that we are
working in a field for which a normal basis exists such that the arithmetic of the field is
not significantly slower than for a polynomial basis with a sparse polynomial. Using Gauss
periods and — if necessary — working with a polynomial basis of a small extension field one
obtains a field arithmetic much faster than using a matrix based multiplication. Furthermore
it is also possible to use the Frobenius automorphism of the finite field for the arithmetic
in the ground field. This is extremely interesting if one works in characteristic 2 since
then squarings in the usual square and multiply method are for free. A generalization to
composite Gauss periods leading to more fields with such an efficient arithmetic was recently
investigated by Nocker [53].

It is a topic of current research to find optimal choices for pairs of curves and finite fields.
For hardware implementations it is also useful to work over fields of characteristic 2.

For using the trace zero subgroup about half of the primes are suitable as characteristic as
we impose p = 1 mod 3. And a large proportion (about two thirds) should have a small
element 7 that is not a third power. Furthermore the arithmetic in the ground field F,
depends heavily on the binary representation of p and its length in relation to the word size.
Also here one should find especially efficient pairs of curves and ground fields.

For the alternative set-up for Koblitz curves we did not succeed in finding requirements on
the length and the coefficients of the expansions that guarantee that no collisions occur.
Here it might help to consider vanishing sums of roots of unity to derive further conditions.
Probably the size of the coefficients should depend on the coefficients of the characteristic
polynomial of the Frobenius endomorphism like in Theorem 6.2.

Although we proved the finiteness of the 7-adic expansions, the bounds proved on the length
for arbritrary curves are weaker than the experiments suggest. We succeeded in finding a
way to determine the maximal length for a given curve and motivated that the bounds from
the experiments are likely to hold by considering genus two curves. Getting more restrictive
bounds on the length and on the size of the coefficients would nicely round off this work.

Finally it would be nice to find shorter representations of the elements in the trace zero
subgroup and to find addition formulae to perform the group operations using only this
restricted set of variables. However, in the present state solving only the first task does not
look too promising. If one considers the elliptic curve case and hopes for analogous results,
switching from the representation using fewer variables to that of the usual group would imply
factoring a polynomial of degree at least 5, which is possible, but also takes time and requires
further tasks to be performed by the perhaps restricted device.
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