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Abstract

In regular digital signatures, once the secret key is compromised, all signatures, even those
that were issued by the honest signer before the compromise, will not be trustworthy any more.
Forward-secure signatures have been proposed to address this major shortcoming.

We present a new forward-secure signature scheme, called KREUS, with several advantages.
It has the most efficient Key Update of all known schemes, requiring just a single modular squar-
ing. Our scheme thus enables more frequent Key Update and hence allows shorter time periods,
enhancing security: fewer signatures might become invalid as a result of key compromise. In
addition, the on-line component of Signing is also very efficient, consisting of a single multiplica-
tion. We precisely analyze the total signer costs and show that they are lower when the number
of signatures per time period is small; the advantage of our scheme increases considerably as
the number of time periods grows.

Our scheme’s security relies on the Strong-RSA assumption and the random-oracle-based
Fiat-Shamir transform.

1 Introduction

1.1 Prior work

The notion of forward-secure signatures was introduced in 1997 by Anderson [And97] to remove a
serious limitation of regular digital signatures: once the secret key is lost (or stolen), all documents
previously signed with that key become invalid. To reduce the damage, Anderson proposed to divide
the validity time of a key pair into time periods. At the end of each time period, the signer derives
the new secret key from the current one in a one-way fashion, and then securely erases the no-longer-
needed current secret key. The public key, in contrast, remains unchanged during the life span of the
key pair. This general approach ensures validity of all documents signed prior to the time period of
compromise.

In recent years several forward-secure schemes were developed. Bellare and Miner [BM99] gave
the formal definition of forward-secure signatures by extending the security definition for ordinary
signatures of Goldwasser, Micali, and Rivest [GMR88]. They also proposed two schemes: one based
on a tree-like structure of certificates using any ordinary signature scheme, and the other based
on modifying the Fiat-Shamir [FS86] ordinary signature scheme. Following this work, many other
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forward-secure signature schemes were developed. The development has followed two paths: one was
based on modifying specific, Fiat-Shamir-like, signature schemes, while the other used any ordinary
signature scheme as a black box. Our scheme belongs to the first category, in which two other
schemes (in addition to the one of [BM99]) are known. Abdalla’s and Reyzin’s scheme [AR00] is
based on modifying Ong-Schnorr signatures [OS90], and shortens the secret and public keys of the
Fiat-Shamir-based scheme of [BM99] (at the expense of Signing and Verifying time). Itkis’ and
Reyzin’s scheme [IR01] is based on modifying Guillou-Quisquater [GQ88] signatures, and results
in both short keys and efficient Signing and Verifying. We summarize the relevant performance
attributes of these schemes in Table 1.

We note that forward-secure signature schemes in the second category (the ones using any ordinary
signature scheme as a black box) are competitive, as well. Krawczyk’s scheme [Kra00] is based on
generating all of the certificates in advance in a pseudorandom manner. The most recent work
by Malkin, Micciancio and Miner [MMM02] modifies the tree-based scheme of Bellare and Miner
to achieve greater efficiency and remove the requirement (present in all prior schemes) that the
number of time periods be fixed in advance, prior to Key Generation. These schemes are difficult to
compare directly with schemes in the first category, because they depend heavily on how the ordinary
signature scheme is instantiated. They can outperform schemes in the first category in some (but
not all) parameters.

1.2 Our contribution

Our forward-secure digital signature scheme significantly improves the speed of Key Update algo-
rithm: it becomes just a single modular squaring of the secret key, which is faster than in all previously
known schemes. We therefore call our scheme KREUS for “Kozlov-Reyzin Efficient Update Signa-
tures.” Our Signing and Verifying algorithms, although slower than those of some other previous
schemes, are also reasonably efficient. In particular, the on-line component of Signing (i.e., the part
of the signing algorithm that can be performed only once the message is known) is extremely efficient,
requiring less than a single multiplication.

Our key and signature sizes are small, and no extra storage is required. Similarly in spirit (and
in technique) to [IR01], at the cost of storing log T extra values and increasing the Update time
to log T modular squarings (this still more efficient than all prior schemes), we can improve the
speed of the off-line component of Signing, as further detailed in Section 4. This is a surprising and
novel application of the techniques of Jakobsson [Jak02] and Coppersmith and Jakobsson [CJ02] for
traversing hash sequences.

Our construction was inspired by the work of Song in the area of forward-secure Group Signa-
ture schemes [Son01], that in turn is based on the ordinary Group Signature scheme by Ateniese,
Camenisch, Joye, and Tsudik [ACJT00]. Since we do not need many features pertinent to group
signatures (such as coalition resistance, anonymity, backward unlinkability, traceability, etc.), our
scheme is more concise and simpler to implement. All we rely on is the proof of knowledge of Dis-
crete Logarithm in a group of unknown size initially proposed by Fujisaki and Okamoto in [FO97].

We note that both our scheme and the scheme of [AR00] rely on the signer knowing some iterated
square root of the public key. The scheme of [AR00] is much less efficient, however, because the
signer needs to know a root of a much higher degree. We can use lower-degree roots because we use
a different technique for proving knowledge of a square root, as further detailed in Section 3.
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2 Definitions

2.1 Forward-secure digital signature schemes

The definitions of forward security are taken almost verbatim from [AR00], which in turn follows
very closely the definitions of [BM99].

A forward-secure digital signature scheme is, first of all, a key-evolving digital signature scheme. A
key-evolving signature scheme is very similar to a standard one. Like a standard signature scheme, it
has Key Generation, Signing and Verification algorithms. The public key is left unchanged throughout
the lifetime of the scheme, making the Verification algorithm very similar to that of a standard
signature scheme. Unlike a standard signature scheme, a key-evolving signature scheme has its
operation divided into time periods, each of which uses a different (but related) secret key to sign
messages. The way these keys are updated is given by a public Key Update algorithm, which
computes the secret key for the new time period based on that for the previous time period. The
forward security comes, in part, from the fact that this Key Update function is one-way and, given
the secret key for the current period, it is hard to compute any of the previously used secret keys. Let
us now define more formally what a key-evolving digital signature scheme is and then define what it
means for it to be forward-secure.

Definition 1 (Key-evolving signature scheme). A key-evolving digital signature scheme is a
quadruple of algorithms, FSIG = (FSIG.key, FSIG.update, FSIG.sign, FSIG.verify), where:

• FSIG.key, the Key Generation algorithm, is a probabilistic algorithm which takes as input a
security parameter k ∈ N (given in unary as 1k) and the total number of periods T and returns
a pair (SK1, PK), the initial secret key and the public key;

• FSIG.sign, the (possibly probabilistic) Signing algorithm, takes as input the secret key SKj for
the current time period j and the message M to be signed and returns a pair 〈j, sign〉, the
signature of M for time period j;

• FSIG.update, the (possibly probabilistic) Secret Key Update algorithm, takes as input the secret
key for the current period SKj and returns the new secret key SKj+1 for the next period;

• FSIG.verify, the (deterministic) Verification algorithm, takes as input the public key PK, a
message M , and a candidate signature 〈j, sign〉, and returns 1 if 〈j, sign〉 is a valid signature
of M or 0, otherwise. We require FSIG.verifyPK(M, FSIG.signSKj

(M)) = 1 for every message
M and time period j.

We also assume that the secret key SKj for time period j ≤ T always contains both the value j itself
and the value T of the total number of periods. Finally, we adopt the convention that SKT+1 is the
empty string and that FSIG.updateSKT

returns SKT+1. Since we are going to work in the random
oracle model [BR93], all the above-mentioned algorithms would additionally have oracle access to a
public hash function H : {0, 1}∗ → {0, 1}l for some security parameter l that is known to all the
algorithms. The function H is assumed to be random in the security analysis.

Having defined a key-evolving signature scheme, we now define what it means for such a scheme
to be forward-secure. We concern ourselves here with security only in the random oracle model,
because this model is required for our scheme.
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To define security, we need to specify the adversary. Besides knowing the user’s public key
PK, the adversary also gets to know the total number of time periods T and the current time
period j. The adversary runs in three phases (it is allowed to preserve state information between
phases). In the first phase, the chosen message attack phase (cma), the adversary has access to
a signing oracle, which it can query to obtain signatures of messages of its choice with respect to
the current secret key; we designate by qsig the total number of signature queries. The adversary
can also make queries to the random oracle H at any time; we designate by qhash the total number
of H-queries. At the end of each time period, the adversary can choose whether to stay in the
same phase or switch to the break-in phase (breakin). In the break-in phase, which models the
possibility of a key exposure, we give the adversary the secret key SKj for the specific time period j
it decided to break in. In the last phase, the forgery phase (forge), the adversary outputs a signature-
message pair, that is, a forgery. The adversary is considered to be successful if it forges a signature
of some new message (that is, not previously queried to the signing oracle) for some time period
prior to j. In order to capture the notion of forward security of a key-evolving signature scheme
FSIG = (FSIG.key, FSIG.update, FSIG.sign, FSIG.verify) more formally, let F be an adversary for this
scheme. To assess the success probability of F breaking the forward security of FSIG, consider the
following experiment:

Experiment F-Forge-RO(FSIG, F )
Select H: {0, 1}∗ → {0, 1}l at random

(PK, SK1)
R← FSIG.keyH(k, l, T )

j ← 1
Repeat

d ← F
H,FSIG.signH

SKj
(·)

(cma, PK)
if (d �= breakin)

SKj ← FSIG.updateH(SKj); j ← j + 1;
Until (d = breakin) or (j = T + 1)
(M, 〈b, sign〉) ← FH(forge, SKj)
If FSIG.verifyH

PK(M, 〈b, sign〉) = 1 and 1 ≤ b < j
and M was not queried by FSIG.signH

SKb
(·) in period b

then return 1 else return 0

Finally, to define security, let FSIG = (FSIG.key, FSIG.update, FSIG.sign, FSIG.verify) be a key-evolving
signature scheme, H be a random oracle and F be an adversary as described above. We now define
Succfwsig(FSIG[k, l, T ], F ) as the probability that the experiment F-Forge-RO(FSIG[k, l, T ], F ) returns
1. Then the insecurity of FSIG is the function

InSecfwsig(FSIG[k, l, T ], t, qsig,qhash) = max
F

{
Succfwsig(FSIG[k, l, T ], F )

}
,

where the maximum is taken over all adversaries F making a total of at most qsig queries to the
signing oracle across all the stages and for which the running time of the above experiment is at
most t and at most qhash queries are made to the random oracle H. The smaller the insecurity
function, the more forward-secure the scheme is. To obtain an asymptotic definition of security, one
would polynomially relate k, l, and T to a single security parameter, and define the scheme to be
forward-secure if the insecurity function is negligible in the security parameter.
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2.2 Strong-RSA Assumption

We use essentially the same Strong-RSA assumption as [IR01], and hence quote it from there almost
verbatim.

The assumption was first introduced independently in [BP97] and [FO97], and postulates that
it is hard to compute any root of a fixed value modulo a composite integer. More precisely, the
Strong-RSA assumption states that it is intractable, given n that is a product of two primes and a
value α in Z∗

n, to find β ∈ Z∗
n and r > 1 such that βr ≡ α (mod n).

Just like [IR01], we modify the assumption in two ways. First, we restrict ourselves to the moduli
that are products of so-called “safe” primes (a safe prime is one of the form 2q + 1, where q itself
is a prime). Note that, assuming safe primes are frequent, this restriction does not strengthen the
assumption. Second, we upperbound the permissible values or r by 2l, where l is a security parameter
for our scheme (in an implementation, l will be significantly shorter than the length k of the modulus
n; the sole difference between our assumption and the one in [IR01] is that [IR01] upperbound r by
2l+1 instead of 2l).

More formally, let A be an algorithm. Consider the following experiment.

Experiment Break-Strong-RSA(k, l, A)
Randomly choose two primes q1 and q2 of length 	k/2
 − 1 each

such that 2q1 + 1 and 2q2 + 1 are both prime.
p1 ← 2q1 + 1; p2 ← 2q2 + 1; n ← p1p2

Randomly choose α ∈ Z∗
n.

(β, r) ← A(n, α)
If 1 < r ≤ 2l and βr ≡ α (mod n) then return 1 else return 0

Let Succ(k, l, A) = Pr[Break-Strong-RSA(k, l, A) = 1]. Let InSecSRSA(k, l, t) be the maximum
of Succ(k, l, A) over all the adversaries A who run in time at most t. Our assumption is that
InSecSRSA(k, l, t), for some t polynomial in k, is negligible in k. The smaller the value of l, of course,
the weaker the assumption.

In fact, for a sufficiently small l, our assumption follows from a variant of the fixed-exponent RSA
assumption. Namely, assume that there exists a constant ε such that, for every r, the probability of
computing, in time t, an r-th root of a random integer modulo a k-bit product of two safe primes, is
at most 2−kε

. Then, InSecSRSA(k, l, t) < 2l−kε
, which is negligible if l = o(kε).

3 The New Scheme

3.1 Background

Our construction relies on proofs of knowledge of discrete logarithms in groups of hidden order [FO97],
which are recalled in this section.

We first recall the well-known construction due to Schnorr [Sch91] for a group of known order.
Let p be a safe prime (i.e. p = 2q + 1, q - also prime) and let g be a generator of QRp, the group
of quadratic residues modulo p of size |QRp| = p−1

2
= q. Let the public key be PK = (y, g, p), and

the secret key be SK = (x, g, p). We give PK to the verifier and SK to the prover. The following
protocol allows the prover to convince the verifier that the prover knows x ≡ logg y (mod p). Let
l be a security parameter; the knowledge error (informally, the probability of prover cheating), as
defined in [BG92], will be 2−l.
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Prover Verifier

t
R← [0, q − 1]

d ← gt mod p
d - commitment−−−−−−−−−−−→

σ
R← {0, 1}l

σ - challenge←−−−−−−−−−−−
s ← t − σx mod q

s - response−−−−−−−−−−−→
d

?
= gsyσ mod p

This protocol is both honest-verifier zero-knowledge and a proof of knowledge. Hence, it makes
an identification scheme secure against passive attacks, and therefore can be transformed into a
signature scheme secure against chosen-message attacks in the random oracle model using the Fiat-
Shamir transform [FS86, PS96, AABN02]. In the resulting signature scheme, the signer acts just
like the above prover, except that it computes σ as H(M, d), where H is a cryptographic hash
function (modeled as a random oracle), and outputs (s, σ) as a signature. The verifier, who is now

non-interactive, computes d′ ← gsyσ and checks if σ
?
= H(M, d′).

Although the use of the order q of the group seems crucial in the above protocol, it turns out
not to be needed, as shown in [FO97] (see section 4.1 of [CM98] for a more accessible write-up).
Specifically, instead of working modulo a safe prime p, we will work modulo a composite n = p1p2,
where both p1 and p2 are safe primes (i.e. pi = 2qi +1, where qi are also primes for i = 1, 2). It is easy

to see that the group QRn of quadratic residues modulo n has size |QRn| = (p1−1)(p2−1)
4

= 2q12q2

4
= q1q2

and is cyclic (by Chinese Remainder Theorem, because QRp1 and QRp2 are both cyclic). Let g be a
generator of QRn (Chinese Remainder theorem implies that a random element of QRn is very likely
to be a generator, unless it is congruent to 1 modulo p1 or p2). We will now work in QRn, instead of
QRp, and will not require the prover or the verifier to know the factorization of n or, equivalently,
the order of QRn.

As in the previous case, y = gx mod n, PK = (y, g, n) and SK = (x, g, n) . Let k = |n| be
length of n in bits, and ε > 1 be another security parameter (the amount of information leaked by
the signer, or, more formally, exact statistical zero-knowledgeness, will be roughly 2−(l+k)(ε−1)). The
reasonable parameter values are k = 1024, l = 160, ε = 1.07 (see [CM98] for an analysis of statistical
zero-knowledgeness of this protocol, from which the value for ε follows).

Prover Verifier

t
R← {0, 1}ε(l+k)

d ← gt mod n
d - commitment−−−−−−−−−−−→

σ
R← {0, 1}l

σ - challenge←−−−−−−−−−−−
s ← t − σx

s - response−−−−−−−−−−−→
d

?
= gsyσ mod n
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Note that the main difference from the previous protocol is that s is not computed modulo the
group size, but rather as an integer. Note also that the set from which t is selected somewhat larger
than before, to provide statistical zero-knowledgeness.

This protocol is a secure identification scheme under the Strong-RSA assumption; hence, like the
previous protocol, it can be converted to a signature scheme using the Fiat-Shamir transform.

3.2 Our Forward-Secure Scheme

Our scheme relies essentially only on the above protocol, and on the fact that squaring in QRn is
a one-way permutation. Specifically, the public key contains a modulus n as above, and a value
v ∈ QRn. The secret key for time period j contains the root cj ∈ QRn of 1/v of degree 2T−j+1.
Hence, Key Update is just squaring: cj+1 ← c2

j mod n.
To sign messages in time period j, the signer applies the Fiat-Shamir transform to the interactive

proof of knowledge of cj. So all that remains is to show how to construct a proof of knowledge of
2T−j+1-th root of 1/v modulo n.

Perhaps the first thing that comes to mind is to use something similar to the Ong-Schnorr [OS90]
identification scheme that uses 2m-th roots. However, the [OS90] construction is not actually a proof
of knowledge of 2m-th root, as pointed out in Shoup [Sho96]. Indeed, the forward-secure scheme of
[AR00] based on [OS90] is quite inefficient for this very reason—because the signer needs to know a
(2m+l)-th root, while the knowledge extractor can only obtain a 2m-th root (see [AR00] for further
explanation).

Therefore, we use a different technique, inspired by [ACJT00] and [Son01]. Let y be a generator
of QRn (included in both the public and the secret keys). The prover “blinds” cj by a random power
of y: A ← cjy

w mod n for a random w. Using the protocol from the previous section, the prover

then proves knowledge of the discrete logarithm of vA2T−j+1
to the base y2T−j+1

.
Completeness follows from the fact that prover knows w, which is the required discrete logarithm:

(
y2T−j+1

)w

= A2T−j+1

/c2T−j+1

j = vA2T−j+1

.

Proof of knowledge property follows from the fact that knowledge of such A and w is equivalent
to knowledge of a root of 1/v of degree 2T−j+1, which can simply be computed as A/yw from the
previous equation. Note that the verifier has to check that A is not 0 modulo n, because the proof
for discrete logarithms is not sound in that case.

There is a minor concern: namely, because the prover does not know the order of the group QRn,
how can the prover select w so that yw is a uniformly selected random element of QRn? We address
it by relaxing the requirement from perfect uniformity to “statistical uniformity.” Namely, we use
(n − 1)/4 as a good approximation to |QRn| = φ(n)/4, and simply select w as an integer between 0

and (n − 1)/4. Note that the chances that w > |QRn| are n−1−φ(n)
n−1

< p1+p2

n−1
≈ 2k/2+2k/2

2k ≈ 2−k/2, and
hence are negligible.

The resulting identification protocol is as follows.

7



Prover Verifier

w
R← (0, n−1

4
]

A ← cjy
w mod n

A−−−−−−−−−−−−−−−−→
r

R← {0, 1}ε(l+k)

d ← (y2T−j+1
)r mod n

d - commitment−−−−−−−−−−−−−−−−−→
σ

R← {0, 1}l

σ - challenge←−−−−−−−−−−−−−−−−−
s ← r − σw

s - response−−−−−−−−−−−−−−−−−→
d

?
= (y2T−j+1

)s(A2
T−j+1

v)σ mod n

and A
?

�≡ 0 (mod n)

In the above protocol, the prover needs to compute A only once to blind cj; using the same A

multiple times does not hurt security of this scheme. The value y2T−j+1
also need be computed only

once, and can be saved and reused by the prover. In addition, the value d can be computed off-line,
before the protocol starts. Only s has to be computed on-line.

If the verifier interacts with the same prover multiple times in time period j, the verifier can also
save and reuse y2T−j+1

and A2T−j+1
.

The conversion from this identification scheme to the signature scheme is straightforward [FS86,
AABN02], using a hash function H : {0, 1}∗ → {0, 1}l, for a security parameter l. See Figure 1 for
the resulting KREUS forward-secure signature scheme.

4 Performance

4.1 Improving Signer Costs via Pebbling

Note that the signer has to compute, in time period j, the value ỹ = y2T−j+1
mod n. In other words,

the signer needs to compute, in order, the values y1, y2, . . . , yT , where yT = y and yj−1 = y2
j mod n.

Note that this would be easy if the order of the values was reverse: the signer could just square the
previous value each time. The direction we need is harder.

This is exactly the problem that Jakobsson [Jak02] and Coppersmith and Jakobsson [CJ02] ad-
dress, except that they consider any one-way (hash) function, whereas we are interested specifically in
modular squaring. They show that one can traverse a one-way chain by storing a few of its elements
and performing a few computations per step. Specifically, the simple algorithm of [Jak02] requires
	log2 T 
 values stored and 	log2 T 
 steps in each time period; the much more complex one of [CJ02]
requires about log2 T + log2 log2 T values stored and further reduces the computation cost to about
0.5 log2 T . Both algorithms use “pebbling” techniques, similar in spirit to those of [IR01].

In Figure 2, we present, in detail, a simple self-contained implementation of the algorithm of
[Jak02] for use with our signature scheme. It is an adaptation to the pebbling algorithm of Jakobsson
of the implementation given in [IR02]. While this description suffices to implement the algorithm,
we refer the reader interested in the intuition to [Jak02].
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KeyGeneration(k, T )
// k - size of the keys in bits, T - number of time periods

Generate random (	k
2

 − 1)-bit primes q1, q2, such that

p1
def
= 2q1 + 1 and p2

def
= 2q2 + 1 are both prime

// See [CS00] for an excellent discussion on efficient generation of safe primes
n ← p1p2

c0
R← Z∗

n

c1 ← (c0)
2 mod n

v ← 1/
(
c2T

1

)
mod n

y
R← QRn // One may check that y is a generator of QR(n), but this is not necessary,

since it will hold with overwhelming probability of 1 − q1+q2−1
q1q2

SK1 ← (1, n, T, c1, y)
PK ← (n, T, v, y)
return (SK1, PK)

KeyUpdate(SKj)
// SKj is the secret key for time period j = 1, 2, ..., T

Parse SKj as (j, n, T, cj , y)
if j = T then return nil // note that nil here denotes the empty string

else cj+1 ← (cj)
2 mod n;

return SKj+1
def
= (j + 1, n, T, cj+1, y)

Sign(SKj, M, k, l, ε)
// M is the message; SKj is the secret key for time period j; and k, l and ε are the security parameters

Parse SKj as (j, n, T, cj , y)
Once Per Time Period:

w
R← (0, n−1

4
]

A ← cjy
w mod n

ỹ ← y2T−j+1
mod n

For Each Signature:

r
R← {0, 1}ε(l+k)

d ← (ỹ)r mod n
σ ← H(j, A, d, M)
s ← r − σw
return (s, σ, j, A)

Verify(PK, M, (s, σ, j, A))
// M is the message, PK is the public key, and (s, σ, j, A) is the purported signature for time period j

Parse PK as (n, T, v, y)

Once Per Time Period Per Signer: Ã ← A2T−j+1
mod n; ỹ ← y2T−j+1

mod n

For Each Signature: d′ ← (ỹ)s(vÃ)σ mod n
if σ = H(j, A, d′, M) and

A �≡ 0 (mod n) then return 1 else return 0

Figure 1: Algorithms of the KREUS forward-secure signature scheme with security parameters k, l, ε
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In KeyGeneration add:
define data structure Pebble = {ỹ, pos , rb, re}

// ỹ is the value to be used in time period pos (in each pebble ỹ = y2T−pos+1
);

// pos stands for position, “r” for “responsibility,” “b” for “begin” and “e” for “end”
TR ← 1; while TR < T do TR ← 2 · TR // Let TR be the smallest power of 2 greater than T

let Pebble P ← {y2, T, 1,TR}; L ← a list of Pebbles (initially, just the single element P )
for i ← −(T − 4)/2 to 1 (inclusive) do // initialize by reaching position 1

PebbleRound(L, i)

remove the first element of L; its ỹ value is y2T
and is to be used in the first time period

In KeyUpdate at the end of time period j add:
PebbleRound(L, j + 1)

remove the first element of L; its ỹ value is y2T−j
to be used in time period j + 1

Procedure PebbleRound(L, i)
for each Pebble P in L, in order, do

Let d = P.pos − P.rb − 2(P.rb − i) // Compute how much to move (it will be at most 2)
if d = 1 then MoveLeft(P ) // Move once
if d = 2 then MoveLeft(P ); MoveLeft(P ) // Move twice

Procedure MoveLeft(P )
while P.pos ≤ P.re do // Can’t move until pos > re, or else won’t be able to reach re

// Spawn a new pebble and delegate upper half of responsibility to it
mid ← �(P.rb + P.re)/2+1
if mid ≤ T then // The new pebble is needed only if it is for a “real” time period, T or before

let Pebble P1 ← (P.ỹ, P.pos ,mid , P.re); insert P1 into L immediately following P
P.re ← mid − 1

P.ỹ ← P.ỹ2 mod n; P.pos ← P.pos − 1 // this is the actual move left

Figure 2: Pebbling techniques to speed up computations of ỹ

Thus, in our scheme, much like in the scheme of [IR01], a time/memory tradeoff is possible: if the
signer stores log2 T values, then the cost per time period goes down from linear in T to logarithmic
in T . Note, however, that both in our scheme and in [IR01], if the signer does not use pebbling, then
the linear in T cost needs to be incurred only in those time periods in which signatures are issued;
whereas if pebbling is used, then the logarithmic in T cost needs to be incurred in every time period
in order for the pebbling algorithm to work correctly.

4.2 Performance Comparison

In Tables 1 and 2 we compare the performance of our scheme to the performance of other Fiat-
Shamir-like forward-secure signature schemes of [BM99], [AR00] and [IR01]. The comparison is in
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Update Off-line Signing per On-line
time period message Signing

[BM99] l n/a T − j l/2
[AR00] l n/a l(T − j) 3l/2
[IR01] 3l/2 3l(T − j)/2 3l/2 3l/2

with k log2 T storage (3l/2) log2 T 0 3l/2 3l/2
KREUS 1 T − j + 3k/2 3ε(l + k)/2 1

with k log2 T storage log2 T 3k/2 3ε(l + k)/2 1

Table 1: Signer costs (in modular multiplications) of various forward-secure schemes

Once per signer
per time period For every signature

[BM99] n/a T − j + l/2
[AR00] n/a l(T − j) + 3l/2
[IR01] n/a 3l
KREUS 2(T − j) 3(ε(l + k) + l)/2

Table 2: Verifier costs (in modular multiplications) of various forward-secure schemes

terms of the number of modular multiplications required, expressed as functions of the total number
of time periods T , the key size k, the hash length l, security parameter ε, and a current time period j.
We assume that a modular exponentiation with an l-bit exponent is roughly equal to 3l/2 modular
multiplications; to improve readability, we ignore small additive constants. The “generic” schemes of
[BM99], [Kra00] and [MMM02] are not included in our comparison because of their fundamentally
different design (their performance depends on the ordinary signature scheme with which they are
instantiated).

Table 1 contains three metrics corresponding to Key Update, off-line Signing and on-line Signing
parts of each scheme. Off-line Signing is additionally subdivided into two components: off-line Signing
per time period and off-line Signing per message. By “off-line Signing per time period” we mean the
computations that are needed only once per time period, and only in those time periods in which
signatures are issued. This is different from Key Update, which needs to be performed in every
time period, whether or not signatures are issued. This distinction—between off-line Signing per
time period and Key Update—has not been made before. In particular, while the authors of [IR01]
state that their scheme has a high update cost, in our terms it has a high off-line signing per time
period cost. This distinction is important: if time periods are short for added security, then it is
quite possible that no signatures will be issued in many of the time periods (and hence much of the
computation will not be necessary).

Table 2 presents verifier’s costs, subdivided into the costs the verifier incurs only once per time
period (for a given signer), and the costs for each signature.

We evaluate the expressions in Table 1 for specific practical parameter values in Tables 3 and 4.
Table 3 considers T = 512 (more than one update per day for a year), and Table 4 considers T = 225

(more than one update per second for a year).
Finally, these tables allows us to determine when our scheme has lower total signer costs than

[IR01] for the above parameter values of k, l, ε, both with and without the extra storage. We obtain
the following results: without the extra storage, our scheme has lower total signer costs if no more
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Update Off-line Signing per On-line
time period message Signing

[BM99] 160 n/a 256 80
[AR00] 160 n/a 40, 960 240
[IR01] 240 61, 440 240 240

with 1, 152 bytes storage 2, 160 0 240 240
KREUS 1 1, 792 1, 901 1

with 1, 152 bytes storage 9 1, 536 1, 901 1

Table 3: Performance of different schemes (in modular multiplications) with T = 512, k = 1024, l =
160, j = T/2, ε = 1.07

Update Off-line Signing per On-line
time period message Signing

[BM99] 160 n/a 16 × 106 80
[AR00] 160 n/a 2.6 × 109 240
[IR01] 240 4 × 109 240 240

with 3, 200 bytes storage 6, 000 0 240 240
KREUS 1 16 × 106 1, 901 1

with 3, 200 bytes storage 25 1, 536 1, 901 1

Table 4: Performance of different schemes (in modular multiplications) with T = 225, k = 1024, l =
160, j = T/2, ε = 1.07

that 42 signatures per time period are issued for T = 512, and if no more that 2.8 million signatures
per time period are issued for T = 225. With the extra storage, the relative performance of [IR01]
improves, and our scheme’s total signer costs are lower if no more than 0.7 signatures per time period
are issued for T = 512, and no more than 3 signatures per time period are issued for T = 225.

5 Security

The security proof is fairly standard: one can use the forking lemma technique of [PS96] and/or the
reduction from identification to signatures of [AABN02]. We omit it here for lack of space; we do,
however, point out its most salient features.

The security proof boils down to running the forger and simulating answers to the forger’s signa-
ture queries. For this simulation, one relies on the statistical zero-knowledgeness of the identification
scheme, using techniques similar to the ones of [CM98]. After a successful simulation, one obtains
from the forger two signatures (s, σ, j, A) and (s′, σ′, j, A) for the same d. In other words,

(
y2T−j+1

)s (
vA2T−j+1

)σ

≡
(
y2T−j+1

)s′ (
vA2T−j+1

)σ′

(mod n).

Letting s̃ = s − s′ and σ̃ = σ′ − σ, we obtain the equation

(
y2T−j+1

)s̃

≡
(
vA2T−j+1

)σ̃

.

12



We now consider two types of forgers. In the first type, σ̃ divides s̃. To violate the Strong-RSA
assumption using such forger, the reduction, on input a random α ∈ Z∗

n, sets v = α2T−j+1
(this will

enable the reduction to answer breakin query after time period j). Then the above equation becomes(
ys̃/σ̃/A

)2T−j+1 ≡ α2T−j+1
. Because squaring is a permutation over QRn (because n is a product of two

safe primes, and hence a Blum integer), this gives that
(
ys̃/σ̃/A

)2 ≡ α2. In other words, the reduction
is able to compute a square root of α2; because α is a random element of Z∗

n, this is equivalent to
factoring n with probability 1/2, and hence, in particular, violates the Strong-RSA assumption.

In the second type of forger, σ̃ does not divide s̃. To violate the Strong-RSA assumption using
such forger, the reduction, on input a random α ∈ Z∗

n, sets y = α2, picks c0 ∈ Z∗
n, lets c1 = c2

0 and

v = 1/
(
c2T

1

)
, just like the true signer. Then the above equation becomes ys̃2T−j+1 ≡ (A/cj)

σ̃2T−j+1

.

By the so-called “Shamir’s trick” [Sha83], this equation enables us to obtain a root of y of degree
r = σ̃2T−j+1/gcd

(
σ̃2T−j+1, s̃2T−j+1

)
= σ̃/gcd(σ, s) > 1. If r is even, this gives us another square root

of α2, thus again allowing us to factor n with probability 1/2. If r is odd, this gives us a root of α
of degree r > 1, thus breaking the Strong-RSA assumption (note also that r < 2l, because σ and σ′

are at most l bits long, because they are output by H).
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