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Abstract
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1 Introduction

Conceived as a secure alternative to traditional Unix tools like rsh and rcp, the IETF standard-
ization body’s Secure Shell (SSH ) protocol (version 2.0) has become one of the most popular and
widely used cryptographic protocols on the Internet. Because of its popularity and because of the
insecurity of programs like rsh and telnet, a number of institutions only allow users to remotely
access their facilities using SSH. The cryptographic heart of the SSH protocol is its Binary Packet
Protocol (BPP) [35]; the BPP is responsible for the underlying symmetric encryption and authen-
tication (or the authenticated encryption) of all messages sent between two parties involved in an
SSH connection.

Although others have discussed specific properties of the SSH BPP (e.g., problems with not using
a MAC [33] or problems with SSH’s use of CBC mode [14]), to the best of our knowledge no one
has performed a rigorous, provable security-based analysis of the entire SSH BPP authenticated
encryption mechanism. Our goal was thus to thoroughly analyze the SSH BPP authenticated
encryption scheme and, in the event that we found any problems, to present provably-secure fixes
to the protocol.

In order for our fixes to be as useful as possible to the Internet community, when developing
our fixes we considered both (1) provable security and (2) efficiency. Additionally, since retroac-
tively modifying existing implementations is often very expensive, we required that our suggested
modifications (3) not significantly alter the current SSH specification. For the last point, we note
that the creators of SSH had the foresight to design the SSH BPP in a modular way: in particular,
it is relatively “easy” to change the SSH BPP’s underlying encryption and message authentication
modules.

Analysis and provably secure recommendations. The SSH BPP specification states that
SSH implementations should use CBC mode encryption [15] with chained initialization vectors
(IVs); i.e., the IV used when encrypting a message should be the last block of the previous cipher-
text. Unfortunately, CBC mode encryption with chained IVs is insecure [29], and this insecurity
extends to SSH (this extension was also reported by Dai [14]).

Since CBC mode encryption with chained IVs is insecure, but CBC mode with random IVs
is provably secure against chosen-plaintext attacks [2], a natural fix to the SSH protocol might
be to replace the use of chained-IV CBC mode with randomized CBC mode. Unfortunately, we
show that doing so is not sufficient. In particular, since the SSH specification does not require the
padding to be random, the resulting SSH implementation may be vulnerable to a rather serious
reaction-attack (a privacy attack that works by modifying a sender’s ciphertexts and observing the
receiver’s response).

We next present several secure fixes to the SSH authenticated encryption mechanism. For ex-
ample, we suggest using randomized CBC mode encryption; the difference between this suggestion
and the suggestion in the above paragraph is that we require at least one full block of random
padding (this could, however, result in having to encipher more blocks than the previous SSH al-
ternative). We also suggest another CBC variant that does not require additional random padding:
CBC mode where the IV is generated by encrypting a counter with a different key. As an addi-
tional alternative, we suggest replacing the underlying encryption scheme with a variant of counter
(CTR) mode [16, 27] in which both the sender and receiver maintain a copy of the counter. We
also present a framework within which to analyze other possible replacements.

One important advantage of these fixes over the current SSH specification is provable security.
Making reasonable assumptions (e.g., that SSH’s underlying block cipher is secure), we are able
to show that our alternatives will preserve privacy against adaptive chosen-plaintext and adaptive
chosen-ciphertext attacks. We also show that our alternatives will resist forgery, replay, and out-
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of-order delivery attacks. Finally, we argue that our alternatives, and especially the latter two, also
satisfy the other two requirements listed above, namely efficiency and ease of modification. We also
note that our CTR mode construction addresses the concerns with CTR mode raised in [10].

Theoretical contributions. The previous notions of privacy [2] and integrity [23, 6] for authen-
ticated encryption schemes only address encryption schemes with stateless decryption algorithms.
The SSH BPP decryption algorithm is, however, stateful. Motivated by a desire to analyze the
SSH BPP authenticated encryption scheme, and by the desire to capture the potential “power”
of stateful decryption algorithms, we extend the previous notions of privacy and integrity to en-
cryption schemes with stateful decryption algorithms. The aforementioned “power” refers to the
fact that if a scheme meets our new notions of security, then, in addition to satisfying the existing
notions of privacy [2] and integrity [23, 6], the scheme will be secure against replay attacks and
out-of-order delivery attacks — attacks not captured under the previous models.

One alternative approach to our analysis would have been to model the SSH BPP as a “secure
channel” (as defined in [12] and characterized in [28]) since the notion of secure channels can
be applied to encryption schemes with stateful decryption algorithms. We point out that the
combination of our notions is stronger than the notion of secure channels: combining a secure key
agreement protocol with an authenticated encryption scheme that meets both of our notions will
yield a secure channel. Consequently, since our fixes to the SSH BPP provably meet our strong
notions, the resulting SSH BPP is also a secure channel.

We acknowledge that one potential disadvantage of our new notions of security is that they may
be “too strong” for some applications: some applications may not require the strength associated
with our notions (see [12, 25] for reasons). For those applications, the notion of a secure channel
might be more appropriate. Our notions are, however, more appropriate for applications like SSH
that do require a higher level of protection such as protection against out-of-order delivery attacks.
Finally, we note that side-channel attacks such as those exploiting information leaked through the
length of packets or the interval of time between packets (e.g., [32, 13]) are not captured by our
security models nor any other provable security models that we are aware of.

Overview. After describing the SSH Binary Packet Protocol in Section 2, we present a simple
attack against the current SSH specification in Section 3. In Section 4, we show that “fixing” the
SSH BPP in the natural way may result in an insecure protocol. Motivated by the lessons we learned
from Sections 3 and 4, we then present provably-secure fixes to the SSH Binary Packet Protocol
Section 5. In Sections 6–8 we present our provable security results. Finally, in Section 9, we discuss
our results and make recommendations to the SSH and applied cryptographic communities. We
discuss the significance of our earlier attacks and the advantages and disadvantages of switching
to our proposed modifications. We also discuss the possibility of changing the SSH BPP from an
“Encrypt-and -MAC-based” construction to an “Encrypt-then-MAC-based” construction and the
possibility of modifying SSH to use a dedicated authenticated encryption scheme such as XCBC [18]
or OCB [31].

Background and related work. An authenticated encryption scheme is a scheme designed
to provide both privacy and integrity. From an API perspective, a symmetric authenticated en-
cryption scheme is equivalent to an encryption scheme except that the decryption algorithm can
return a special error code. There are two types of authenticated encryption schemes: dedicated
constructions (e.g., RPC [23], XCBC [18], IACBC [22], and OCB [31]) and generic composition con-
structions, so named because they use standard encryption and message authentication schemes as
“black boxes.” Analysis of the latter class was initiated in [6, 25]. The schemes of SSH, SSL and
IPsec fall in this class. The idea of modeling data formats via encoding schemes that we use here
was introduced in [7]. An et al. [1] consider generic composition in the asymmetric setting and in
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Figure 1: The SSH authenticated encryption scheme. See Section 2 for details.

particular obtain results about the security of the transform which splits a message into two sub-
messages via a commitment scheme, signs one of the sub-messages and encrypts the other. In [17],
Dodis and An consider methods of constructing authenticated encryption schemes for long messages
from concealment schemes and authenticated encryption schemes for short messages. Whiting et
al. [34], Rogaway [30], Bellare et al. [8], and Kohno et al. [24] consider authenticated encryption
schemes that can authenticate more data than they encrypt.

History. An extended abstract of this paper appeared as [4]. We have published an Internet-
Draft [5], within the IETF Secure Shell working group, based on the results of this research.

2 The SSH Binary Packet Protocol

The SSH Binary Packet Protocol [35] is responsible for encrypting and authenticating all messages
between two parties involved in an SSH session. Before beginning the authenticated encryption
portion of an SSH session, a client and a server first agree upon a set of shared symmetric keys (a
different set for each direction of a connection). The client and the server also agree upon which
encryption and message authentication schemes they wish to use. All of the encryption schemes
recommended by [35] are based on CBC mode encryption [15], and all of the recommended message
authentication schemes are based on HMAC [26].

The SSH authenticated encryption scheme works as shown in Figure 1. Given a payload message
(in octets), the SSH BPP encodes that message into an encoded packet consisting of the following
fields: a four-octet packet length field containing the length of the remaining encoded packet (in
octets), a one-octet padding length field, the payload message, and (possibly random) padding. The
length of the total packet must be a multiple of the underlying block cipher’s block length, and the
padding must be at least four octets long. Although the SSH specification allows up to 255 octets
of padding per encoded packet, both implementations that we evaluated (openssh-2.9p2 and SSH
Communications’ ssh-3.0.1) use the minimum padding necessary. The resulting ciphertext is the
concatenation of the encryption of the above encoded packet and the MAC of the above encoded
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packet prepended with a 32-bit counter. In the following discussions, we try to make clear whether
we are referring to the intermediate ciphertext output by the underlying encryption scheme or the
ciphertext packet (the concatenation of the intermediate ciphertext and the MAC tag) output by
the SSH BPP.

Decryption is defined in a natural way: the receiver first decrypts the intermediate ciphertext
portion of a ciphertext to get an encoded packet. The receiver then prepends a 32-bit counter
(which it also maintains) to the encoded packet and determines whether the received MAC tag is
valid. If so, the decryptor removes the payload from the encoded packet and delivers the payload
to the user (or a higher-level protocol). If the MAC verification fails, the connection is terminated.

The SSH specification recommends the use of CBC mode with inter-packet chaining. This
means that, when encrypting an encoded payload, the sender uses as the initialization vector (IV)
either the last block of the immediately preceding ciphertext or, when encrypting the first message,
an IV computed during the SSH key agreement protocol. We refer to the current instantiation of
the SSH protocol as SSH-IPC, or SSH with inter-packet chaining.

3 Attack Against the Standard Implementation of SSH

There is a simple attack against SSH-IPC; this attack was also recently reported in [14]. The
problem with SSH-IPC is that an attacker will know the IV for the next message to be encrypted
before the next message is actually encrypted. This means that if an attacker can control the entire
first block of the input into SSH-IPC’s underlying CBC encryption scheme, it will be able to control
the corresponding input to the underlying block cipher. Since a block cipher is deterministic, an
attacker could use this to glean information about a previously encrypted message (by looking to
see if some value was ever the input to a previous block cipher invocation).

We describe the attack in slightly more detail. We assume for now that an adversary can control
the entire first block of an encoded packet. Suppose that an adversary has a guess G of the first
encoded block of the ith packet, and let C1 be the last CBC block of the i − 1st intermediate
ciphertext. Since we are considering SSH-IPC, the block C1 was used as the IV when encrypting
the ith packet. Let C2 be the first block of the ith ciphertext. And let C3 be the last CBC block
of the underlying ciphertext the user just output (i.e., the user will use C3 as its next IV). If the
adversary is able to force the user to encrypt the block C1 ⊕ C3 ⊕G, where ⊕ is the xor operation,
and if the resulting block is C2, the adversary knows its guess of for G was correct; otherwise the
adversary knows its guess was incorrect.

A small complication arises when mounting this attack against SSH-IPC because the attacker
cannot control the entire first block of an encoded message (because the first 40 bits of an encoded
packet contain metadata). This means that an attacker may not be able to force a user’s underlying
CBC scheme to encrypt the block C1 ⊕ C3 ⊕G. An attacker will, however, be able to mount this
attack if C1 and C3 are identical in the bits that the attacker cannot control. Let l be the block
length (in bits) of the underlying block cipher. Since an attacker can control approximately lg(l/8)
bits of the padding length field and approximately 15 − lg(l/8) bits of the packet length field of
an encoded message (SSH implementations are only required to support packets with payloads
containing less than 215 octets and all packets must be padded to a multiple of the block length),
an attacker could mount a variant of the above attack by waiting for a collision on approximately
25 bits (but the adversary’s last encryption request may be up to 215 octets long).
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4 Attacks Against a Natural “Fix”

The problem with SSH-IPC stems from the fact that its underlying encryption scheme is itself
vulnerable to chosen-plaintext attacks. A logical fix might therefore be to replace the underlying
encryption scheme with randomized CBC mode (i.e., CBC mode in which a new random IV is
chosen for each message; this new IV must also be sent with the ciphertext). Randomized CBC
mode was proven to resist chosen-plaintext attacks in [2]. We refer to an SSH implementation that
uses randomized CBC mode as SSH-NPC, or SSH with no packet chaining.

It is possible to prove that SSH-NPC preserves privacy against chosen-plaintext attacks and
integrity under a notion called “integrity of plaintexts” provided that a user does not use SSH-NPC
to encrypt more than 232 messages with any given key. This proof holds even if the paddings used
in encoded packets are not random, a situation allowed by the SSH specification. As the following
attack shows, however, even though SSH-NPC with non-random padding preserves privacy against
chosen-plaintexts attacks, it does not preserve privacy against chosen-ciphertext attacks.

Reaction attack against SSH-NPC. The SSH specification encourages, although does not
require, implementations to use random padding. Unfortunately, when the padding value is fixed
(e.g., all zeros), SSH-NPC is susceptible to an easily-mountable reaction attack. Furthermore, this
attack can be made to work even when the padding values are not fixed but short and not hard
to predict: an attacker can simply wait until the predicted padding values collide and then use the
predicted value to successfully mount an attack. The attack we describe here is similar in spirit
to Wagner’s attack in [9] and to the attacks in [25, 33]. We note that the term “reaction attack”
comes from [21].

The attack proceeds roughly as follows: an attacker intercepts (and prevents the delivery of)
two ciphertexts sent by one party involved in an SSH connection. The adversary then makes a guess
about the relationship between the two plaintexts corresponding to the two intercepted ciphertexts.
The adversary then uses that guess and those two ciphertexts to create a new “ciphertext,” which
the adversary then sends to the other party involved in the SSH session. Recall that if the second
party does not accept the doctored ciphertext, the connection will be terminated. Thus, by observ-
ing the second party’s reaction, an adversary will learn whether its guess was correct. Intuitively,
this attack works because an attacker can modify the ciphertext in such a way that if its guess was
correct, the ciphertext that the second party receives will verify. If its guess was incorrect, with
high probability the ciphertext will not verify.

We now describe the attack in more detail. As before, let ⊕ denote the xor operation, let
‖ denote the concatenation of two strings, and let l denote the block length (in bits) of the block
cipher that SSH-NPC uses in CBC mode. Suppose a user uses SSH-NPC to encrypt two equal-
length messages M1 and M2 with lengths at most l− 40 (or messages that are identical after their
l − 40-th bit). For simplicity of exposition, let us assume that the two messages are exactly l − 40
bits long. Let P11 and P12 be the first and the second block of the encoded packet corresponding
to the payload M1, respectively. Similarly, let P21 and P22 be the first and the second block of
the encoded packets corresponding to M2, respectively. The blocks P11 and P21 correspond to
the packet length, the padding length, and the payload fields of the two encoded packets, and the
blocks P12 and P22 correspond to the padding fields. Since we are assuming fixed padding (such as
padding with all zeros), the padding blocks P12 and P22 will be equal.

When SSH-NPC’s underlying CBC mode encryption scheme encrypts the first encoded packet
P11‖P12, it will generate a ciphertext σ1 = C10‖C11‖C12; SSH-NPC’s underlying MAC will also
generate a tag τ1 (the MAC being computed over the concatenation of a counter and P11‖P12).
Similarly, SSH-NPC will generate the CBC ciphertext C20‖C21‖C22 and the MAC tag τ2 for the
encoded packet P21‖P22. The two blocks C10 and C20 correspond to the underlying CBC mode’s
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random initialization vectors.
Now assume that the receiver has not yet received the two ciphertexts corresponding to M1

and M2. In particular, this means that the recipient’s counter is identical to the counter that the
sender used when she encrypted the first message. Suppose that the attacker knows either M1 or
M2 and wants to verify a guess of the other or that the attacker wants to verify a guess of the
relationship between M1 and M2. Let X be the value P11 ⊕ P21 ⊕ C20. The attacker then asks
the receiver to decrypt the message X‖C21‖C22‖τ1. Now recall that the blocks P11 and P21 both
begin with the same 40 bits of header information and that they respectively end in M1 and M2.
Thus, if the attacker’s guess is correct, then X‖C21‖C22 will decrypt, via SSH-NPC’s underlying
CBC scheme, to P11‖P12, the MAC tag τ1 will verify, and the decryptor will accept the message.
However, if the attacker’s guess is incorrect, X‖C21‖C22 will not decrypt to P11‖P12, the tag τ1

will not verify (unless the attacker also succeeds in breaking the security of the underlying MAC
scheme), and the SSH-NPC connection will terminate. The adversary, by watching the recipients
reaction, therefore learns information about the plaintexts the sender is encrypting.

There are two aspects of this attack that make it easy to mount. First, this attack only requires
modifying encrypted packets; no chosen-plaintexts are required. Second, an attacker can learn
whether its guess is correct simply by watching the recipient’s response. These observations mean
that all an attacker needs to perform this attack is the ability to monitor, prevent the delivery of,
and inject messages in the encrypted communications between two parties. Similar to Wagner’s
attack in [9], this attack can be used to (among other things) infer the characters that a user types
over an interactive SSH-NPC session. Of course, once the attacker makes an incorrect guess, SSH-
NPC terminates the connection. Nonetheless, an attacker might still be able to repeat its attack
after the user begins a new session.

Information leakage, replay, and out-of-order delivery attacks. Although the SSH
draft suggests that an SSH session rekey after every gigabyte of transmitted data, doing so is not
required. We caution that if an SSH-NPC (or SSH-IPC) session is not rekeyed frequently enough,
then the session will be vulnerable to a number of other attacks. Recall that the SSH binary packet
protocol includes a 32-bit counter in each message to be MACed. These attacks make use of the
fact that if the SSH connection is not rekeyed frequently enough, then the counter will begin to
repeat.

The simple observation exploited by the information leakage attack is the following. Recall
that SSH generates each MAC using the encoded payload prepended with a counter as an input
and then appends the MAC to the intermediate ciphertext to generate a ciphertext packet. As a
result, if the underlying MAC algorithm is stateless and deterministic (which many MACs are),
then allowing the counter to repeat will leak information about a user’s plaintexts (through the
MAC). We present the attacks in more details for completeness. Suppose that the underlying
message authentication scheme is stateless and deterministic and that the padding is some fixed
value. Suppose that an attacker A sees a ciphertext with a MAC tag τ and suspects that the
underlying payload is M . To verify its guess, A waits for the sender to encrypt 232 − 1 more
packets and then requests the sender to encrypt the payload M . Let τ ′ be the MAC tag returned
in response to the request. If A’s guess is correct, then τ ′ will equal τ . Otherwise τ ′ 6= τ with very
high probability. The attack can also be used to break the privacy of SSH-NPC when SSH-NPC
uses random padding. In particular, if the first 232 messages that a user tags result in encoded
packets that use the minimum 4 octets of random padding, then an attacker capable of forcing a
user to tag an additional 232 chosen-plaintexts will be able to learn information about the user’s
initial 232 messages. The property used in this attack, namely that tagging with a deterministic
MAC leaks information about plaintexts, was also exploited by [6] and [25].

If the counter is allowed to repeat, SSH-NPC also becomes vulnerable to replay attacks and
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out-of-order delivery attacks. For replay attacks, once the receiver has decrypted 232 messages,
an attacker will be able to convince the receiver to re-accept a previously received message. For
out-of-order delivery attacks, after the sender has encrypted more that 232 messages, an attacker
will be able to modify the order in which the messages are decrypted.

5 Secure Fixes to SSH

We now briefly describe our new SSH instantiations. We show in Section 6 that these new al-
ternatives provably meet our strongest notions of security. That is, assuming that these fixes are
not used to encrypt more than 232 packets between rekeying, these new constructions will resist
chosen-plaintext and chosen-ciphertext privacy attacks as well as forgery, replay, and out-of-order
delivery attacks. Security above 232 is not guaranteed because, after 232 packets are encrypted,
the SSH BPP’s 32-bit internal counter will begin to wrap. We will compare these instantiations
of SSH to others and discuss additional possible modifications, including extending the length of
SSH’s internal counter, in Section 9.

SSH via randomized CBC mode with random padding: SSH-$NPC. Recall that the attack
against SSH-NPC involves creating a new intermediate ciphertext that would decrypt to an encoded
packet that the user previously encrypted (assuming the attacker’s guess was correct). With this
in mind, we propose a provably secure SSH instantiation (SSH-$NPC) that uses randomized CBC
mode for the underlying encryption scheme and that requires that encoded packets use random
padding. We require that the random padding be chosen anew for each encryption and that the
random padding occupy at least one full block of the encoded packet. This conforms to the current
SSH specification since the latter allows padding up to 255 octets.

The intuition behind the security of this alternative and the reason that this alternative resists
the attack in Section 4 is the following. Since the random padding is not sent in the clear, an
attacker will not know what the random padding is and will not be able to forge a ciphertext that
will decrypt to that previously encoded message (with the same random padding). Furthermore,
any other attack against SSH-$NPC would translate into an attack against the underlying CBC
mode encryption scheme, the underlying MAC, the encoding scheme, or the underlying block cipher.

SSH via CBC mode with CTR generated IVs: SSH-CTRIV-CBC. Instead of using CBC
mode with a random IV, it is also possible to generate a “random-looking” IV by encrypting a
counter with a different key; we call this alternative SSH-CTRIV-CBC. Unlike SSH-$NPC, for
SSH-CTRIV-CBC we do not require a full block of padding and we do not require the padding
to be random. The reason we do not require random padding for this alternative is because
the decryptor is stateful and that any modification to an underlying CBC ciphertext will, with
probability 1, change the encoded packet. This alternative is more attractive than SSH-$NPC
because it does not increase the size of ciphertexts compared to SSH-IPC (but it does require one
additional block cipher application compared to SSH-IPC).

SSH via CTR mode with stateful decryption: SSH-CTR. SSH-CTR uses standard CTR
mode as the underlying encryption scheme with one modification: both the sender and the receiver
maintain the counters themselves, rather than transmitting them as part of the ciphertexts. We
refer to this variant of CTR mode as CTR mode with stateful decryption. We point out that
this CTR mode variant offers the same level of chosen-plaintext privacy as standard CTR mode,
the security of which was shown in [2]. As with SSH-CTRIV-CBC, SSH-CTR does not require
additional padding and does not require the padding to be random. Furthermore, unlike SSH-
$NPC and SSH-CTRIV-CBC, SSH-CTR requires the same number of block cipher invocations as
SSH-IPC.
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Other possibilities. There are numerous other possible fixes to the SSH BPP. Rather than
enumerate all possible fixes to the SSH BPP, in Sections 6–8 we discuss how one can use our
general proof techniques to prove the security of other fixes (assuming, of course, that the other
fixes are indeed secure). For example, another fix of interest might be SSH-EIV-CBC, or SSH where
the underlying encryption scheme is replaced by a CBC variant in which the IV is the encipherment
of the last block of the previous ciphertext.

6 Provable Security Results: Preliminaries

Practice-oriented provable security. Reduction-based provable security was first intro-
duced by Goldwasser and Micali in [20]. It encompasses both the design and the analysis of
cryptographic constructs. In this approach, one designs a construct based on computationally hard
problems such as factoring large composite integers. These hard problems are treated as atomic
primitives whose computational hardness the security of the desired construct is based upon. Before
the construct can be analyzed, however, one must determine what it means for it to be considered
“secure.” This requires precisely defined security definitions and adversary models. The former
should capture the security objectives that the construct is to achieve while the latter should cap-
ture the settings in which adversaries operate. The goal here is to capture the settings in which
the construct will be deployed in the real-world.

Once security definitions and adversary models are determined, one “proves” security of the
desired construct via a reduction from the hardness of the underlying primitives, similar to the way
one reduces SAT to a problem to prove that the problem is NP-complete. The term “proves” is in
quotes here because, in effect, one does not prove that a construct is secure in this approach. Rather,
one provides a reduction of the security of the construct from that of its underlying primitives. This
technique allows us to arrive at a powerful conclusion: the only way to defeat the desired construct
in the prescribed models is to break the underlying primitives. Thus, as long as the primitives
are unbroken, we know that the construct is secure under the prescribed security definitions and
adversary models.

Our application of provable security in this paper is also practice-oriented in that we provide
concrete bounds for our reductions. This approach, which was introduced in [3], allows practitioners
to quantitatively determine the security of the construct. For example, they can use the best,
currently known attack against the underlying primitives such as AES and derive the upper bound
on the insecurity of the construct in question. We note, however, that for simplicity we do not
provide exact bounds in this paper but simply state roughly how the resources for breaking the
construct and those for breaking the underlying primitives compare. In most cases, they are equal.
In other cases, they can be easily determined by looking at the expansion between a payload
message and its encoded packet.

Analyzing SSH via a new paradigm. An SSH ciphertext is the concatenation of the encryption
and the MAC of (some encodings of) an underlying payload message. At first glance, this seems to
fall into the “Encrypt-and-MAC” method of composing an encryption scheme with a MAC scheme:
to encrypt a message M , apply the encryption algorithm to M and the tag generation algorithm
to M , then concatenate the resulting strings to produce the final ciphertext to be transmitted.
As pointed out in [6, 25], this particular composition method is not generically secure: security
under standard notions of the encryption and MAC schemes used as building blocks under this
composition method is not enough to guarantee the privacy of the payload. Naturally, this raises
a question regarding the security of SSH.

We show here that, with an appropriate encoding method, such as the method used in SSH,
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an Encode-then-E&M scheme can actually be made secure. In fact, our analysis models SSH more
generally as an authenticated encryption scheme constructed via a paradigm we call Encode-then-
E&M : to encrypt a message, first encode it (as SSH does), then encrypt and MAC the encoded
packets. Our analysis was done in a general way in order to ensure that that the definitions and
techniques we developed will be useful to the evaluators of other SSH-like schemes.

As described in Section 2, an SSH BPP encoded message (for encryption) consists of a packet
length field, a padding length field, payload data, and padding. An encoded message (for MACing)
is identical to an encoded message for encryption except that it is prepended with a 32-bit counter.

6.1 Definitions

Notation. If x and y are strings, then |x| denotes the length of x in bits and x‖y denotes their
concatenation. If i is a non-negative integer, then 〈i〉l denotes the unsigned l-bit binary represen-
tation of i. The empty string is denoted ε. When we say an algorithm is stateful, we mean that it
uses and updates its state and that the entity executing it maintains the state between invocations.
Let ε denote the initial state of any (stateful or stateless) algorithm. If f is a randomized (resp.,
deterministic) algorithm, then x

R← f(y) (resp., x ← f(y)) denotes the process of running f on
input y and assigning the result to x. If A is a program, A ⇐ x means “return the value x to A.”

Encryption schemes with stateful decryption. As usual a symmetric encryption scheme or
authenticated encryption scheme SE = (K, E ,D) consists of three algorithms. The randomized key
generation algorithm returns a key K. The encryption algorithm, which may be both randomized
and stateful, takes key K and a plaintext and returns a ciphertext. Motivated by SSH, the novel
feature here is that the decryption algorithm may also be stateful (but not randomized); the
decryption algorithm takes key K and a ciphertext and returns either a plaintext or a special
symbol ⊥ indicating failure.

Consider the interaction between an encryptor and a decryptor. If, at any point in time, the
sequence of inputs to the decryptor is not a prefix of the sequence of outputs of the encryptor,
then we say that the encryption and decryption processes have become out-of-sync and refer to
the decryption input at that point in time as the first out-of-sync input. The usual correctness
condition, which said that if C is produced by encrypting M under K then decrypting C under K
yields M , is replaced with a less stringent condition requiring only that decryption succeed when
the encryption and decryption processes are in-sync. More precisely, the following must be true for
any key K and plaintexts M1,M2, . . .. Suppose that both EK and DK are in their initial states.
For i = 1, 2, . . ., let Ci = EK(Mi) and let M ′

i = DK(Ci). It must be that Mi = M ′
i for all i.

Message authentication schemes. A message authentication scheme or MAC MA = (K, T ,V)
consists of three algorithms. The randomized key generation algorithm returns a key K. The tag-
ging algorithm, which may be both randomized and stateful, takes key K and a plaintext and
returns a tag. The deterministic and stateless verification algorithm takes key K, a plaintext, and
a candidate tag and returns a bit. For any key K and message M , and for any internal state of
TK , we require that VK(M, TK(M)) = 1.

Encoding schemes. An “encoding” is an unkeyed transformation. We use encodings to model
the process of loading a payload message into a packet for encryption and a packet for message
authentication (recall that the encoded packet that the SSH BPP encrypts is slightly different than
the encoded packet that the SSH BPP MACs). Syntactically, an encoding scheme EC = (Enc, Dec)
consists of an encoding algorithm and a decoding algorithm. The encoding algorithm Enc, which
may be both randomized and stateful, takes as input a message M and returns a pair of messages
(Me,Mt). The decoding algorithm Dec, which may also be stateful but not randomized, takes as
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input a message Me and returns a pair of messages (M, Mt), or (⊥,⊥) on error. The following
consistency requirement must be met. Consider any two messages M,M ′ where |M | = |M ′|. Let
(Me,Mt)

R← Enc(M) for Enc in some state, and let (M ′
e,M

′
t)

R← Enc(M ′) for Enc is in some
(possibly different) state. We require that |Me| = |M ′

e| and |Mt| = |M ′
t |. Furthermore, suppose

that both Enc and Dec are in their initial states. For any sequence of messages M1,M2, . . . and for
i = 1, 2, . . ., let (M i

e,M
i
t ) = Enc(M i), and then let (mi,mi

t) = Dec(M i
e). We require that M i = mi

and that M i
t = mi

t for all i.

Encode-then-E&M paradigm. Now consider an encoding scheme, and let (Me,Mt) be the
encoding of some message M . To generate a ciphertext for M using the Encode-then-E&M con-
struction, the message Me is encrypted with an underlying encryption scheme, the message Mt is
MACed with an underlying MAC algorithm, and the resulting two values (intermediate ciphertext
and MAC) are concatenated to produce the final ciphertext. The composite decryption procedure
is similar except the way errors (e.g., decoding problems or tag verification failures) are handled:
in particular, should the composite decryption algorithm enter a new state or return to its previous
state? We take the approach used in SSH whereby, if a decryption fails, the composite decryp-
tion algorithm enters a “halting state.” This approach is perhaps the most intuitive since, upon
detecting a chosen-ciphertext attack, the decryption algorithm prevents all subsequent ciphertexts
from being decrypted. We note, however, that this also makes the decryptor vulnerable to a
denial-of-service-type attack. Construction 6.1 shows the Encode-then-E&M composition method
in details.

Construction 6.1 (Encode-then-E&M) Let EC = (Enc, Dec), SE = (Ke, E ,D), and MA =
(Kt, T ,V) be encoding, encryption, and message authentication schemes with compatible message
spaces (the outputs from Enc are suitable inputs to E and T ). Let all states initially be ε. We
associate to these schemes a composite Encode-then-E&M scheme SE = (K, E ,D) as follows:

Algorithm K
Ke

R← Ke ; Kt
R← Kt

Return 〈Ke,Kt〉

Algorithm E〈Ke,Kt〉(M)
(Me,Mt)

R← Enc(M)
σ

R← EKe(Me) ; τ
R← TKt(Mt)

C ← σ‖τ
Return C

Algorithm D〈Ke,Kt〉(C)
If st =⊥ then return ⊥
If cannot parse C then st ←⊥ ; return ⊥
Parse C as σ‖τ ; Me ← DKe(σ)
If Me =⊥ then st ←⊥ ; return ⊥
(M, Mt) ← Dec(Me)
If M =⊥ then st ←⊥ ; return ⊥
v ← VKt(Mt, τ)
If v = 0 then st ←⊥ ; return ⊥
Return M

Although only D explicitly maintains state in the above pseudocode, the underlying encoding,
encryption, and MAC schemes may also maintain state.

6.2 Security Notions

Since the goal is to model schemes based on block ciphers and cryptographic hash functions, a
concrete security treatment is used. We associate to any adversary a number called its “advantage”
that measures its success in breaking a given scheme with respect to a given security notion. The
smaller an adversary’s advantage is against a given scheme, the stronger that scheme is with respect
to that adversary. In discussion, take “secure” to mean that the advantage of any adversary with
“practical” resources is “small.” We describe the security notions here.
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Security notions for encryption schemes with stateful decryption. A secure authen-
ticated encryption scheme SE = (K, E ,D) is one that preserves both privacy and integrity. The
standard notion of indistinguishability (privacy) under chosen-plaintext attacks (ind-cpa) is as fol-
lows [2]: we consider a game in which an adversary A is given access to an left-or-right-encryption
(lr-encryption) oracle EK(LR(·, ·, b)), for some hidden bit b, that on input two equal length message
M0,M1, returns EK(Mb). After performing a number of lr-encryption queries, the adversary must
return a guess for the bit b. We define Advind-cpa

SE (A) as the probability that A returns 1 when
b = 1 minus the probability that A returns 1 when b = 0.

For our new notion of chosen-ciphertext privacy for stateful decryption (ind-sfcca), we consider
a game in which an adversary B is given access to an lr-encryption oracle EK(LR(·, ·, b)) and a
decryption oracle DK(·). As long as B’s queries to DK(·) are in-sync with the responses from
EK(LR(·, ·, b)), the decryption oracle performs the decryption (and updates its internal state) but
does not return a response to B. Once B makes an out-of-sync query to DK(·), the decryption
oracle returns the output of the decryption. We define Advind-sfcca

SE (B) as the probability that B
returns 1 when b = 1 minus the probability that B returns 1 when b = 0. The new ind-sfcca
notion implies the previous notion of indistinguishability under chosen-ciphertext attacks (ind-
cca [2]). Note that, without allowing an adversary to query the decryption oracle with in-sync
ciphertexts (e.g., in the standard ind-cca setting), we would not be able to model attacks in which
the adversary attacks a stateful decryptor after the latter had decrypted a number of legitimate
ciphertexts (perhaps because of some weakness related to the state of the decryptor at that time).

A more formal presentation of the definitions follows. Although we do not refer to the previous
notion of indistinguishability under chosen-ciphertext attacks (ind-cca) in this paper (since our new
notion implies it), we present it here for completeness.

Definition 6.2 (Privacy for symmetric encryption schemes) Let SE = (K, E ,D) be a sym-
metric encryption scheme, and let b ∈ {0, 1}. Let Acpa be an adversary that has access to a
left-or-right encryption oracle EK(LR(·, ·, b)); let Acca and Asfcca be adversaries that have access
to a left-or-right encryption oracle and a decryption oracle DK(·). Each adversary returns a bit.
Consider the experiments in Figure 2. We require that, for all queries (M0,M1) to EK(LR(·, ·, b)),
|M0| = |M1|. For Expind-cca-b

SE (Acca), we require that Acca not query DK(·) on a ciphertext previ-
ously returned by EK(LR(·, ·, b)). We respectively define the chosen-plaintext, chosen-ciphertext,
and stateful chosen-ciphertext privacy advantages of the adversaries as

Advind-cpa
SE (Acpa) = Pr

[
Expind-cpa-1

SE (Acpa) = 1
]
−Pr

[
Expind-cpa-0

SE (Acpa) = 1
]

Advind-cca
SE (Acca) = Pr

[
Expind-cca-1

SE (Acca) = 1
]
−Pr

[
Expind-cca-0

SE (Acca) = 1
]

Advind-sfcca
SE (Asfcca) = Pr

[
Expind-sfcca-1

SE (Asfcca) = 1
]

− Pr
[
Expind-sfcca-0

SE (Asfcca) = 1
]

.

The standard notion for integrity of plaintexts (int-ptxt) is as follows [6]: we consider a game
in which an adversary A is given access to an encryption oracle EK(·) and a decryption-verification
oracle D∗K(·). On input a candidate ciphertext C, the decryption-verification oracle invokes DK(C)
and returns 1 if DK(C) 6=⊥ and 0 otherwise. We define Advint-ptxt

SE (A) as the probability that
A can find a ciphertext C such that D∗K(C) = 1 but that the decrypted value of C, i.e. DK(C),
was not previously a query to EK(·). For our new notion of integrity of ciphertexts for stateful
decryption (int-sfctxt), we again consider a game in which an adversary B is given access to the
two oracles EK(·) and D∗K(·). We define Advint-sfctxt

SE (B) as the probability that B can generate a
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Experiment Expind-cpa-b
SE (Acpa)

K
R← K

Run A
EK(LR(·,·,b))
cpa

Reply to EK(LR(M0,M1, b))
queries as follows:

C
R← EK(Mb) ; Acpa ⇐ C

Until Acpa returns a bit d

Return d

Experiment Expind-cca-b
SE (Acca)

K
R← K

Run A
EK(LR(·,·,b)),DK(·)
cca

Reply to EK(LR(M0,M1, b))
queries as follows:

C
R← EK(Mb) ; Acca ⇐ C

Reply to DK(C) queries
as follows:

M ← DK(C) ; Acca ⇐ M
Until Acca returns a bit d
Return d

Experiment Expind-sfcca-b
SE (Asfcca)

K
R← K

i ← 0 ; j ← 0 ; phase ← 0
Run A

EK(LR(·,·,b)),DK(·)
sfcca

Reply to EK(LR(M0,M1, b))
queries as follows:

i ← i + 1 ; Ci
R← EK(Mb)

Asfcca ⇐ Ci

Reply to DK(C) queries
as follows:

j ← j + 1 ; M ← DK(C)
If j > i or C 6= Cj

then phase ← 1
If phase = 1

then Asfcca ⇐ M
Until Asfcca returns a bit d
Return d

Figure 2: Experiments for Definition 6.2.

ciphertext C such that D∗K(C) = 1 and C is an out-of-sync query. The new notion of int-sfctxt
implies the previous notion of integrity of ciphertexts (int-ctxt [6]) as well as security against
replay and out-of-order delivery attacks.

A more formal presentation of the definitions follows. Although we do not refer to the previous
notion of integrity of ciphertexts (int-ctxt) in this paper (since our new notion implies it), we
present it here for completeness.

Definition 6.3 (Integrity for symmetric encryption schemes) Let SE = (K, E ,D) be a
symmetric encryption scheme. Let Aptxt, Actxt, and Asfctxt be adversaries each with access to an
encryption oracle EK(·) and a decryption-verification oracle D∗K(·). The decryption-verification
oracle invokes DK(C) and returns 1 if DK(·) 6= ⊥ and 0 otherwise. Consider the experiments
in Figure 3. Also consider an experiment Expint-ctxt

SE (Actxt) that is identical to Expint-ptxt
SE (Aptxt)

except that the first boxed equation is S ← S ∪ {C} and the second boxed equation is C 6∈ S. We
define the advantages of the adversaries in attacking the plaintext, ciphertext, and stateful ciphertext
integrity of the scheme respectively as

Advint-ptxt
SE (Aptxt) = Pr

[
Expint-ptxt

SE (Aptxt) = 1
]

Advint-ctxt
SE (Actxt) = Pr

[
Expint-ctxt

SE (Actxt) = 1
]

Advint-sfctxt
SE (Actxt) = Pr

[
Expint-sfctxt

SE (Asfctxt) = 1
]

.

The following proposition states that, if a scheme is indistinguishable under chosen-plaintexts
attacks and if the scheme meets our strong definition of integrity of ciphertexts, then the scheme
will meet our strong definition of indistinguishability under chosen-ciphertext attacks. It is similar
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Experiment Expint-ptxt
SE (Aptxt)

K
R← K ; S ← ∅

Run A
EK(·),D∗K(·)
ptxt

Reply to EK(M) queries
as follows:

C
R← EK(M)

S ← S ∪ {M}
Aptxt ⇐ C

Reply to D∗K(C) queries
as follows:

M ← DK(C)
If M 6=⊥ and M 6∈ S

then return 1
If M 6=⊥

then Aptxt ⇐ 1
else Aptxt ⇐ 0

Until Aptxt halts
Return 0

Experiment Expint-sfctxt
SE (Asfctxt)

K
R← K

i ← 0 ; j ← 0 ; phase ← 0
Run A

EK(·),D∗K(·)
ctxt

Reply to EK(M) queries as follows:
i ← i + 1 ; Ci

R← EK(M)
Asfctxt ⇐ Ci

Reply to D∗K(C) queries as follows:
j ← j + 1 ; M ← DK(C)
If j > i or C 6= Cj

then phase ← 1
If M 6=⊥ and phase = 1

then return 1
If M 6=⊥

then Asfctxt ⇐ 1
else Asfctxt ⇐ 0

Until Asfctxt halts
Return 0

Figure 3: Experiments for Definition 6.3.

to the results in [6] and [23] which show that the standard ind-cpa and the standard int-ctxt notion
imply the standard ind-cca notion.

Proposition 6.4 Let SE = (K, E ,D) be a symmetric authenticated encryption scheme. Given any
ind-sfcca adversary A, we can construct an int-sfctxt adversary I and an ind-cpa adversary B such
that

Advind-sfcca
SE (A) ≤ 2 ·Advint-sfctxt

SE (I) + Advind-cpa
SE (B)

and I and B use the same resources as A.

Proof of of Proposition 6.4: Our proof is modeled after the proof in [6]. Let SE = (K, E ,D) be
a symmetric encryption scheme, and let A be any ind-sfcca adversary against SE . We associate to
A an ind-cpa adversary B and an int-sfctxt adversary I. The adversary B runs A almost exactly
as in Expind-sfcca-b

SE (A) where b is B’s lr-encryption oracle bit. The only exception is that B return
⊥ to A if A submits an out-of-sync decryption query. Then, B outputs what A outputs. Similarly,
I runs A almost exactly as in Expind-sfcca-A

SE (b) where b is a bit that I chooses at random. The only
exception is that, when A successfully submits an out-of-sync decryption query, the adversary I
terminates.

Let Pr1 [ · ] denote the probability over Expind-sfcca-b
SE (A) and a random choice for b ∈ {0, 1}, and let

b′ denote the output of A in these experiments. Let Pr2 [ · ] denote the probability in Expint-sfctxt
SE (I).

Let Pr3 [ · ] denote the probability over Expind-cpa-c
SE (B) where c is randomly selected from {0, 1}

and let c′ be the bit B returns. Let E denote the event that A makes at least one query to a phase
1 decryption oracle that would successfully decrypt. Note that

Pr1
[
b′ = b ∧ E

] ≤ Pr1 [ E ] ≤ Advint-sfctxt
SE (I)
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since, prior to E occurring, Expint-sfctxt
SE (I) runs A exactly as in Expind-sfcca-b

SE (A) for a random b
and, once E occurs, I succeeds in forging a ciphertext. Also,

Pr1
[
b′ = b ∧ E

] ≤ Pr3
[
c′ = c

]

=
1
2
· Pr

[
Expind-cpa-1

SE (B) = 1
]

+
1
2
·
(
1− Pr

[
Expind-cpa-0

SE (B) = 1
])

=
1
2
Advind-cpa

SE (B) +
1
2

since whenever A does not cause event E to occur, A’s view when run by B is equivalent to its
view when run in Expind-sfcca-b

SE (A). Consequently,

1
2
Advind-sfcca

SE (A) +
1
2

= Pr1
[
b′ = b

]

= Pr1
[
b′ = b ∧ E

]
+ Pr1

[
b′ = b ∧ E

]

≤ Advint-sfctxt
SE (I) +

1
2
Advind-cpa

SE (B) +
1
2

.

The adversaries B and I use the same resources as A except that B does not perform any chosen-
ciphertext queries to a decryption oracle.

Unforgeability of MAC schemes. We consider a secure MAC MA = (K, T ,V) to be one that
is strongly unforgeable under chosen-message attacks [6]. We consider a game in which a forger F is
given access to a tagging oracle TK(·) and a verification oracle VK(·). The forger is allowed arbitrary
queries to the oracles and wins if it can find a pair (M, τ) such that VK(M, τ) = 1 but τ was never
returned by TK(·) as a tag for M . We denote the advantage of this forger as Advuf-cma

MA (F ).
Although this notion is in general stronger than the standard notion of unforgeability [3], we note
that any pseudorandom function is a strongly unforgeable MAC, and most practical MACs seem
to be strongly unforgeable. A more formal presentation of the definition follows.

Definition 6.5 (Strong Unforgeability of message authentication schemes) Let MA =
(K, T ,V) be a message authentication scheme. Let F be a forger with access to a tagging oracle
TK(·) and a verification oracle VK(·, ·). Consider the following experiment:

Experiment Expuf−cma
MA (F )

K
R← K ; S ← ∅

Run F TK(·),VK(·,·)

Reply to TK(M) queries as follows:
τ

R← TK(M) ; S ← S ∪ {(M, τ)} ; F ⇐ τ
Reply to VK(M, τ) queries as follows:

v ← V(M, τ)
If v = 1 and (M, τ) 6∈ S then return 1
F ⇐ v

Until F halts
Return 0

We define the advantage of F in forging a message as

Advuf-cma
MA (F ) = Pr

[
Expuf−cma

MA (F ) = 1
]

.
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Pseudorandom functions. We formalize pseudorandom functions and their security following
[19, 3]. Suppose F is a family of functions from some message spaceM to {0, 1}L, and let RandM→L

denote the family of all functions from M to {0, 1}L. We define Advprf
F (D) as the advantage of a

distinguisher D in distinguishing a random instance of F from a random instance of RandM→L.
We describe the concept more formally below.

Definition 6.6 (Pseudorandom functions and super-pseudorandom permutations) Let
F : {0, 1}k×M→ {0, 1}L be a family of functions from some message space M to {0, 1}L, and let
RandM→L denote the family of all functions from M to {0, 1}L. Let P : {0, 1}k ×{0, 1}l → {0, 1}l

denote a family of permutations on {0, 1}l, and let Perml be the family of all permutations on
{0, 1}l. Let Dprf be a PRF distinguisher for F and let Dprp be a super-pseudorandom distinguisher
for P. Consider the following experiments:

Experiment Expprf-b
F (Dprf)

If b = 1
then K

R← {0, 1}k ; g ← FK

else g
R← RandM→L

Run Dg
prf

Reply to g(M) queries
as follows:

Dprf ⇐ g(M)
Until Dprf returns a bit d
Return d

Experiment Expprp-cca-b
F (Dprp)

If b = 1
then K

R← {0, 1}k ; g ← PK

else g
R← Perml

Run Dg,g−1

prp

Reply to g(M) queries as follows:
Dprp ⇐ g(M)

Reply to g−1(C) queries as follows:
Dprp ⇐ g−1(C)

Until Dprp returns a bit d
Return d

We define the advantages of the adversaries as

Advprf
F (Dprf) = Pr

[
Expprf-1

F (Dprf) = 1
]
− Pr

[
Expprf-0

F (Dprf) = 1
]

Advprp−cca
P (Dprp) = Pr

[
Expprp-cca-1

P (Dprp) = 1
]
− Pr

[
Expprp-cca-0

P (Dprp) = 1
]

.

Collision resistance of encoding schemes. The security of a composite Encode-then-E&M
construction depends on properties of the underlying encoding, encryption, and MAC schemes. In
addition to the standard assumptions of indistinguishability of the encryption scheme and unforge-
ability and pseudorandomness of the MAC scheme, we require “collision resistance” of the encoding
scheme. We motivate this notion as follows. Consider an integrity adversary against a composite
Encode-then-E&M scheme. If the adversary can find two different messages that encode (or de-
code) to the same input for the underlying MAC, then the adversary may be able to compromise
the integrity of the composite scheme. Consider now an indistinguishability adversary against the
composite scheme. As long as the adversary does not generate two inputs for the underlying MAC
that collide, the underlying MAC should not leak information about the plaintext. The following
describes the notions of collision resistance for encoding schemes.

An adversary A who is mounting a “chosen-plaintext attack” against an encoding scheme EC =
(Enc, Dec) is given access to an encoding oracle Enc(·). If A can make the encoding oracle output
two pairs that collide on their second components (i.e., the Mt’s), then A wins. We allow A to
repeatedly query the encoding oracle with the same input. Similarly, an adversary B mounting a
“chosen-ciphertext attack” against EC is given access to both an encoding oracle and a decoding
oracle Dec(·). If B can cause a collision in the second components of the outputs of Enc(·), Dec(·),
or both, then it wins. Of course, we exclude the cases where B uses the two oracles in a trivial
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way to obtain collisions (e.g. submitting a query to Enc(·) and then immediately submitting the
first component of the result, namely Me, to Dec(·)). We refer to the advantages of the adversaries
in these two settings as Advcoll−cpa

EC (A) and Advcoll−cca
EC (B), respectively. All encoding schemes

with deterministic and stateless encoding algorithms are insecure under chosen-plaintext collision
attacks. Furthermore, all encoding schemes with stateless decoding algorithms are insecure under
chosen-ciphertext collision attacks. A more formal presentation of the definitions follows.

Definition 6.7 (Collision resistance of encoding schemes) Let EC = (Enc, Dec) be a en-
coding scheme. Let Acpa be an adversary with access to an encoding oracle and let Acca be an
adversary with access to an encoding oracle Enc(·) and a decoding oracle Dec(·). Let M i denote
an adversary’s i-th encoding query and let (M i

e,M
i
t ) denote the response for that query. Let mi

e

denote Acca’s i-th decoding query and let (mi,mi
t) denote the response for that query. Consider

the following experiments:

Experiment Expcoll-cpa
EC (Acpa)

Run A
Enc(·)
cpa

If A
Enc(·)
cpa makes two queries M i,M j to Enc(·) such that i 6= j and M i

t = M j
t

then return 1 else return 0

Experiment Expcoll-cca
EC (Acca)

Run A
Enc(·),Dec(·)
cca

If one of the following occurs:
— Acca makes two queries M i,M j to Enc(·) such that i 6= j and M i

t = M j
t

— Acca makes two queries mi
e,m

j
e to Dec(·)

such that i 6= j, mi
t 6=⊥, and mi

t = mj
t

— Acca makes a query M i to Enc(·) and a query mj
e to Dec(·)

such that (i 6= j or M i 6= mj or M i
e 6= mj

e) and M i
t = mj

t

then return 1 else return 0

We define the advantages of the adversaries Acpa and Acca in finding a collision as

Advcoll−cpa
EC (Acpa) = Pr

[
Expcoll-cpa

EC (Acpa) = 1
]

Advcoll−cca
EC (Acca) = Pr

[
Expcoll-cca

EC (Acca) = 1
]

.

7 General Security Results for the Encode-then-E&M Paradigm

As previously mentioned, our analysis models SSH more generally as an authenticated encryption
scheme constructed via the Encode-then-E&M paradigm. Thus, we first present here general results
for the Encode-then-E&M composition method. In Section 8 we build upon these results and prove
additional properties about our proposed fixes to SSH. The results in this section will also be useful
to the evaluators of other Encode-the-E&M constructions.

7.1 Chosen-Plaintext Privacy

We found that, to construct an authenticated encryption scheme that provides chosen-plaintext
privacy via the Encode-the-E&M paradigm, it is enough to use an ind-cpa secure encryption scheme,
a pseudorandom MAC, and a coll-cpa secure encoding scheme as building blocks. The following
theorem states this result more formally. We defer the proof of Theorem 7.1 to Section 7.3.
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Theorem 7.1 (Privacy for Encode-then-E&M with respect to Chosen-Plaintext At-
tacks) Let SE , MA, and EC respectively be an encryption, a message authentication, and an
encoding scheme. Let SE be the encryption scheme associated to them as per Construction 6.1.
Then, given any ind-cpa adversary S against SE , we can construct adversaries A, D, and C such
that

Advind-cpa

SE (S) ≤ Advind-cpa
SE (A) + 2 ·Advprf

MA(D) + 2 ·Advcoll−cpa
EC (C) .

Furthermore, A,D, and C use the same resources as S except that A’s and D’s inputs to their
respective oracles may be of different lengths than those of S (due to the encoding).

7.2 Integrity of Plaintexts

The following theorem states that the composed scheme provides plaintext integrity if the un-
derlying MAC is unforgeable1 and if the underlying encoding scheme is collision-resistant against
chosen-ciphertext attacks. As one would expect, we need more than chosen-plaintext collision resis-
tance of the underlying encoding scheme here because an adversary is allowed to submit ciphertext
queries when mounting an integrity attack. We remark that the combination of ind-cpa and int-ptxt
does not, however, imply our notion of privacy under chosen ciphertext attacks, as exemplified by
the reaction attack in Section 4 and the fact that the construction in Section 4 is both ind-cpa- and
int-ptxt-secure; we consider how to achieve our chosen ciphertext privacy notion, via our integrity
of ciphertexts notion, in Section 8.

Theorem 7.2 (Integrity of Plaintexts for Encode-then-E&M) Let SE be an encryption
scheme, let MA be a message authentication scheme, and let EC be an encoding scheme. Let SE
be the encryption scheme associated to them as per Construction 6.1. Then, given any int-ptxt
adversary A against SE , we can construct adversaries F and C such that

Advint-ptxt

SE (A) ≤ Advuf-cma
MA (F ) + Advcoll−cca

EC (C) .

Furthermore, F and C use the same resources as A except that F ’s messages to its tagging and tag
verification oracles may be slightly larger than A’s encryption queries (due to the encoding) and
that C’s messages to its decoding oracle may have different lengths than A’s decryption queries.

Proof of of Theorem 7.2: Let SE = (K, E ,D) be the composite encryption scheme con-
structed via Construction 6.1 from the encryption scheme SE = (Ke, E ,D), the MAC scheme
MA = (Kt, T ,V), and the encoding scheme EC = (Enc, Dec). Assume we have an adversary A
attacking the integrity of plaintexts of SE . We associate to A two adversaries: a forger F breaking
the unforgeability of MA and a collision finder C breaking the collision resistance of EC such that

Advint-ptxt

SE (A) ≤ Advuf-cma
MA (F ) + Advcoll−cca

EC (C) . (1)

The forger F and the collision finder C are simple. The forger F uses Ke to generate an encryption
key and uses the encryption key and its tagging oracle to answer A’s queries in a straight-forward
manner. In particular, it follows Construction 6.1. Similarly, the collision finder C uses the same
approach. This ensures that A is executed in the same environment as that in Expint-ptxt

SE (A).

Let Pr1 [ · ], Pr2 [ · ], and Pr3 [ · ] respectively denote the probabilities associated with the experi-
ments Expint-ptxt

SE (A), Expuf−cma
MA (F ), and Expcoll-cca

EC (C). Let E denote the event that A makes

1Although the theorem statement refers to strong unforgeability, weak unforgeability of the underlying MAC
scheme is actually sufficient here since the coll-cca property of the underlying encoding scheme ensures that inputs
to the MAC algorithm will not collide.
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a query that would cause C to succeed in finding a collision. Then, by the definition of E, Pr1 [ E ] =
Pr3

[
Expcoll-cca

EC (C) = 1
]
. Furthermore, Pr1

[
Expint-ptxt

SE (A) = 1 ∧ E
]
≤ Pr2

[
Expuf−cma

MA (F ) = 1
]

since E implies that the verification request that caused A to succeed must have produced (through
the decoding) a previously unseen tagging message Mt (thereby allowing F to succeed). Conse-
quently,

Pr1
[
Expint-ptxt

SE (A) = 1
]

= Pr1
[
Expint-ptxt

SE (A) = 1 ∧ E
]

+ Pr1
[
Expint-ptxt

SE (A) = 1 ∧ E
]

≤ Pr2
[
Expuf−cma

MA (F ) = 1
]

+Pr3
[
Expcoll-cca

EC (C) = 1
]

and Equation (1) follows. Adversaries F and A use equivalent resources except that F ’s messages
to its oracles may be slightly larger due to the encoding. Adversaries C and A also use equiva-
lent resources except that C’s message to its oracle may not be the exactly the same size as A’s
decryption-verification queries, although they are polynomially related.

7.3 Proof of Theorem 7.1

We now prove Theorem 7.1. One notable feature of the proof is that it actually uses a weaker
property than pseudorandomness for the underlying MAC. But since most MACs in practice are
pseudorandom, the distinction is perhaps mainly of theoretical interest. The said property is the
following.

Distinct plaintext privacy of message authentication schemes. Let MA = (K, T ,V)
be a message authentication scheme. The notion of ind-dcpa for MA is based on the notion of
ind-cpa for encryption schemes. For a bit b and a key K let TK(LR(·, ·, b)) denote the lr-tag oracle
which, given equal-length plaintexts M0,M1, returns TK(Mb). (We stress that the lr-tag oracle
returns only the tag and not the message-tag pair Mb‖TK(Mb).) The ind-dcpa notion is defined as
follows.

Definition 7.3 (Privacy against Distinct Chosen-Plaintext Attacks) Let MA = (K, T ,V)
be a message authentication scheme. Let b ∈ {0, 1}. Let A be an adversary that has access to an
oracle TK(LR(·, ·, b)). Consider the following experiment:

Experiment Expind-dcpa-b
MA (Acpa)

K
R← K

Run A
TK(LR(·,·,b))
cpa

Reply to TK(LR(M0,M1, b)) queries as follows:
C

R← TK(Mb) ; Acpa ⇐ C

Until Acpa returns a bit d

Return d

Above it is mandated that all left messages of A’s queries be unique and that all right messages of
A’s queries be unique. We define the advantage of A via

Advind-dcpa
MA (A) = Pr

[
Expind-dcpa-1

MA (A) = 1
]
− Pr

[
Expind-dcpa-0

MA (A) = 1
]

.

The following theorem relates the distinct plaintext privacy and pseudorandomness.
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Theorem 7.4 (Relation between IND-DCPA and PRF) Let MA be a MAC scheme. Then,
given any ind-dcpa adversary A against MA, we can construct a distinguisher D against MA such
that

Advind-dcpa
MA (A) ≤ 2 ·Advprf

MA(D)

Furthermore, D uses the same resources of A.

This theorem implies that if MA is secure as a PRF (as is expected of many MACs; e.g., [3, 11]),
then it will also be ind-dcpa secure. The theorem is easy to verify. Therefore, we omit the proof.

Theorem 7.1 follows directly from Theorem 7.4 above and Lemma 7.5 presented below. So we
turn our attention to Lemma 7.5. Throughout, we let Enc∗(·, ·) and Dec∗(·, ·) denote the encoding
algorithms Enc(·) and Dec(·) except that they explicitly take a state as part of the input and
return a new state as part of the output.

Lemma 7.5 Let SE = (Ke, E ,D) be an encryption scheme, let MA = (Kt, T ,V) be a message
authentication scheme, and let EC = (Enc,Dec) be an encoding scheme. Let SE be the encryption
scheme associated to them as per Construction 6.1. Then, given any ind-cpa adversary S against
SE , we can construct an ind-cpa adversary A against SE , an ind-dcpa adversary B against MA,
and a collision finder C such that

Advind-cpa

SE (S) ≤ Advind-cpa
SE (A) + Advind-dcpa

MA (B) + 2 ·Advcoll−cpa
EC (C) .

Furthermore, A,B, and C use the same resources as S except that A’s and B’s inputs to their
respective oracles may be slightly larger than those of S (due to the encoding).

Proof of of Lemma 7.5: Let S denote an ind-cpa adversary that has oracle access to EK(LR(·, ·, b)),
b ∈ {0, 1}. Let x ∈ {1, 2, 3}. We define three experiments associated with S as follows.

Experiment ExpHx

Ke
R← Ke ; Kt

R← Kt ; st0 ← ε ; st1 ← ε
Run S replying to its oracle query (M0, M1) as follows:

(Me,0,Mt,0, st0)
R← Enc∗(M0, st0) ; (Me,1,Mt,1, st1)

R← Enc∗(M1, st1)
Switch (x):

Case x = 1: σ
R← EKe(Me,1) ; τ

R← TKt(Mt,1)
Case x = 2: σ

R← EKe(Me,0) ; τ
R← TKt(Mt,1)

Case x = 3: σ
R← EKe(Me,0) ; τ

R← TKt(Mt,0)
Return σ‖τ to S

Until S halts and returns a bit b
Return b.

Let Px
def= Pr [ ExpHx = 1 ] denote the probability that experiment ExpHx returns 1, for x ∈

{1, 2, 3}. By the definition of Advind-cpa

SE (S), we have

Advind-cpa

SE (S) = P1 − P3 = (P1 − P2) + (P2 − P3) . (2)

Given S, we can construct three new adversaries A, B, and C such that the following lemmas hold
and the new adversaries use the resources specified in the statement of Lemma 7.5.

Lemma 7.6 P1 − P2 ≤ Advind-cpa
SE (A).
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Lemma 7.7 P2 − P3 ≤ Advind-dcpa
MA (B) + 2 ·Advcoll−cpa

EC (C).

Equation (2) and the above lemmas imply Lemma 7.5.

Proof of of Lemma 7.6: We construct an adversary A breaking privacy of the underlying en-
cryption scheme SE = (Ke, E ,D) using the adversary S below.

Adversary AEK(LR(·,·,b))

Kt
R← Kt ; st0 ← ε ; st1 ← ε

Run S replying to its oracle query (M0, M1) as follows:
(Me,0,Mt,0, st0)

R← Enc∗(M0, st0) ; (Me,1,Mt,1, st1)
R← Enc∗(M1, st1)

σ
R← EK(LR(Me,0,Me,1, b)) ; τ

R← TKt(Mt,1)
Return σ‖τ to S

Until S halts and returns a bit b′

Return b′.

If b = 1, the adversary A simulates S in the exact same environment as that of ExpH1. Similarly,
if b = 0, the adversary A simulates S in the exact same environment as that of ExpH2. Thus,

P1 − P2 = Pr
[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

= Advind-cpa
SE (A) .

The adversary A uses the same resources as S except that, due to the encoding, the queries that
A makes to its oracle may be slightly larger than the queries that S makes to its oracle. Also, A
performs two encodings for each query that S makes and, thus, its running time is (polynomially)
larger than that of S. Recall the standard convention that running time of an adversary is measured
with respect to the entire experiment in which it runs. Hence, Lemma 7.6 follows.

Proof of of Lemma 7.7: Given S, we can construct an adversary B that can break the distinct
chosen-plaintexts privacy of the underlying MAC scheme MA = (Kt, T ,V) and an adversary C
that can break the collision resistance of the underlying encoding scheme EC = (Enc, Dec). These
adversaries are defined in below.

Adversary BTK(LR(·,·,b))

Ke
R← Ke ; st0 ← ε ; st1 ← ε

Run S replying to its ith oracle
query (M i

0, M
i
1) as follows:

(M i
e,0,M

i
t,0, st0)

R← Enc∗(M i
0, st0)

(M i
e,1,M

i
t,1, st1)

R← Enc∗(M i
1, st1)

If M i
t,0 ∈ {M1

t,0, . . . ,M
i−1
t,0 } or

M i
t,1 ∈ {M1

t,1, . . . , M
i−1
t,1 }

then return 0
σ

R← EKe(M
i
e,0)

τ
R← TK(LR(M i

t,0,M
i
t,1, b))

Return σ‖τ to S
Until S halts and returns a bit b
Return b

Adversary CEnc(·)

Ke
R← Ke ; Kt

R← Kt ; stn ← ε

d
R← {0, 1} ; c ← d

Run S replying to its oracle
query (M0, M1) as follows:

(Me,d,Mt,d)
R← Enc(Md)

(Me,c,Mt,c, stn) R←Enc∗(Mc,stn)
σ

R← EKe(Me,0)
τ

R← TKt(Mt,1)
Return σ‖τ to S

Until S halts and returns a bit b
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Let Pr2 [ · ] and Pr3 [ · ] denote the probabilities associated with the experiment ExpH2 and ExpH3,
respectively. Let E2 denote an event that there exists at least one collision among the Mt,0’s or
among the Mt,1’s in ExpH2. Let E3 denote an event that there exists at least one collision among
the Mt,0’s or among the Mt,1’s in ExpH3. We make the following claims.

Claim 7.8 Pr2 [ E2 ] ≤ 2 ·Advcoll−cpa
EC (C).

Claim 7.9 Pr2
[
ExpH2 = 1 ∧ E2

]− Pr3
[
ExpH3 = 1 ∧ E3

]
= Advind-dcpa

SE (B).

We can now bound the difference P2 − P3 as follows:

P2 − P3 = Pr2 [ ExpH2 = 1 ]− Pr3 [ ExpH3 = 1 ]

= Pr2
[
ExpH2 = 1 ∧ E2

]
+ Pr2 [ ExpH2 = 1 ∧ E2 ]

− Pr3
[
ExpH3 = 1 ∧ E3

]− Pr3 [ ExpH3 = 1 ∧ E3 ]

≤ Advind-dcpa
SE (B) + 2 ·Advcoll−cpa

EC (C) .

To justify Claim 7.8, let E0 be the event that there exists at least one collision among the Mt,0’s in
ExpH2 and let E1 be the event that there exists at least one collision among the Mt,1’s in ExpH2.
Let Pr [ · ] be over Expcoll-cpa

EC (C). Then,

Pr
[
Expcoll-cpa

EC (C) = 1
]

= Pr [ E0 ∧ d = 0 ] + Pr [ E1 ∧ d = 1 ]

=
1
2
·
(
Pr2 [ E0 ] + Pr2 [ E1 ]

)
≥ 1

2
· Pr2 [ E2 ]

where the second equality comes from the fact that the messages C returns to A are independent
of the bit d. To justify Claim 7.9, we note that B returns 1 only if all the Mt,0’s and Mt,1’s are
unique (i.e., events E2 or E3 did not occur).

The adversaries B and C use the same resources as S except that the queries that B makes to its
oracle may be slightly larger than those of S due to the encoding. Also, B and C each perform
two encodings for each query that S makes and, thus, their running times are (polynomially) larger
than that of S. Recall the standard convention that running time of an adversary is measured with
respect to the entire experiment in which it runs. Hence, Lemma 7.7 follows.

8 SSH Security Results

The SSH encoding scheme, when used with an l-bit block cipher, is shown in Figure 4 (see also
Section 2). Recall that |x| denotes the length of string x in bits, not octets, and that 〈x〉k denotes
the representation of x as a k-bit unsigned integer. As mentioned, although Figure 4 shows the
padding p as a random string (the second boxed equation), the SSH specification does not require
that p be random. Additionally, although the SSH specification allows up to 255 octets of padding,
the two major implementations of the SSH protocol that we evaluated, openssh-2.9p2 and SSH
Communications’ ssh-3.0.1, use the minimum-recommended padding length shown in Figure 4.
The proposed SSH-$NPC instantiation of SSH replaces the first boxed statement with bpl ←
bpl + l if bpl < l and always uses random padding as shown in the second boxed statement. The
instantiations SSH-CTRIV-CBC, SSH-EIV-CBC, and SSH-CTR, on the other hand, uses the first
boxed statement with no modification and allows padding p to be non-random.
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Algorithm Enc(M) // |M | ≡ 0 (mod 8)
If stn = ε then stn ← 0
bpl ← l − (

(|M |+ 40) (mod l)
)

If bpl < 32 then bpl ← bpl + l

p
R← {0, 1}bpl

tl ← (8 + |M |+ bpl)/8 ; pl ← bpl/8
Me ← 〈tl〉32‖〈pl〉8‖M‖p
Mt ← 〈stn〉32‖Me

stn ← stn + 1 mod 232

Return (Me,Mt)

Algorithm Dec(Me)
If stu = ε then stu ← 0
Mt ← 〈stu〉32‖Me

stu ← stu + 1 mod 232

If cannot parse Me

then return (⊥,⊥)
Parse Me as 〈tl〉32‖〈pl〉8‖M‖p
Return (M, Mt)

Figure 4: The SSH encoding algorithm EC = (Enc, Dec) for l-bit blocks, where l ≡ 0 (mod 8) and
64 ≤ l ≤ 252 · 8. The states stn and stu are maintained across invocations. When considering these
encoding algorithms, recall that |M | denotes the length of M in bits and not octets (hence the need
to divide lengths by 8).

8.1 Collision-Resistance of the SSH Encoding Scheme

The following lemma gives the collision bounds for the SSH encoding as shown in Figure 4. Notice
that if qe ≤ 232, then dqe · 2−32e − 1 ≤ 0 and Advcoll−cpa

EC (A) = 0 for any adversary A. Also, if a
coll-cca adversary C submits more than 232 encoding queries or 232 decoding queries, then it can
completely break the scheme, i.e. Advcoll−cca

EC (C) = 1. (For coll-cca security of up to 232 decoding
queries it is critical that the decoding algorithm increment its counter on every invocation, even
for messages that do not correctly decode.)

Lemma 8.1 (Collision Resistance of the SSH Encoding) Let EC be the encoding scheme
shown in Figure 4 and let mbpl be the minimum padding length (32 bits in Figure 4; the 32 in
the equations below corresponds to the length of the encoding scheme’s internal counter, not the
minimum padding length). For any coll-cpa adversary A and any coll-cca adversary B, each making
qe encoding queries and, in the case of B, making qd decoding queries, we have that

Advcoll−cpa
EC (A) ≤ ⌈

qe · 2−32
⌉ · (⌈qe · 2−32

⌉− 1
) · 231−mbpl

Advcoll−cca
EC (B) = 0 if qe, qd ≤ 232

and that coll-cca collision resistance is not provided if qe or qd > 232.

Proof of of Lemma 8.1: First, we prove the inequality in the theorem. Recall that the padding
is chosen independently at random from {0, 1}mbpl where mbpl is the minimum padding length.
For a coll-cpa adversary A to win, it must make at least two encoding queries M i,M j such that
i 6= j and M i

t = M j
t . From the construction, this means that the values of the counters and the

paddings must collide (i.e. stin = stjn and pi = pj). For each counter value, the probability that the
paddings collide is 2−mbpl. There are 232 possible values for the counter, and each value occurs at
most dqe/232e times over the course of the experiment. Therefore, the probability that any coll-cpa
adversary A making at most qe encoding queries can win is at most

(dqe · 2−32e
2

)
· 232 · 2−mbpl

After some simplification, the first inequality in the theorem follows.
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Now, we prove the equality in the theorem. Recall that the construction in Figure 4 specifies that
Mt ← 〈stn〉32‖Me for the encoding and that Mt ← 〈stu〉32‖Me for the decoding. Since the states
stn, stu are counters that are maintained internally by the oracles, no adversary B can have control
over them. Since both states start at 0, if B is limited to fewer than 232 encoding queries and 232

decoding queries, then it is easy to see that B cannot possibly make two queries satisfying either
of the first two conditions in the experiment Expcoll-cca

EC (B). We now turn our attention to the last
condition in the experiment and argue that B cannot possibly satisfy it either. Suppose toward
a contradiction that B can somehow make a query M i to Enc(·) and a query mj

e to Dec(·) such
that (i 6= j or M i 6= mj or M i

e 6= mj
e) and M i

t = mj
t where i, j ≤ 232. From Figure 4, M i

t = mj
t

implies that M i
e = mj

e and consequently that M i = mj . Therefore, for this condition to be satisfied
i must be different from j. However, i, j ≤ 232. Therefore, i 6= j implies that stin 6= stju. Therefore,
M i

t 6= mj
t , and we have a contradiction. Thus, Advcoll−cca

EC (B) = 0.

8.2 Integrity and Privacy of Our Recommendations

We have already provided enough information (Theorem 7.1, Theorem 7.2, and Lemma 8.1) to show
that our fixes from Section 5 are secure under the notions of chosen-plaintext indistinguishability
(ind-cpa) and integrity of plaintexts (int-ptxt). But we can prove a much stronger result, namely,
that our proposed fixes are secure under our strong notions of chosen-ciphertext indistinguishability
(ind-sfcca) and integrity of ciphertexts (int-sfctxt). We present our proof of security for SSH-CTR.
The proof technique extends naturally to other possible fixes to the SSH BPP.

Theorem 8.2 (Security of SSH-CTR) Let SE be a CTR-mode encryption scheme with stateful
decryption, let MA be a message authentication scheme, and let EC be the encoding scheme de-
scribed above. Let SSH-CTR be the encryption scheme associated to them as per Construction 6.1.
Then, given any int-sfctxt adversary I against SSH-CTR, we can construct adversaries F and C
such that Equation (3) holds. Similarly, given any ind-sfcca adversary A against SSH-CTR, we can
construct adversaries S, B, E, and G such that Equation (4) holds.

Advint-sfctxt
SSH-CTR(I) ≤ Advuf-cma

MA (F ) + Advcoll−cca
EC (C) (3)

Advind-sfcca
SSH-CTR(A) ≤ 2 ·Advint-sfctxt

SSH-CTR(S) + Advind-cpa
SE (B)

+2 ·Advprf
MA(E) + 2 ·Advcoll−cpa

EC (G) (4)

Furthermore, F and C use the same resources as I except that F ’s messages to its oracles may
be of different lengths than I’s queries to its oracles (due to encoding) and C’s messages to its
decoding oracle may have slightly different lengths than I’s decryption queries. Also, S, B, E, and
G use the same resources as A except that B’s and E’s inputs to their respective oracles may be
of different lengths than those of A (due to the encoding).

Theorem 8.2 can be interpreted as follows. Equation (3) states that SSH-CTR provides state-
ful chosen-ciphertext integrity if the MAC is strongly unforgeable and if the encoding is coll-cca
collision resistant. Equation (4) states that SSH-CTR provides stateful chosen-ciphertext privacy
if it provides stateful chosen-ciphertext integrity, if the underlying encryption scheme is ind-cpa
secure, if the MAC is a secure pseudorandom function, and if the encoding is coll-cpa secure. As an
example, making reasonable assumptions about the security of the HMAC scheme, an implementa-
tion of SSH-CTR that uses HMAC and AES in stateful-decryption CTR mode will be secure under
both of the strong notions provided that at most 232 messages are encrypted between rekeying.
Notice here that we use different security properties of the MAC to obtain different security aspects
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of SSH-CTR, namely strong unforgeability for integrity and pseudorandomness for privacy. This
distills the property of the MAC that leads to each aspect of security. Now we present the proof of
Theorem 8.2.

Proof of of Theorem 8.2: First we provide a proof sketch. To prove Theorem 8.2, we first
use Lemma 8.1, Theorem 7.1, the ind-cpa proof of security for CTR mode [2], and the assumed
pseudorandomness of the underlying MAC to show that SSH-CTR is ind-cpa-secure. We then prove
Equation (3). Applying Proposition 6.4 and our ind-cpa and int-sfctxt results for SSH-CTR leads
to Equation (4). We briefly discuss our proof of Equation (3). Let I be an int-sfctxt adversary and
let M i be I’s i-th chosen-plaintext query to its encoding oracle, let M i

e,M
i
t be the encoding of M i,

and let σi‖τi be the returned ciphertext. Let σ′j‖τ ′j be I’s j-th decryption-verification oracle query,
let mj

e be the decryption of σ′j by the underlying decryption algorithm. To prove Equation (3), we
show that given an int-sfctxt adversary attacking SSH-CTR, that adversary can also be used to
attack the unforgeability of the underlying MAC, to attack the coll-cca collision resistance of the
underlying encoding scheme, or that the first out-of-order ciphertext submitted by the adversary,
σ′j‖τ ′j , is such that σj 6= σ′j but M j

e = mj
e. By properties of CTR mode with stateful decryption,

the latter event cannot occur. The same property holds for SSH-CTRIV-CBC and SSH-EIV-CBC.
For SSH-$NPC the latter event can occur, but the probability the latter event occurs is small
because the last (random) block of the encoded packet is not given to the adversary. The strategy
we outlined in this paragraph can be used to prove the security of other fixes to the SSH BPP that
work by replacing the underlying encryption scheme; namely, prove that the underlying encryption
scheme is ind-cpa secure and that the probability of the event we described is small. (We only
consider the first out-of-order ciphertext query an adversary makes because if the first out-of-order
ciphertext query does not decrypt, the decryptor enters a halting state.)

Now we present the proof in more detail. First, we note that Equation (4) follows directly from
Proposition 6.4 and Theorem 7.1. Now, we prove Equation (3). Let SE = (K, E ,D) be the com-
posite encryption scheme (SSH-CTR in this case) constructed via Construction 6.1 from the en-
cryption scheme SE = (Ke, E ,D), the MAC scheme MA = (Kt, T ,V), and the encoding scheme
EC = (Enc, Dec). Consider any int-sfctxt adversary I against SE . We associate to I a uf-cma
forger F against MA and a coll-cca collision finder C against EC as follows. The forger F uses
Ke to generate an encryption key and uses the encryption key and its tagging oracle to answer
I’s queries in a straight-forward manner. In particular, it follows Construction 6.1. Similarly, the
collision finder C uses the same approach. This ensures that I is executed in the same environment
as that in Expint-sfctxt

SE (I) until I succeeds in making an out-of-sync query.

Recall that the int-sfctxt adversary I can make two types of queries: encryption queries to EK and
decryption-verification queries to D∗K . Suppose I makes qe encryption queries and qd decryption-
verification queries. We denote I’s i-th query to EK as M i, the encoding of M i as M i

e, M
i
t , and

the returned ciphertext as σi‖τi. We denote I’s i-th query to D∗K as σ′i‖τ ′i (assuming that I’s i-th
query is parsable since otherwise D∗K would enter a halting state). We denote the decryption (via
D) of σ′i as mi

e and the decoding of mi
e as (mi,mi

t). By convention, if D∗k’s internal state is ⊥, then
mi

e =⊥. Also, if mi
e =⊥, then (mi,mi

t) = (⊥,⊥).

Now, let j be the index of I’s first out-of-sync decryption query, and let k be the number of
encryption queries prior to I’s j-th decryption query. Let Bad be an event in which all of the
following conditions hold: I’s j-th decryption query correctly verifies, mj

t ∈ {M1
t , . . . , Mk

t }, k ≥ j,
τ ′j = τj , and mj

e = M j
e . (Recall that if the first out-of-sync decryption query fails to verify, the

decryption algorithm will return ⊥ for all subsequent decryption queries.) We state the following
lemmas.
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Lemma 8.3 Advint-sfctxt
SE (I) ≤ Advuf-cma

MA (F ) + Advcoll−cca
EC (C) + Pr [ Bad ]

Lemma 8.4 Pr [ Bad ] = 0

Then, Equation (3) in Theorem 8.2 follows.

Proof of of Lemma 8.3: Let Pr [ · ] denote the probability function underlying Expint-sfctxt
SE (I).

Let σ′j‖τ ′j be I’s first out-of-sync query toD∗K(·). Recall that, prior to I’s j-th decryption-verification
query, I made k queries to EK(·). We define the following events.

Event E : I’s first out-of-sync query to oracle D∗K(·) correctly verifies

Event E1 : E occurs and mj
t 6∈ {M1

t , . . . ,Mk
t }

Event E2 : E occurs and mj
t ∈ {M1

t , . . . ,Mk
t }

Event E2,1 : E2 occurs and either k < j or mj
e 6= M j

e

Event E2,2 : E2 occurs and k ≥ j and mj
e = M j

e

Event E2,2,1 : E2,2 occurs and τ ′j 6= τj and

mj
t 6∈ {M1

t , . . . ,M j−1
t ,M j+1

t , . . . ,Mk
t }

Event E2,2,2 : E2,2 occurs and τ ′j 6= τj and

mj
t ∈ {M1

t , . . . ,M j−1
t ,M j+1

t , . . . ,Mk
t }

Event E2,2,3 : E2,2 occurs and τ ′j = τj .

If I’s first out-of-sync query to D∗K(·) does not correctly verify, then the decryption oracle enters its
halting state, and thus, no further decryption queries will correctly verify and Expint-sfctxt

SE (I) cannot
return 1. Therefore, Advint-sfctxt

SE (I) = Pr [ E ]. Also, notice that Pr [ E ] = Pr [ E1 ∨ E2,2,1 ] +
Pr [ E2,1 ∨ E2,2,2 ] + Pr [ E2,2,3 ].

As previous pointed out, the adversaries F and C run I exactly as in experiment Expint-sfctxt
SE (I)

until I succeeds in making an out-of-sync decryption-verification query. Therefore, it is easy to
see that, if events E1 or E2,2,1 occur, then F succeeds in finding a uf-cma forgery against MA.
Similarly, if events E2,1 or E2,2,2 occur, C succeeds in finding a collision against EC. Consequently,

Advint-sfctxt
SE (I) = Pr [ E1 ∨ E2,2,1 ] + Pr [ E2,1 ∨ E2,2,2 ] + Pr [ E2,2,3 ]

≤ Advuf-cma
MA (F ) + Advcoll−cca

EC (C) + Pr [ Bad ]

as desired. Proof of of Lemma 8.4: We are interested in the event that σ′j 6= σj but mj
e = M j

e

(where j is the index of the first out-of-order decryption query and the adversary has already queried
the encryption oracle at least j times). Since SSH-CTR uses CTR mode with stateful decryption,
since the encryption and decryption states are in-sync prior to the j-th decryption query, and since,
for each CTR mode state, there is a bijection between plaintexts and ciphertexts, if σ′j 6= σj , then
mj

e 6= M j
e . This means that Pr[Bad] = 0.

9 Discussion and Recommendations

Having thus presented our main results, we are now in a position to make specific recommendations
to the SSH community. We begin by noting that one problem with the current SSH specification
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is that the counter (that is prepended to the encoded payload before MACing) is only 32 bits long.
As shown in Section 4, once the 32 bit counter repeats, an SSH session’s MAC tags may begin
to leak information about a user’s plaintexts. Our provable security results reflect this constraint:
strong security is maintained only if the parties rekey at least once every 232 packets. Two natural
solutions to this problem are to either make the counter longer or to require an SSH session to
rekey at least once every 232 messages. We recommend the second option because it does not affect
the packet format and thus will likely require minimal changes to existing SSH implementations.
As a slight variant of the first option, we do note that it would be possible to define new message
authentication modules for SSH that maintain and update their own, longer counters; this approach
would also not affect the packet format.

With respect to the underlying encryption mode, we now compare the current instantiation of
the SSH BPP transport protocol, SSH-IPC, to our specific recommendations. We also consider two
other possible alternatives, namely switching to an Encrypt-then-MAC-based construction or to a
dedicated authenticated encryption construction. The former involves re-engineering the SSH BPP
so that it first encrypts a message with some underlying encryption scheme and then MACs the
resulting ciphertext. The latter involves modifying SSH to use a dedicated authenticated encryption
scheme (e.g., XCBC [18], OCB [31]).

Continue to use SSH-IPC? As mentioned, SSH-IPC is susceptible to an adaptive chosen-
plaintext attack requiring an SSH user to encrypt on the order of 213 packets. However, the attack
may not be considered practical since it requires the attacker to, after seeing a ciphertext collision,
control the next message that a user encrypts. If the session is encrypting a lot of data very
quickly (e.g., while transferring a file), then an attacker may not have time to both recognize that a
collision has occurred and to force the user to encrypt a specially-doctored message. Additionally,
if we consider how the SSH transport protocol is used within SSH (and not as an entity by itself),
then the attack is complicated by the fact that an application may compress and further encode
user data before passing the resulting compressed payload to the SSH-IPC protocol. Nonetheless,
we suggest that the use of SSH-IPC be deprecated. One simple reason is that, even if these
attacks may be difficult to mount in practice, in the modern era of strong cryptography it would
seem counterintuitive to voluntarily use a protocol with low security when it is possible to fix the
security of SSH at low cost.

Switch to SSH-NPC? Since SSH-NPC requires similar changes to the specification and imple-
mentations as SSH-$NPC while achieving less security than our other fixes, there does not appear
to be any substantial reasons to switch to SSH-NPC. Therefore, we do not consider it further.

Switch to SSH-$NPC? The advantages offered by SSH-$NPC are clear: it is provably secure
and requires relatively minor and mostly localized changes to the SSH specification and to imple-
mentations. The added security, however, comes with the additional cost of up to two extra blocks
per packet. In interactive sessions where an individual packet may only contain a few octets of
user data, the additional cost associated with those extra blocks may be significant (in terms of
bandwidth consumption, the time necessary to encrypt and MAC those two extra blocks, and the
time required to generate the extra block of randomness). Another potential problem with SSH-
$NPC is that it is prone to accidental implementation mistakes. Recall that if the padding used
with SSH-$NPC is not randomized, then the same reaction attack against SSH-NPC will be effec-
tive here. Since two SSH implementations will inter-operate regardless of whether their padding
is random or fixed, an SSH developer might accidentally use non-random or predictable padding.
Such an accidental implementation mistake could have serious security consequences.

Switch to SSH-CTR? SSH-CTRIV-CBC? or SSH-EIV-CBC? The SSH-CTR instantiation is
a promising candidate since it is provably secure, does not incur packet expansion, and does not
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require the padding to be random. Furthermore, there are several performance advantages with
using CTR mode instead of CBC mode; for example, a software CTR mode implementation can
be up to four times faster than a well-optimized CBC implementation [27]. Although perhaps not
as attractive as SSH-CTR, SSH-CTRIV-CBC and SSH-EIV-CBC are also promising candidates
because they also require no additional padding and because they only use one more block cipher
invocation per packet than SSH-IPC.

Recall that the underlying encryption schemes for SSH-CTR, SSH-CTRIV-CBC, and SSH-EIV-
CBC require both the sender and the receiver to maintain state. Prior to this work, most prov-
able security analyses focused on encryption schemes with stateless decryption algorithms (hence
our need to define security notions for encryption schemes with stateful decryption algorithms).
Consequently, one initial objection to these three constructions might be that they require the
underlying decryption algorithms to maintain state. However, since the composite SSH BPP de-
cryption algorithm is already stateful (because the decoding algorithm is stateful), the fact that
these three fixes use underlying encryption schemes with stateful decryption algorithms should be
of little concern. Another potential disadvantage with CTR mode is that it is often perceived as
being too “risky” [27]. As [27] points out, however, when used correctly and with proofs of security,
CTR mode has many advantages over other encryption modes. Furthermore, as Bellovin and Blaze
point out in [10], one can minimize the risk incurred with using CTR mode (including the risk of
being forced to use repeating counters) if key management is done dynamically and properly, if
it is not used with multiple senders who share keys, and if it is used in conjunction with strong
integrity checks. All of these conditions hold in the case of SSH-CTR.

Switch to Encrypt-then-MAC? Instead of insisting on using the current SSH Encode-then-
E&M construction, it would also be possible to switch to another paradigm such as Encrypt-
then-MAC (in which the message is first encrypted with an underlying encryption scheme and
then the resulting ciphertext is MACed with an underlying message authentication scheme). This
alternative is attractive because an Encrypt-then-MAC construction is provably secure assuming
that its underlying encryption and message authentication schemes are also secure [6, 25]. We note,
however, that since our recommended fixes provably meet our strongest notions of security, there
may be little motivation to switch to an Encrypt-then-MAC-based construction. Additionally,
switching to an Encrypt-then-MAC construction will likely require more intrusive modifications
to the current SSH specification and to SSH implementations. Furthermore, unless care is taken,
implementations of the modified SSH specification may not be compatible with implementations
of the current SSH specification. Conceptually speaking, the changes incurred by SSH-CTR, SSH-
$NPC, SSH-CTRIV-CBC, and SSH-EIV-CBC involve only changing the underlying encryption
module and, in the case of SSH-$NPC, adding more random number generation for the padding.
In contrast, the changes incurred by switching to the Encrypt-then-MAC construction involve
changing the whole construction. Of course, the difference in the actual efforts that developers
need to put in is highly implementation dependent.

Switch to dedicated authenticated encryption schemes? There are symmetric key-based
authenticated encryption schemes that are designed from scratch and, thus, are potentially more
efficient than schemes based on a black-box composition of off-the-shelf encryption and MAC com-
ponents. These include RPC [23], XCBC [18], IACBC [22], and OCB [31]. Recall that currently the
input to the SSH BPP’s underlying encryption scheme is different from the input to the underlying
MAC. There are two possible ways to incorporate a dedicated authenticated encryption scheme
into SSH: (1) specifically re-design the SSH specification around a single authenticated encryption
component or (2) somehow plug a dedicated authenticated encryption scheme into the current SSH
design.

29



For option (1), as we mentioned when we considered the Encrypt-then-MAC paradigm, re-
designing the SSH specification is probably not an attractive option. For option (2), the most
logical way to incorporate a dedicated scheme into SSH would be to replace the current encryption
scheme (CBC mode with chained IVs) with something like XCBC or OCB and to use the “none”
message authentication scheme. As we argued for SSH-CTR, SSH-$NPC, SSH-CTRIV-CBC, and
SSH-EIV-CBC, this modification should be fairly easy to do, and, given the efficiency of dedicated
authenticated encryption schemes, could result in significant performance gains. The present draw-
back with this approach is that the current SSH specification does not include the 32-bit counter in
the input to the underlying encryption scheme. Since, under this construction, the counter will not
be bound to the input to the dedicated authenticated encryption scheme, this construction cannot
protect against replay and out-of-order delivery attacks (while our proposed recommendations can).
To rectify this situation, one would still have to modify more than just the “black-box” encryption
component of the SSH BPP, perhaps by using an authenticated encryption with associated data
scheme [34, 30, 8, 24], which has the same drawbacks as possibility (1) above, or use as the under-
lying encryption scheme an authenticated encryption scheme with its own internal counter, which
we view as an inelegant, though still viable, solution.

Closing remarks. We acknowledge that there are many possible ways to fix the current problems
with the SSH protocol. We are biased toward our recommended fixes (e.g., SSH-CTR) because
they are “less intrusive” than the other possible modifications but are still efficient and secure.
“Less intrusive” is, however, a subjective measure and the IETF SSH working group may decide
that it is feasible to re-engineer the SSH protocol to use an Encrypt-then-MAC-based construction
or a dedicated authenticated encryption scheme. Given the inertia of the current SSH protocol,
however, we feel that the working group may have a hard time justifying significant modifications
to the SSH specification. The goal of this work is to provide enough information to the SSH
community so that the SSH community can make an informed decision when deciding how to fix
the current problems with SSH. In [5] we present an Internet-Draft, within the IETF SSH working
group, that is based on this research.
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