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Abstract. We introduce a tensor transform for Boolean functions that
covers the algebraic normal and Walsh transforms but which also allows
for the definition of new, probabilistic and weight transforms, relating
a function to its bias polynomial and to the weights of its subfunctions
respectively. Our approach leads to easy proofs for some known results
and to new properties of the aforecited transforms. Several new results
about algebraic and correlation properties that depend on the weight
transform of Boolean functions are proved. Finally, we present a new
probabilistic characteristic of a Boolean function that is defined by its
algebraic normal and probabilistic transforms over the reals.
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1 Introduction

The two most common building blocks for key-stream generators are the nonlin-
ear filter generator and the nonlinear combination generator [1]. They correspond
respectively to a nonlinear transformation applied to several phases of the same
linear feedback shift register (LFSR) or to the outputs of several independent
LFSR’s. The nonlinear transformation can be represented by a Boolean func-
tion and the security of the key-stream generators heavily relies on the specific
qualities of this function. If the function is not chosen properly then the whole
system is susceptible to different types of correlation [2] and linear [3] attacks.

It is currently generally accepted that secure Boolean function to be used in
a key-stream generator must satisfy the following properties: balancedness, high
nonlinearity, sufficiently high algebraic degree (this should hold for each individ-
ual variable), optimized with correlation properties. These conditions are neces-
sary, although it is not clear if they are sufficient to resist all kinds of attacks.
The algebraic degree of a Boolean function is the degree of its algebraic normal
form (ANF), balancedness, nonlinearity, and correlation properties are defined
by its Walsh transform [4]. Thus, the algebraic normal and Walsh transforms of
a Boolean function define the most important cryptographic characteristics of
the function. The objective of this paper is to generalize known transforms of
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Boolean functions and develop new ones that would provide efficient means for
analyzing security of these functions.

In Sect. 2 we describe the general basis for a tensor transform of Boolean
functions. Special cases of this approach provide easy proofs for some known
and new relations in the theory of algebraic normal and Walsh transforms. We
also propose a new type of tensor transform, the probabilistic transform, giving
an important insight in certain probabilistic properties of Boolean functions
that are discussed in Sect. 4. Another new type of tensor transform that we
propose, is the weight transform. It relates a Boolean function to the weights of
its subfunctions. It is proved that coefficients of the ANF of a Boolean function
depend on the values contained in its binary weight transform for the zero-valued
vector.

In Sect. 3 we suggest that not correlation immune Boolean functions can
be still cryptographically secure if only slight dependencies between input bits
and the output are allowed. We show how correlation coefficients that provide
an estimate for correlation dependencies of a Boolean function, can be obtained
from its weight transform. It is proved that the number of fixed-order product
terms in the ANF of a balanced Boolean function depends on its correlation
coefficients. We also prove that highly resilient Boolean functions can not be
approximated with a function nondegenerate on few variables.

A new probabilistic function of a Boolean function is introduced in Sect. 4.
This function estimates the probabilistic distribution of bits at the output of a
Boolean function if the distribution of the arguments, the function depends on,
is known. Further, we suggest a characteristic for a balanced Boolean function
that measures its ability to compensate a nonuniform distribution of the input.
Resilient functions are proved to have good compensating qualities.

2 Tensor Transform of Boolean Functions

Let Mn(P ) denote the ring of n-dimensional square matrices over the field P . For
a pair of matrices A ∈ Mn(P ) and B ∈ Mm(P ) let A⊗B denote the Kronecker
product [5, p. 421] of these matrices and A[k] denote the kth Kronecker power
of A. For any matrix A ∈ M2n(P ) by writing A = (g0, . . . , g2n−1) we mean
that gi (i = 0, . . . , 2n − 1) is the ith column of A, entries in gi are indexed
lexicographically by the elements in {0, 1}n, so

gi =




gi(0, . . . , 0)
gi(0, . . . , 1)

...
gi(1, . . . , 1)


 .

Let αi (i = 0, . . . , 2n − 1) denote the n-bit binary expansion of i, so gi =
(gi(α0), . . . , gi(α2n−1))T , where the superscript T denotes transpose of a matrix.
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Lemma 1. Let A = (g0, . . . , g2n−1) ∈ M2n(P ) and A′ = (g′0, . . . , g
′
2n−1−1) ∈

M2n−1(P ). Suppose that A = B ⊗A′ for some matrix B =
(

b00 b01

b10 b11

)
. Then

gi(x1, . . . , xn) =
{

(b00x1 + b10x1)g′i′(x2, . . . , xn), if αi = (0, αi′),
(b01x1 + b11x1)g′i′(x2, . . . , xn), if αi = (1, αi′)

,

where αi′ is the (n− 1)-bit vector, binary expansion of i′.

Proof. By the definition of the Kronecker product, A =
(

b00A
′ b01A

′

b10A
′ b11A

′

)
. Thus,

gi(0, x2, . . . , xn) =
{

b00g
′
i′(x2, . . . , xn), if αi = (0, αi′),

b01g
′
i′(x2, . . . , xn), if αi = (1, αi′)

and

gi(1, x2, . . . , xn) =
{

b10g
′
i′(x2, . . . , xn), if αi = (0, αi′),

b11g
′
i′(x2, . . . , xn), if αi = (1, αi′)

.

These equations combined together prove the claimed result. ut
The following proposition easily follows from Lemma 1.

Proposition 1. Let A = B1⊗. . .⊗Bn, where Bj =

(
b
(j)
00 b

(j)
01

b
(j)
10 b

(j)
11

)
for j = 1, . . . , n,

and A = (g0, . . . , g2n−1). Then for any i ∈ {0, . . . , 2n − 1}

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i

(
b
(j)
00 xj + b

(j)
10 xj

)
+ αj

i

(
b
(j)
01 xj + b

(j)
11 xj

))
,

where αi = (α1
i , . . . , α

n
i ).

Let A ∈ M2n(P ) be an invertible matrix and A = (g0, . . . , g2n−1). Further,
let the function f(x1, . . . , xn), mapping {0, 1}n in P , be defined by its string of
values T f = (f(α0), . . . , f(α2n−1))T ∈ P 2n

and let the function F (x1, . . . , xn)
be defined by the string TF = A−1T f = (F (α0), . . . , F (α2n−1))T ∈ P 2n

. Vectors
T f and TF are considered further as column-vectors. Then T f = ATF ,

T f =
2n−1∑

i=0

giF (αi) and f(x1, . . . , xn) =
2n−1∑

i=0

gi(x1, . . . , xn)F (αi) (1)

for any (x1, . . . , xn) ∈ {0, 1}n. Equations (1) represent the decomposition of
function f in the basis vector set (g0, . . . , g2n−1). Hereafter in this paper, by
fβ1,...,βm

i1,...,im
for any 1 ≤ i1 < . . . < im ≤ n, we denote the subfunction of f obtained

by fixing the variables xi1 , . . . , xim with binary values β1, . . . , βm respectively.
It is well known that if B1 and B2 are invertible matrices over P then the

Kronecker product matrix B1 ⊗ B2 is invertible too and (B1 ⊗ B2)−1 = B−1
1 ⊗

B−1
2 . In particular, if B ∈ M2(P ) is an invertible matrix and A = B[n] then A

is invertible too and A−1 = (B−1)[n].
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Now we will demonstrate how Proposition 1 substantially facilitates proving
of some important matrix identities for various representations of a function
of Boolean variables. By convention, for a Boolean variable x we assume that
x0 = x and x1 = x.

The Identity Transform. Let P be an arbitrary field and set B =
(

1 0
0 1

)

and A = B[n]. Then, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i xj + αj
i xj

)
=

n∏

j=1

x
αj

i
j = x

α1
i

1 · . . . · xαn
i

n

and

f(x1, . . . , xn)
(1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =

=
2n−1∑

i=0

(
x

α1
i

1 · . . . · xαn
i

n

)
F (αi) = F (x1, . . . , xn) .

The Algebraic Normal Transform. Take P = GF(2) and set B =
(

1 0
1 1

)
=

B−1 and A = B[n]. Then, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i + αj
i xj

)
=

∏

j=1,...,n: αj
i=1

xj (2)

and

f(x1, . . . , xn)
(1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑

i=0


 ∏

j=1,...,n: αj
i=1

xj


 F (αi) .

One can easily recognize the ANF of function f on the right hand side of the
last identity, where F (αi) (i = 0, . . . , 2n − 1) are the coefficients of the ANF
polynomial. Let P f denote the coefficient vector of the ANF polynomial for

function f and denote also R2 =
(

1 0
1 1

)
, R2n = R

[n]
2 . Then

T f = R2nP f and P f = R2nT f . (3)

This transform of f is called the algebraic normal transform.
If R2n is considered as a matrix over the real number field IR and the algebraic

normal transform of f is implemented over IR then TF is equal to the coefficient
vector of a real-valued, square-free (in variables) polynomial of n variables with
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integer coefficients that takes on the same values as function f on the points
from GF(2)n. Let Πf denote the coefficient vector of such a polynomial. In this

case R−1
2 =

(
1 0

−1 1

)
, R−1

2n = (R−1
2 )[n],

T f = R2nΠf and Πf = R−1
2n T f . (4)

This real-valued polynomial gives an important insight in certain probabilistic
properties of a Boolean function that will be discussed further in Sect. 4.

The Probabilistic Transform. Assume that P = IR and set B = 1
2

(
2 −1
2 1

)

and A = B[n]. Then B−1 = 1
2

(
1 1

−2 2

)
and, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i +
1
2
αj

i (xj − xj)
)

=

=
∏

j=1,...,n: αj
i=1

1
2
(xj − xj)

(◦)
=

∏

j=1,...,n: αj
i=1

δj ,

where (◦) is obtained by using xj = 1 − xj and introducing the new variable
δj := xj − 1/2. Therefore,

f(x1, . . . , xn)
(1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑

i=0


 ∏

j=1,...,n: αj
i=1

δj


 F (αi) .

The right hand side of the last identity contains the real-valued, square-
free polynomial of n variables δ1, . . . , δn that for {δ1, . . . , δn} ∈ {−1/2, 1/2}n

takes on the same values as function f on corresponding arguments {x1, . . . , xn}
if identity xj = δj + 1/2 is assumed. Therefore, if Df (x1, . . . , xn) denotes a
polynomial obtained by the algebraic normal transform over the reals then the
probabilistic transform gives coefficients for polynomial Df (1/2+δ1, . . . , 1/2+δn)

that we will denote by ∆f . Denote also Q2 = 1
2

(
2 −1
2 1

)
, Q2n = Q

[n]
2 . Then

Q−1
2 = 1

2

(
1 1

−2 2

)
, Q−1

2n = (Q−1
2 )[n],

T f = Q2n∆f and ∆f = Q−1
2n T f . (5)

We will call this transform of f the probabilistic transform. Applications of this
transform will be discussed further in Sect. 4.
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The Walsh Transform. According to [1, p. 118], the direct and inverse Walsh
transforms of a real-valued function f over GF(2)n are defined as

Sf (αi) =
2n−1∑
x=0

f(x)(−1)〈αi,x〉 and f(x) =
1
2n

2n−1∑

i=0

Sf (αi)(−1)〈αi,x〉 , (6)

where x = (x1, . . . , xn) and 〈αi,x〉 = α1
i x1 ⊕ . . . ⊕ αn

i xn is the standard inner
product over GF(2). In the sum over x in (6) the summation index is considered
as an integer in the range 0, . . . , 2n− 1 but written in its binary expansion. The
vector Sf = (Sf (α0), . . . , Sf (α2n−1)) is called the Walsh transform of function
f .

Assume that P = IR and set B =
(

1 1
1 −1

)
= 2B−1 and A = B[n]. Thus, A

is a Hadamard matrix of order 2n (see [5, p. 422]). Then, by Proposition 1,

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i + αj
i (xj − xj)

)
=

∏

j=1,...,n: αj
i=1

(xj − xj) = (−1)〈αi,x〉

and

f(x1, . . . , xn)
(1)
=

2n−1∑

i=0

gi(x1, . . . , xn)F (αi) =
2n−1∑

i=0

F (αi)(−1)〈αi,x〉 .

In the latest identity one can recognize the inverse Walsh transform (6) but with-
out the multiplicative coefficient. Therefore, in this case F (αi) = 1/2nSf (αi),

where Sf (αi) is the Walsh transform of f evaluated in αi. Let H2 =
(

1 1
1 −1

)

and H2n = H
[n]
2 . Then

T f =
1
2n

H2nSf and Sf = H2nT f . (7)

It is possible to generalize property (7) of the Walsh transform. Let us assume
that function f is Boolean. From now on wt(ω) denotes the Hamming weight of
a binary string ω and wt(f) denotes the Hamming weight of a Boolean function
f , i.e., the weight of T f . Let r be an integer in the range 1 ≤ r ≤ n and let
i1, . . . , ir be a set of indices with 1 ≤ i1 < . . . < ir ≤ n. Let k1, . . . , kn−r

with 1 ≤ k1 < . . . < kn−r ≤ n denote the indices complementing i1, . . . , ir with
respect to {1, . . . , n}. Let also the real-valued function w(y1, . . . , yr) of r Boolean
variables be defined as follows

w(α1
j , . . . , α

r
j) = wt

(
f

α1
j ,...,αr

j

i1,...,ir
(xk1 , . . . , xkn−r )

)
= wj

for 0 ≤ j < 2r, where (α1
j , . . . , α

r
j) = αj is the r-bit binary expansion of j. Then,

by (7), Sw = H2r (w0, . . . , w2r−1)T . On the other hand,

Sw(αi)
(6)
=

2r−1∑

j=0

w(αj)(−1)〈αj ,αi〉 =
2r−1∑

j=0

2n−r−1∑
t=0

f
α1

j ,...,αr
j

i1,...,ir
(αt)(−1)〈αj ,αi〉 =
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=
2n−1∑

k=0

f(αk)(−1)〈αk,θi〉 (6)
= Sf (θi) ,

where θi is the n-bit vector whose coordinates at the index positions i1, . . . , ir
are equal to α1

i , . . . , α
r
i respectively (where (α1

i , . . . , α
r
i ) = αi) and the remaining

(n− r) coordinates are set to zero. Thus,

H2r (w0, . . . , w2r−1)T = (Sf (θ0), . . . , Sf (θ2r−1))T , (8)

which is the generalization of [6, Proposition 3.1], while the proof here is less
complicated. If r is set equal to n then wj = f(αj), θi = αi and (8) transforms
into (7).

If function f is Boolean then in some cases it is more convenient to work with
the real-valued counterpart (sign function) of f , defined as f̂(x) = 1 − 2f(x),
and to apply the Walsh transform to f̂ . Function f̂ can be recovered by the
inverse Walsh transform of S f̂ . Further, since f(x) = 1/2−1/2f̂(x), the original
function f can be obtained from the Walsh transform Sf̂ by the following inverse
transform:

f(x) =
1
2
− 1

2n+1

2n−1∑

i=0

Sf̂ (αi)(−1)〈αi,x〉 .

The relationship between the Walsh transform of f(x) and f̂(x) is given by [7,
Lemma 1] as follows

Sf̂ (0) = 2n − 2Sf (0) and Sf̂ (w) = −2Sf (w) for 0 < w < 2n . (9)

By these identities and (7),

T f =
(

1
2
, . . . ,

1
2

)T

− 1
2n+1

H2nS f̂ and Sf̂ = (2n, 0, . . . , 0)T − 2H2nT f (10)

since H2n

(
1
2 , 0, . . . , 0

)T =
(

1
2 , . . . , 1

2

)T . On the other hand, identities, similar to
(7), hold:

T f̂ =
1
2n

H2nSf̂ and Sf̂ = H2nT f̂ .

Combining (3) with (7) or (10), we obtain the following identities relating
the coefficient vector of the ANF polynomial of f with the Walsh transforms Sf

and S f̂ :

P f =
1
2n

R2nH2nSf (mod 2) =
1
2n

(
1 1
2 0

)[n]

Sf (mod 2) (11)

P f = R2n

((
1
2
, . . . ,

1
2

)T

− 1
2n+1

H2nSf̂

)
(mod 2) ,
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where all operations on the right hand side are performed in IR and the final

result is reduced modulo 2. Using Proposition 1 for B =
(

1 1
2 0

)
and A = B[n],

we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
xj + 2αj

i xj

)
=

{
2wt(x1,...,xn), if αj

i ≤ xj (j = 1, . . . , n),
0, otherwise

.

Therefore, by (11),

Pf (ω) =
1

2n−wt(ω)

∑

i=0,...,2n−1: αi¹ω

Sf (αi) (mod 2)
(9)
= (12)

= 2wt(ω)−1


1− 1

2n

∑

i=0,...,2n−1: αi¹ω

Sf̂ (αi)


 (mod 2) ,

where ω denotes the bitwise completion to 1, ¹ is the partial ordering on the
Boolean lattice (defined as α ¹ ω if and only if αj ≤ ωj for j = 1, . . . , n) and
Pf (ω) is the ωth coefficient of the ANF of function f . The relation (12) between
the ANF and Walsh coefficients can be found in [8, Proposition 3] but our proof
seems easier.

Finally, if (5) is combined with (7) then the resulting identities relate the
probabilistic transform of f with the Walsh transform Sf :

∆f =
1
2n

(
1 0
0 −2

)[n]

Sf and Sf =
(

2 0
0 −1

)[n]

∆f . (13)

Since the matrix of the transform (13) is diagonal, coordinates of zero values in

vectors ∆f and Sf are the same. Now, using Proposition 1 for B =
(

1 0
0 −2

)

and A = B[n], we obtain

gi(x1, . . . , xn) =
n∏

j=1

(
αj

i xj − 2αj
i xj

)
=

{
(−2)wt(αi), if xj = αj

i (j = 1, . . . , n),
0, otherwise

.

Therefore, by (13),

∆f (ω) =
1
2n

(−2)wt(ω)Sf (ω)
(9)
=

{ 1
2n (−2)wt(ω)−1Sf̂ (ω), if ω 6= 0,
1
2 − 1

2n+1 Sf̂ (0), if ω = 0
, (14)

where ∆f (ω) is the ωth coordinate of the probabilistic transform of function f .

The Weight Transform. Take P = IR and set B0 =
(

0 1
1 −1

)
, B1 =

(
1 −1
0 1

)

and A = Bβ1 ⊗ . . .⊗Bβn for some n-bit vector β = (β1, . . . , βn). Let also A−1 =
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B−1
β1
⊗ . . . ⊗ B−1

βn
= (g̃0, . . . , g̃2n−1), where B−1

0 =
(

1 1
1 0

)
and B−1

1 =
(

1 1
0 1

)
.

By Proposition 1 and since b
(j)
11 = b

(j)
12 = 1 for any j = 1, . . . , n,

g̃i(x1, . . . , xn) =
n∏

j=1

(
xj + xj

(
αj

i b
(j)
21 + αj

i b
(j)
22

))
(∗)
=

(∗)
=

n∏

j=1

(
xj + xj

(
αj

i βj + αj
i βj

))
=

∏

j=1,...,n: αj
i 6=βj

xj . (15)

Equality (*) holds because b
(j)
21 = βj and b

(j)
22 = βj . Thus, g̃i(x1, . . . , xn) is equal

to one if and only if the coordinates, where vectors αi and β differ, correspond
to the zero entries in vector (x1, . . . , xn).

Let us assume that function f is Boolean. Then

F (x1, . . . , xn) =
2n−1∑

i=0

g̃i(x1, . . . , xn)f(αi) =

=
2n−1∑

i=0


 ∏

j=1,...,n: αj
i 6=βj

xj


 f(αi) = wt

(
f

βt1 ,...,βtk
t1,...,tk

)
,

where k = wt(x1, . . . , xn) and t1, . . . , tk are the coordinates of the nonzero entries
in (x1, . . . , xn). Here it is assumed that if αi = β then

∏
j=1,...,n: αj

i 6=βj
xj = 1.

Therefore, wt
(
fβ1,...,βn

1,...,n

)
= f(β).

Let Θf
β denote the ordered 2n-tuple, containing the weights of the subfunc-

tions of f , obtained by fixing all possible subsets of variables with corresponding
values from vector β. Thus,

Θf
β =

{
wt

(
f

βi1 ,...,βik
i1,...,ik

)
| 1 ≤ i1 < . . . < ik ≤ n; k ∈ {0, . . . , n}

}
.

Denote also Dβ = Bβ1 ⊗ . . .⊗Bβn . Then

T f = Dβ Θf
β and Θf

β = D−1
β T f . (16)

We will call this transform of f the weight transform. In particular, if vector
β consists of zeros only then Dβ = B

[n]
0 , and if it consists only of ones then

Dβ = B
[n]
1 .

If we consider matrices B0 and B1 as matrices over the field GF(2) and
perform all operations in (16) in this field then (16) will relate the string of
values of function f with binary weights of its subfunctions.

Let us compare the basis vector set (15) of the weight transform when β =
(0, . . . , 0) with the basis vector set (2) of the inverse algebraic normal transform.
It is clear that they are directly related via a simple variable complementation.
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Since R2n = R−1
2n , the basis vector sets of the algebraic normal transform and

its inverse are equal. Therefore,

Pf (α1
i , . . . , α

n
i ) = Θf

0 (α1
i , . . . , α

n
i ) (mod 2) (17)

for any i = 0, . . . , 2n − 1, where (α1
i , . . . , α

n
i ) = αi. This identity is easily ac-

counted for by the well-known fact that a Boolean function has maximal alge-
braic degree if and only if it has an odd weight. Indeed, the right hand side of
the identity contains the binary weight of the subfunction which maximal pos-
sible order term in the ANF is equal to

∏
j=1,...,n: αj

i=1 xj and the coefficient for
this term in the ANF of f is the value on the left hand side of the identity. To
construct the subfunction, relevant variables of f are being fixed only with zero
values, therefore, the term

∏
j=1,...,n: αj

i=1 xj is either present in the ANFs of
both f and the subfunction or is missing in both.

In Sect. 3 we define correlation coefficients of a function f that are esti-
mated by means of the weight transform of f . This indicates to the importance
of the weight transform for assessing cryptographic characteristics of Boolean
functions.

It is important to note that the P f , Πf , ∆f , Sf , Sf̂ and Θf
β transforms

of a function f can be represented by matrix equations (3), (4), (5), (7), (10)
and (16), all based on the Kronecker product of appropriate elementary cells.
This fact allows to use fast Fourier and Walsh transform algorithms [9, 10] for
efficient estimation of these transforms and easy transition from one transform
to another. Indeed, let a and b be arbitrary 2n-dimensional vectors over P , such

that b = (B1 ⊗ . . .⊗Bn)a, where Bj =

(
b
(j)
11 b

(j)
12

b
(j)
21 b

(j)
22

)
(j = 1, . . . , n) are arbitrary

elementary cells over P . Then

b =

(
b
(1)
11 B′ b

(1)
12 B′

b
(1)
21 B′ b

(1)
22 B′

)
a =

(
b
(1)
11 B′a + b

(1)
12 B′a

b
(1)
21 B′a + b

(1)
22 B′a

)
, (18)

where B′ = B2 ⊗ . . .⊗Bn and a = (a, a) is the split of a into two halves. Thus,
estimation of b requires 2n+1 arithmetic operations in P and two transforms of
order n − 1. It is easy to prove by induction that the total complexity of the
nth-order transform is equivalent to O(n2n) arithmetic operations in P .

Also note that if a is the string of values of a function f , i.e., a = T f , then
a and a are strings of values of subfunctions f0

1 and f1
1 respectively. Thus, B′a

and B′a are the adequate transforms of these subfunctions. Thus (18) provides a
relation between the transform of a function f and transforms of its subfunctions
f0
1 and f1

1 .

3 Algebraic and Correlation Properties of Boolean
Functions Related to the Weight Transform

The concept of correlation immunity relates to the statistical dependency be-
tween m-tuples of input bits and the output of a cryptographic transformation.

10



This idea is extremely important, especially for stream cipher design, where filter
and combination generators with not correlation immune filtering and combining
functions are susceptible to ciphertext-only attacks [2].

High order correlation immunity was first introduced in [11] where the well-
known Siegenthaler’s inequality has also been first proved in [11, Theorem 1].
According to this inequality, the sum of the algebraic degree and the order
of correlation immunity for a Boolean function of n variables can not exceed
n and n − 1 if function is balanced. Therefore, high-order correlation immune
functions necessarily have low algebraic degree and vice versa. In order to handle
this situation one has either to find a trade-off between these two properties or
somehow to weaken the requirement for a function to be correlation immune.
From the practical point of view, those functions which correlation dependencies
are low are as secure as correlation immune ones. In this case we need an estimate
for correlation dependencies of a Boolean function and the following definition
of correlation coefficients generalizes the basic concept of correlation immunity.

Further we assume that X1, . . . , Xn are uniform, independent and identically
distributed random binary variables and f(x), where x = (x1, . . . , xn) ∈ GF(2)n,
is a Boolean function of n variables that is not identical 0 or 1. If we denote
X = (X1, . . . , Xn) then f(X) would denote the binary random variable obtained
by substituting variables of f with random values Xi.

Definition 1. Let m and i1, . . . , im be integers with 1 ≤ m ≤ n and 1 ≤ i1 <
. . . < im ≤ n. Then the set of 2m conditional probabilities

cβ1,...,βm

i1,...,im
= P (Xi1 = β1, . . . , Xim = βm | f(X) = 0) ,

evaluated for all possible values of the m-bit tuple (β1, . . . , βm) and ordered lex-
icographically along these values, is called a vector of mth-order correlation co-
efficients of f , evaluated for the input subset (i1, . . . , im).

It is obvious that function f is mth-order correlation immune (as defined in
[11]) if all its mth-order correlation coefficients are equal to 1/2m. On the other
hand, for any Boolean function f ,

P (Xi1 = β1, . . . , Xim = βm | f(X) = 0) =
2n−m − wt

(
fβ1,...,βm

i1,...,im

)

2n − wt(f)
(19)

P (Xi1 = β1, . . . , Xim = βm | f(X) = 1) =
wt

(
fβ1,...,βm

i1,...,im

)

wt(f)
.

Conditional probabilities in (19) are equal to 1/2m if and only if wt
(
fβ1,...,βm

i1,...,im

)
=

2−mwt(f). Therefore, the mth-order correlation immunity of f implies that the
output of f and any m input variables, considered jointly, are statically inde-
pendent. Correlation coefficients cβ1,...,βm

i1,...,im
are easily estimated, making use of

(19), if the weights of function f and of the subfunctions fβ1,...,βm

i1,...,im
are known

11



(see Sect. 2 about the weight transform). For instance, 1st order correlation
coefficients satisfy the identity

cβ
i =

1
2n − wt(f)

(
2n−1 − wt

(
fβ

i

))
,

and wt
(
fβ

i

)
is equal to the number of n-bit vectors (x1, . . . , xn) in the support

of f that have the ith coordinate xi, equal to β. By the support of f we mean
the subset of GF(2)n, where f is equal to 1.

Note 1. It is well known [4] that a Boolean function of n variables is mth-order
correlation immune for 1 ≤ m ≤ n, if and only if its Walsh transform is equal
to zero for any nonzero vector with a Hamming weight not exceeding m. In
particular, this property implies that for m > 1, any mth-order correlation
immune function is also (m− 1)st-order correlation immune.

Proposition 2. A Boolean function f of n variables is mth-order correlation
immune for 1 ≤ m ≤ n, if and only if for every k ∈ {1, . . . ,m} and any set of
indices i1, . . . , ik with 1 ≤ i1 < . . . < ik ≤ n, there exists at least one k-bit tuple
(β1, . . . , βk), such that correlation coefficient cβ1,...,βk

i1,...,ik
is equal to 1/2k.

Proof. By Definition 1 and Note 1, it is obvious that the condition stated in the
proposition is necessary for a function to be mth-order correlation immune. To
show that this condition is sufficient, we apply induction on m.

Let m = 1 and assume that for any i with 1 ≤ i ≤ n there exists some βi,
such that the corresponding correlation coefficient cβi

i is equal to 1/2. Then, by
(19), wt(fβi

i ) = wt(f)/2. Therefore,

wt
(
fβi⊕1

i

)
= wt(f)− wt(fβi

i ) =
wt(f)

2

and
cβi⊕1
i =

1
2n − wt(f)

(
2n−1 − wt

(
fβi⊕1

i

))
=

1
2

.

Thus, function f is 1st-order correlation immune.
Now, supposing that the proposition is true for m = l−1, we prove it for m =

l. Conditions imposed imply that for any set of indices i1, . . . , il with 1 ≤ i1 <
. . . < il ≤ n, there exists an l-bit tuple (β1, . . . , βl), such that cβ1,...,βl

i1,...,il
is equal to

1/2l. According to the induction hypothesis, the imposed conditions are sufficient
for f to be (l − 1)st-order correlation immune and thus, c

β1,...,βl−1
i1,...,il−1

= 1/2l−1.

Then, by (19), wt
(
fβ1,...,βl

i1,...,il

)
= wt(f)/2l and wt

(
f

β1,...,βl−1
i1,...,il−1

)
= wt(f)/2l−1.

Therefore,

wt
(
f

β1,...,βl−1,βl⊕1
i1,...,il

)
= wt

(
f

β1,...,βl−1
i1,...,il−1

)
− wt

(
f

β1,...,βl−1,βl

i1,...,il

)
=

wt(f)
2l

and c
β1,...,βl−1,βl⊕1
i1,...,il

= 1/2l. Any l-bit tuple can be obtained by consecutive in-
verting of required coordinates in the fixed tuple (β1, . . . , βl). This way it follows
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that for any m-bit tuple (γ1, . . . , γl), the correlation coefficient cγ1,...,γl

i1,...,il
is equal

to 1/2l. Thus, function f is lth-order correlation immune. ut
A Boolean function f can not be considered cryptographically secure if there

exists a function, having low algebraic degree or depending on small number of
variables, that coincides with f on the larger half of the domain or, in other
words, that approximates f . Balanced mth-order correlation immune functions
are called m-resilient [6] and any balanced function is also called 0-resilient.
The following proposition shows that an m-resilient Boolean function (if m is
sufficiently large) does not have approximations nondegenerate on few variables.

Proposition 3. Any balanced Boolean function f of n variables is m-resilient
for 1 ≤ m < n, if and only if there are no approximations of f , depending on at
most m variables.

Proof. Suppose that function f(x1, . . . , xn) is m-resilient for some 1 ≤ m < n
and that there exists a function g(xi1 , . . . , xim) approximating f . Then

P (f(X) 6= g(Xi1 , . . . , Xim)) =
wt(f(x)⊕ g(xi1 , . . . , xim))

2n
=

=

∑
(βi1 ,...,βim )∈GF(2)m wt

(
f

βi1 ,...,βim

i1,...,im
⊕ g(βi1 , . . . , βim)

)

2n
=

=
2m2n−m−1

2n
=

1
2

.

Thus, g(xi1 , . . . , xim) does not approximate f .
Suppose now that there are no approximations of f , depending on at most

m variables. In particular, there are no linear approximations, depending on at
most m variables, meaning that for any n-bit vector β = (β1, . . . , βn) such that
0 < wt(β) ≤ m, P (f(X) = (β1X1⊕ . . .⊕ βnXn)) = 1/2. On the other hand, for
any nonzero β the following known [1, p. 121] identity holds

P (f(X) = (β1X1 ⊕ . . .⊕ βnXn)) =
1
2
− Sf (β)

2n
, (20)

where Sf (β) is the Walsh transform of f evaluated in β. Thus, Sf (β) = 0 and
by Note 1, function f is mth-order correlation immune. ut

For any Boolean function f of n variables let Sm(f) denote the number of
subfunctions obtained by fixing m variables of f with zero values and having
an even weight. Let also Dn−m(f) denote the total number of (n −m)th-order
product terms, contained in the ANF of f . The following proposition, that eas-
ily follows from (17), establishes a relation between the values of Sm(f) and
Dn−m(f).

Proposition 4. For any Boolean function f of n variables and any positive
integer m ≤ n,

Sm(f) + Dn−m(f) =
(

n

m

)
.
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Further, let Cm(f) denote the number of mth-order correlation coefficient
vectors of f for which coordinate c0,...,0

i1,...,im
is equal to 1/2m. From (19) it is clear

that an nth-order correlation coefficient of a nonconstant Boolean function of n
variables can not be equal to 1/2n and thus, for such a function Cn(f) = 0.

Corollary 1. For any balanced Boolean function f of n variables and any pos-
itive integer m < n− 1,

Cm(f) + Dn−m(f) ≤
(

n

m

)
.

Moreover, equality holds if function f is such that

2n−m−1 − 1
2n−1

≤ c0,...,0
i1,...,im

≤ 2n−m−1 + 1
2n−1

(21)

for all index values i1, . . . , im with 1 ≤ i1 < . . . < im ≤ n.

Proof. By (19), coordinate c0,...,0
i1,...,im

of the mth-order correlation coefficient vector
of f , evaluated for the input subset (i1, . . . , im), is equal to 1/2m if and only if
wt

(
f0,...,0

i1,...,im

)
= 2n−m−1, which is an even value for any m < n − 1. Thus,

Cm(f) ≤ Sm(f) and the claimed inequality directly follows from Proposition 4.
Suppose now that condition (21) holds for all index values i1, . . . , im with

1 ≤ i1 < . . . < im ≤ n. Then, by (19),

2n−m−1 − 1 ≤ wt
(
f0,...,0

i1,...,im

)
≤ 2n−m−1 + 1 .

Suppose also that the ANF of function f does not contain the (n−m)th-order
product term

∏
j=1,...,n: j /∈{i1,...,im} xj . Then, by (17), the subfunction f0,...,0

i1,...,im

has an even weight, equal to 2n−m−1. Then, by (19),

c0,...,0
i1,...,im

=
1

2n−1

(
2n−m − wt

(
f0,...,0

i1,...,im

))
=

1
2m

.

So, if condition (21) holds then every missing (n − m)th-order product term
in the ANF of f gives rise to a 1/2m valued coordinate of the corresponding
correlation vector and thus,

Cm(f) ≥
(

n

m

)
−Dn−m(f) .

Now the latest inequality combined with the one argued in the first part of the
corollary produces the claimed equality. ut

From Corollary 1 and Note 1 it easily follows, that for m < n − 1 and any
m-resilient Boolean function f of n variables, Dn−k(f) = 0 for all k = 1, . . . , m
(since Ck(f) =

(
n
k

)
). The maximal order product term x1 · . . . · xn is missing

in the ANF of f since function f has an even weight. Therefore, the algebraic
degree of f does not exceed (n − m − 1). So, it can be concluded that if k
is the attainable algebraic degree and m is the attainable degree of resiliency
for a balanced Boolean function of n variables then k + m ≤ n − 1 (that is
Siegenthaler’s inequality for a balanced function).
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4 Probabilistic Function of a Boolean Function

Let us consider the arrangement when n sequences of nonuniform, independent
and identically distributed (i.i.d.) random binary variables are combined with a
Boolean function to produce an output sequence hopefully having better alge-
braic and statistical properties relevant to a key-stream. In this section we show
that an appropriately chosen combining function can compensate the nonuni-
form distribution of the inputs and generate the close-to-uniform output. Similar
problems were considered in a recent paper [12] where maximized estimates for
the bias of the distribution of the output bits were made. Our approach allows
to obtain explicit polynomial expression for this bias.

Definition 2. Let f(x1, . . . , xn) be a Boolean function of n variables. Assume
that X = (X1, . . . , Xn) is an n-tuple consisting of i.i.d. random binary variables
with P (Xi = 1) = pi for i = 1, . . . , n. Then function Ff (p1, . . . , pn) = P (f(X) =
1) is called the probabilistic function of f .

From Definition 2 it follows that Ff (p1, . . . , pn) =
∑

β: f(β)=1 P (X = β) and

if β = (β1, . . . , βn) then P (X = β) =
∏n

i=1 pβi

i (1− pi)1−βi . Thus, Ff (p1, . . . , pn)
is the polynomial of n variables p1, . . . , pn with integer coefficients.

Further, let Df (x1, . . . , xn) denote the real-valued, square-free (in variables)
polynomial of n variables with integer coefficients such that

Df (x1, . . . , xn) = f(x1, . . . , xn) for any (x1, . . . , xn) ∈ GF(2)n . (22)

Let us write down the polynomial Df in the canonical form

Df (x1, . . . , xn) =
2n−1∑

i=0

ai


 ∏

j=1,...,n: αj
i=1

xj


 ,

where αi = (α1
i , . . . , α

n
i ) is the n-bit binary expansion of i and ai ∈ ZZ. Then,

since (22) holds, the integer coefficients ai form the solution of the following
system of linear equations

M(a0, . . . , a2n−1)T = (f(0, . . . , 0), . . . , f(1, . . . , 1))T ,

where M = (mi,j)2n×2n (i, j = 0, . . . , 2n − 1) is a nondegenerate triangular
{0, 1}-matrix with mi,j = 1 if and only if the positions of ones in the n-bit binary
expansion of j are a subset of those in the binary expansion of i (in particular,
it is necessary that j ≤ i). Therefore, this system has a unique solution and that
proves the uniqueness of the polynomial Df . Moreover, the coefficient vector of
Df can be obtained by the algebraic normal transform of function f over IR (see
Sect. 2).

Identities x = 1 − x, x1 ∧ x2 = x1x2 and x1 ⊕ x2 = x1 + x2 − 2x1x2 con-
vert elementary Boolean operations into integer expressions. Thus, using these
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identities any formula representing f(x1, . . . , xn) in the basis {−,∧,⊕} (for in-
stance, the ANF) can be transformed into the real-valued polynomial of n vari-
ables with integer coefficients that satisfies (22). Moreover, if we assume that
x2

i ≡ xi (i = 1, . . . , n) then the constructed polynomial is square-free and, there-
fore, by the uniqueness, is equal to Df . That provides an alternative way for
constructing polynomial Df starting from a formula representing the Boolean
function.

Proposition 5. For any Boolean function f(x1, . . . , xn) and arbitrary values
p1, . . . , pn with 0 ≤ pi ≤ 1 for all i = 1, . . . , n

Ff (p1, . . . , pn) = Df (p1, . . . , pn) .

Proof. To prove this identity we apply induction on n.
Let n = 1. Then function f is one of the following four functions of a single

variable
f0 ≡ 0, f1 = x1, f2 = x1, f3 ≡ 1 .

But

P (f0 = 1) = 0 = Df0

P (f1 = 1) = P (X1 = 1) = p1 = Df1(p1)
P (f2 = 1) = P (X1 = 0) = 1− p1 = Df2(p1)
P (f3 = 1) = 1 = Df3 .

Now, supposing that the proposition is true for n = l−1, we prove it for n = l.
It is easy to see that the following decomposition of function f into subfunctions
holds:

f(x1, . . . , xl) = x1f
0
1 (x2, . . . , xl)⊕ x1f

1
1 (x2, . . . , xl) .

According to the induction hypothesis, Ffi
1
(p2, . . . , pl) = Dfi

1
(p2, . . . , pl) for i =

0, 1. On the other hand,

Df (x1, . . . , xl) = (1− x1)Df0
1
(x2, . . . , xl) + x1Df1

1
(x2, . . . , xl)

since x1f
0
1 (x2, . . . , xl)x1f

1
1 (x2, . . . , xl) ≡ 0 on GF(2)n. On the other hand, by

the rule of total probability

Ff (p1, . . . , pl) = (1− p1)Ff0
1
(p2, . . . , pl) + p1Ff1

1
(p2, . . . , pl) .

Thus, Ff (p1, . . . , pl) = Df (p1, . . . , pl) for any p1, . . . , pn with 0 ≤ pi ≤ 1 for all
i = 1, . . . , n. ut

Let wi (i = 0, . . . , n) denote the number of vectors having the weight i in
the support of a Boolean function f of n variables. Then vector (w0, . . . , wn) is
called the weight distribution of function f .

16



Let us assume first that p1 = . . . = pn = p = 1/2 + δ, where δ ∈ (−1/2, 1/2)
is the bias of the distribution of the random variable xi (i = 1, . . . , n). Then,
since

∑n
i=0 wi = wt(f),

Ff (p) =
n∑

i=0

wip
i(1− p)n−i =

n∑

i=0

wi

(
1
2

+ δ

)i (
1
2
− δ

)n−i

=

= d1δ + d2δ
2 + . . . + dnδn +

1
2n

wt(f) ,

where d1, . . . , dn are some real values. Let ∆f (δ) = Ff (1/2+ δ)−1/2 denote the
bias of the distribution of the function f output. In particular, if function f is
balanced then ∆f (δ) = d1δ + d2δ

2 + . . . + dnδn.
In case when the values of p1, . . . , pn are different let pi = 1/2 + δi (i =

1, . . . , n). The bias of the distribution of the function f output is defined in a
similar way as the polynomial of n variables

∆f (δ1, . . . , δn) = Ff

(
1
2

+ δ1, . . . ,
1
2

+ δn

)
− 1

2
. (23)

If function f is balanced then the constant term of polynomial ∆f (δ1, . . . , δn) is
equal to

∆f (0, . . . , 0) = Ff

(
1
2
, . . . ,

1
2

)
− 1

2
=

wt(f)
2n

− 1
2

= 0 .

And the other way around: if the constant term of polynomial ∆f (δ1, . . . , δn) is
equal to zero then function f is balanced. We will call polynomial ∆f (δ1, . . . , δn)
the bias polynomial of function f .

The coefficient vector of the bias polynomial is equal to the probabilistic
transform of function f (see Sect. 2) except for the initial coordinate of ∆f

which has to be corrected by subtracting 1/2. On the other hand, combining

(9) and (13), the coefficient vector can be expressed as − 1
2n+1

(
1 0
0 −2

)[n]

Sf̂ .

Coefficients of the bias polynomial can also be estimated using identities (14)
that are equivalent to [12, Theorem 3.1].

Definition 3. For k ∈ {1, . . . , n} a Boolean function f is called k-compensating
if the bias polynomial of f does not contain product terms having degree lower
than k.

Note that any balanced Boolean function is 1-compensating. For the par-
ticular case when p1 = . . . = pn, Definition 3 means that function f is k-
compensating if it is balanced and d1 = . . . = dk−1 = 0. In other words, if
the input of a k-compensating Boolean function is nonuniform with bias δ then
the bias on its output is at most the size of order δk. The following proposition
provides a method for constructing k-compensating functions.
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Proposition 6. Let f(x1, . . . , xn) = f1(x1, . . . , xk) ⊕ f2(xk+1, . . . , xn), where
k ∈ {1, . . . , n− 1}. Then

Ff (p1, . . . , pn)− 1
2

= −2
(

Ff1(p1, . . . , pk)− 1
2

)(
Ff2(pk+1, . . . , pn)− 1

2

)
,

i.e., ∆f (δ1, . . . , δn) = −2∆f1(δ1, . . . , δk)∆f2(δk+1, . . . , δn).

Proof. Since f1 ⊕ f2 = f1 + f2 − 2f1f2,

Df (x1, . . . , xn) = Df1(x1, . . . , xk) + Df2(xk+1, . . . , xn)−
− 2Df1(x1, . . . , xk)Df2(xk+1, . . . , xn) .

Therefore, by Proposition 5,

Ff (p1, . . . , pn) = Ff1(p1, . . . , pk) + Ff2(pk+1, . . . , pn)−
− 2Ff1(p1, . . . , pk)Ff2(pk+1, . . . , pn) ,

which is equivalent to the statement of the proposition. ut
The following corollary is obvious.

Corollary 2. Let f(x1, . . . , xn) be a Boolean function of n variables. If

(i) f(x1, . . . , xn) = f1(x1, . . . , xk)⊕f2(xk+1, . . . , xn), function f1 is k1-compen-
sating and function f2 is k2-compensating then function f is (k1 + k2)-
compensating;

(ii) f(x1, . . . , xn) = xi1 ⊕ . . .⊕ xik
⊕ a0 then

Ff (p1, . . . , pn)− 1
2

= (−1)a0(−2)k−1δi1 · . . . · δik
.

In other words, an affine function consisting of k linear terms is k-compen-
sating.

The following proposition, that is similar to [12, Theorem 3.2], easily follows
from (13) and Note 1. The proof provided further is not based on the previous
results and is given to keep this section integral.

Proposition 7. A Boolean function f(x1, . . . , xn) is k-resilient if and only if it
is (k + 1)-compensating.

Proof. For k = 0 the statement is obvious since a 0-resilient function is balanced
by the definition and, therefore, it is 1-compensating. Further we assume that
k > 0.

Let P (Xi = 1) = pi = 1/2 + δi (i = 1, . . . , n). By Definition 2,

Ff (p1, . . . , pn) = P (f(X) = 1) =

=
∑

(β1,...,βk)∈GF(2)k

pβ1
1 · . . . · pβk

k P (f(β1, . . . , βk, Xk+1, . . . , Xn) = 1) =

=
∑

(β1,...,βk)∈GF(2)k

pβ1
1 · . . . · pβk

k Ff (β1, . . . , βk, pk+1, . . . , pn) , (24)
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where pβi

i =
{

pi, if βi = 1,
1− pi, if βi = 0 (i = 1, . . . , n).

Function Ff (β1, . . . , βk, pk+1, . . . , pn) is a probabilistic function of subfunc-
tion fβ = fβ1,...,βk

1,...,k (xk+1, . . . , xn), where β = (β1, . . . , βk), and

Ff (β1, . . . , βk, pk+1, . . . , pn) = ∆fβ(δk+1, . . . , δn) +
1
2

. (25)

Therefore,

Ff

(
1
2

+ δ1, . . . ,
1
2

+ δn

)
(24,25)

=

=
1
2

∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· . . . ·
(

1
2

+ δk

)βk

+

+
∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· . . . ·
(

1
2

+ δk

)βk

∆fβ(δk+1, . . . , δn) =

=
1
2

+
∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· . . . ·
(

1
2

+ δk

)βk

∆fβ(δk+1, . . . , δn) . (26)

Let us assume that function f is k-resilient. Then, by (19), its subfunction
fβ is balanced for any (β1, . . . , βk) ∈ GF(2)k and for the probabilistic function
of fβ holds Ff (β1, . . . , βk, 1/2, . . . , 1/2) = 1/2. Now, by (25), ∆fβ (0, . . . , 0) =
Ff (β1, . . . , βk, 1/2, . . . , 1/2)− 1/2 = 0 and thus, the constant term of bias poly-
nomial ∆fβ (δk+1, . . . , δn) is equal to zero. If we look at function Ff (1/2+δ1, . . . ,
1/2+δn) as a polynomial of n variables then it is clear that all its product terms
depend on at least one of the variables δk+1, . . . , δn and its constant term is
equal to 1/2.

Further, by (19), for a k-resilient function f any subfunction f
βi1 ,...,βik
i1,...,ik

with
1 ≤ i1 < . . . < ik ≤ n and any (βi1 , . . . , βik

) ∈ GF(2)k is balanced. In a similar
way, it can be proved that all product terms in Ff depend on at least one of
the variables contained in the subset {δ1, . . . , δn} \ {δi1 , . . . , δik

}. The minimal
set containing representatives from all these subsets contains k + 1 elements.
Therefore, all product terms in Ff depend on at least k + 1 variables. Thus,
by (23), bias polynomial ∆f (δ1, . . . , δn) does not contain product terms having
degree lower than k + 1.

Let us now assume that function f is (k + 1)-compensating. Then, in partic-
ular, all product terms of polynomial ∆f (δ1, . . . , δn) depend on at least one of
the variables δk+1, . . . , δn and its constant term is equal to zero. Therefore,

∆f (δ1, . . . , δk, 0, . . . , 0) = Ff

(
1
2

+ δ1, . . . ,
1
2

+ δk,
1
2
, . . . ,

1
2

)
− 1

2
(26)
=

=
∑

(β1,...,βk)∈GF(2)k

(
1
2

+ δ1

)β1

· . . . ·
(

1
2

+ δk

)βk

∆fβ(0, . . . , 0) ≡ 0
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and polynomial ∆f (δ1, . . . , δk, 0, . . . , 0) is identically equal to zero. It is easy to
see that the coefficient of the multiple term δi1 · . . . · δit in the canonical form of
this polynomial is equal to

1
2k−t

∑

(β1,...,βk)∈GF(2)k

(−1)t−(βi1+...+βit )∆fβ (0, . . . , 0) = 0 ,

that should hold for any 0 ≤ t ≤ k and 0 ≤ i1 < . . . < it ≤ k. Thus, we have got
the system of 2k linear equations of 2k unknown ∆fβ (0, . . . , 0) with the matrix
consisting of elements mi,j = (−1)wt(αi)−〈αi,αj〉 for i, j = 0, . . . , 2k − 1, where
αi and αj are k-bit binary expansions of i and j respectively. This matrix is a
Hadamard matrix [5, p. 44] and it is nondegenerate. Therefore, this system has
the unique zero solution and ∆fβ(0, . . . , 0) = 0 for any (β1, . . . , βk) ∈ GF(2)k.
Thus, subfunctions fβ are balanced. In a similar way, it can be proved that any
subfunction f

βi1 ,...,βik
i1,...,ik

with 1 ≤ i1 < . . . < ik ≤ n and any (βi1 , . . . , βik
) ∈

GF(2)k is balanced. Then, by (19), function f is k-resilient. ut
Therefore, highly resilient Boolean functions significantly increase the size of

order for the bias of the distribution of the output bits compared to the bias
of the input. On the other hand, due to Siegenthaler’s inequality, Proposition 7
means that Boolean functions with high algebraic degree have poor compensat-
ing properties and vice versa. This fact underlines again the need for optimizing
algebraic degree with correlation and compensating properties when construct-
ing secure Boolean functions.

5 Conclusion

The classical algebraic normal and Walsh transforms appear to be a special case
of the tensor transform that also allows for the definition of new transforms, in
particular, probabilistic and weight transforms. The new transforms are crypto-
graphically important since they relate a Boolean function directly to its bias
polynomial and to the weights of its subfunctions. Easy proofs for some known
and new properties of algebraic normal and Walsh transforms can be given bas-
ing on general properties of the tensor transform. A tensor transform is based
on the Kronecker product of appropriate elementary cells. This fact allows to
use fast Fourier and Walsh transform algorithms for efficient estimation of any
tensor transform and easy transition from one transform to another.

The requirement for a cryptographically secure Boolean function to be cor-
relation immune can be weakened without undermining security if only slight
dependencies between input bits and the output are allowed. Correlation coef-
ficients provide an estimate for correlation dependencies and can be obtained
from the weight transform of a Boolean function. The number of (n − m)th-
order product terms in the ANF of a Boolean function f is directly related to
the number of subfunctions obtained by fixing m variables of f with zero values
and having an even weight. By increasing resiliency order of a Boolean function,
approximations of this function nondegenerate on few variables are eliminated.
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The probabilistic function allows to estimate the probabilistic distribution of
bits at the output of a Boolean function if the distribution of the arguments, the
function depends on, is known. The probabilistic function is a polynomial which
coefficients can be obtained by the algebraic normal transform of a Boolean
function over IR. The newly introduced measure for a Boolean function to com-
pensate a nonuniform distribution of its input bits was called the compensating
degree. Compensating degree can be efficiently estimated by the probabilistic
transform. Highly resilient Boolean functions significantly increase the size of
order for the bias of the distribution of the output bits compared to the bias of
the input. However, correlation and compensating properties need to be opti-
mized with the algebraic degree when constructing secure Boolean functions.
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