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Abstract

We propose an elliptic curve scheme over the ring Zn2 , which is efficient
and semantically secure in the standard model. There appears to be no pre-
vious elliptic curve cryptosystem based on factoring that enjoys both of these
properties. The KMOV scheme has been used as an underlying primitive to
obtain efficiency and probabilistic encryption. Semantic security of the scheme
is based on a new decisional assumption, namely, the Decisional Small-x e-
Multiples assumption. Confidence on this assumption is also discussed.
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1 Introduction

In 1984, Goldwasser and Micali [10] defined a new security notion that any encryp-
tion scheme should satisfy, namely indistinguishability of encryptions or semantic
security (IND-CPA), and they proposed a scheme with this property. This notion
informally says that a ciphertext does not leak any useful information about the
plaintext, except its length, to a passive polynomial-time attacker. This security
notion became a standard requirement for the design of new cryptosystems. Now, it
is generally recognized that the right notion of security for a cryptosystem is indis-
tinguishability against chosen ciphertext attack (IND-CCA). However, IND-CPA
security is still considered to deal with homomorphic encryption. Recently, some
new semantically secure cryptosystems in the standard model have been introduced
by Paillier [14] in 1999 and by Catalano et al. [4] in 2001. Both schemes are defined
over the ring Zn2 . Paillier’s scheme is the first homomorphic and semantically se-
cure cryptosystem based on a trapdoor permutation. It has attracted the attention
of the cryptographic community and several works have generalised and applied
Paillier’s result. In this way, Catalano et al. cryptosystem is a variant of Paillier’s,
with far improved efficiency. Besides, Catalano et al. encryption can be seen as a
probabilistic encryption obtained from RSA.

Elliptic curves have been broadly used in the design of cryptosystems. Never-
theless, as far as we know, the only semantically secure elliptic curve cryptosystems
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based on factoring are those presented by Paillier (the third proposal in [15]) and
Galbraith [9]. But, these schemes are impractical since they have a high computa-
tional cost, not only in encryption and decryption, but also in key generation.

In this paper we propose an efficient and semantically secure elliptic curve cryp-
tosystem based on factoring. To our knowledge there is no previous such elliptic
curve cryptosystem in the literature enjoying both properties. The efficiency of our
scheme is similar to the IND-CPA elliptic curve schemes based on the discrete log-
arithm. The proposal is inspired by some techniques in [4] and uses as underlying
primitive the KMOV scheme [11], that is an analogue of RSA in the elliptic curves
setting. So, as in [4], the resulting scheme is not homomorphic anymore.

The new proposed cryptosystem uses elliptic curves over the ring Zn2 , where
n is a RSA modulus. Its semantic security is based on a new decisional assump-
tion, namely the Decisional Small-x e-Multiples assumption. In some sense, this
assumption is analogous to the one on which Catalano et al. scheme is based.

In terms of efficiency, our proposal is only 3.75 times slower than Catalano et
al. cryptosystem, at the same security level. This result is beyond the hopes for the
previous IND-CPA elliptic curve cryptosystems based on factoring. On the other
hand, the encryption time of our scheme is similar to the well-known El Gamal
scheme over elliptic curves with standard parameters.

The rest of the paper is organised as follows. Section 2 is devoted to introduce
the definition and some results about elliptic curves. Section 3 briefly recalls the
schemes our cryptosystem is related to. In section 4, we describe the new scheme
and prove it is semantically secure under a new assumption. Then, we argue why
one should be confident on this new assumption. The computational cost of the new
scheme is discussed in section 5. Finally, section 6 contains the further research.

2 Some results about elliptic curves

In this section, we are going to summarize the definition and some results about
elliptic curves defined over the finite field Zp, and over the rings Zp2 and Zn2 , where
n is an RSA modulus.

Definition 1 Let p > 3 be a prime. An elliptic curve over the finite field Zp,
denoted by Ep(a, b), where a, b ∈ Zp, and gcd(4a3 + 27b2, p) = 1, is the set of points
(x, y) ∈ Zp × Zp such that y2 = x3 + ax + b mod p, together with a point O, called
the point at infinity.

The set Ep(a, b) is a group, with the usual tangent-and-chord operation. For
a extensive treatment on elliptic curves we refer to [17], and for an overview on
elliptic curve cryptosystems, see [13].

Elliptic curves can be also defined on the projective plane P2(Zp) as the set of
points (x : y : z) satisfying y2z = x3 + axz2 + bz3 mod p, and gcd(x, y, z, p) = 1. In
particular, the point (0 : 1 : 0) corresponds to the point at infinity O . Following
[9], this definition can be extended to the ring Zp2 . The natural map

πp : Ep2(a, b) → Ep(a, b)
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is a surjective group morphism whose kernel is the set {Ok = (kp : 1 : 0), k ∈ Zp},
called the set of points at infinity. En2(a, b) can be defined from the natural sur-
jective maps from En2(a, b) to Ep2(a, b) and Eq2(a, b). Via the Chinese Remainder
Theorem En2(a, b) can be seen as a group isomorphic to Ep2(a, b)×Eq2(a, b). Points
on curves En2(a, b) can be classified in three types:

• Points at infinity: Ok = (kn : 1 : 0), k ∈ Zn,

• Affine points: (x, y) = (x : y : 1) ∈ En2(a, b).

• Semi-infinite points: (x : y : z) ∈ En2(a, b), with gcd(z, n) = p or q.

Since semi-infinite points gives a factorization of n, they will not be considered.
The usual tangent-and-chord formulas allow to perform addition of affine points on
En2(a, b). To deal with points at infinity the following addition formulas are used:

Om + Om′ = Om+m′ .
(x, y) + Om = (x− 2ymn, y − (3x2 + a)mn).

Finally, we state a property we will use later on:

Property 2 Let P = (x, y) ∈ En(a, b), with y ∈ Z∗n. Then, there exists a unique
(x, y′) ∈ En2(a, b) such that y′ ≡ y mod n.

Proof : Let y′ = y + γn ∈ Zn2 , where γ ∈ Zn. Then, (x, y′) belongs to En2(a, b) if
and only if

γ =
x3 − y2 + ax + b

n
(2y)−1 mod n.

3 Some previous schemes

In this section we briefly recall Paillier’s scheme and some of its variants. The
original Paillier’s scheme [14] is performed on the multiplicative group Z∗n2 . Paillier
considers the following function:

Fg : Z∗n × Zn −→ Z∗n2

(r,m) 7−→ rngm modn2

where n is an RSA modulus, and g is an element of Z∗n2 with order multiple of n.
The function Fg is a trapdoor permutation assuming that inverting RSA[n, n] is
hard, where RSA[n, e] denotes the RSA function with exponent e. To encrypt a
message m ∈ Zn with randomness r ∈ Z∗n, one computes Fg(r,m). The scheme is
semantically secure under the decisional n-residuosity assumption [14].

In order to increase the efficiency of Paillier scheme, Catalano et al. [4] use a
slightly different trapdoor permutation:

Ee : Z∗n × Zn −→ Z∗n2

(r,m) 7−→ re(1 + mn)modn2
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for a small value of e, namely e ∈ Zn such that gcd(e, λ(n2)) = 1, where λ denotes
Carmichael’s function. The encryption scheme Ee(r,m) with randomness r ∈ Z∗n is
semantically secure under the decisional small e-residues assumption [4].

In [9], Galbraith proposes an elliptic curve Paillier scheme based on the one-way
trapdoor function

XQ : Zn × Zn −→ En2(a, b)
(r,m) 7−→ r#Q + Om

where Q ∈ En2(a, b) is a fixed point whose order is a big-enough factor of |En(a, b)|.
The semantic security of the scheme C = XQ(r,m) is related to the following
decisional problem: given a point Q ∈ En2(a, b) whose order is a divisor of |En(a, b)|,
and a random point S ∈ En2(a, b), determine whether S lies on the subgroup
generated by Q. The scheme has a high computational cost, both in key generation
and decryption. Moreover, Galbraith’s scheme involves the computation of the
multiple r#Q, where r has roughly the same length as n.

Koyama et al. propose in [11] an elliptic curve RSA based scheme. They use
supersingular elliptic curves of type En(0, b), and thus avoid the problem of com-
puting |En(a, b)|, because |En(a, b)| = (p + 1)(q + 1) when p ≡ q ≡ 2mod 3. To
encrypt a message m = (x, y) ∈ Zn × Zn, the following trapdoor one-way function
is used:

KMOV[n, e] : Zn × Zn −→ Zn × Zn

(x, y) 7−→ e#(x, y).

The e-multiple is computed on the elliptic curve En(0, b), where b = y2− x3 mod n.
Let us observe that the elliptic curve used to perform computation is determined
by the message point. We also point out that b 6∈ Z∗n with negligible probability.
The trapdoor is

d = e−1 mod lcm(p + 1, q + 1),

since d#(e#(x, y)) = (x, y) on En(0, b).
In the same way as RSA[n, e] with small exponent e is more efficient than Pail-

lier’s scheme, KMOV[n, e] for small values of e is significantly more efficient than
Galbraith’s scheme. Nevertheless, RSA and KMOV schemes are not semantically
secure. Our aim is to design a semantically secure elliptic curve cryptosystem that
makes use of the efficiency of KMOV cryptosystem.

4 The new scheme

In this section we present a KMOV-type scheme over the ring Zn2 which is seman-
tically secure under a new decisional assumption, and significantly preserves the
efficiency of the original scheme.

Let us consider the sets Ω = {(x, y) ∈ Zn2 × Z∗n2 | y2 − x3 ∈ Z∗n2} and Λ =
{(x, y) ∈ Zn × Z∗n2 | y2 − x3 ∈ Z∗n2} and the function

ψe : Λ× Zn −→ Ω
(x, y,m) −→ e#P + Om
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where P = (x, y), and the e-multiple as well as the addition are performed on
En2(0, b), with b = y2 − x3 mod n2.

Lemma 3 For all e such that gcd(e, n(p + 1)(q + 1)) = 1, ψe is well defined and
bijective.

The proof of this lemma is postponed to the appendix.
In the sequel we describe the proposed new scheme:

Key generation. Given e ≡ 1, 5 mod 6, (so e ≥ 5) and a security parameter `,
choose at random two primes p and q with ` bits such that p ≡ q ≡ 2mod 3 and
gcd(e, pq(p + 1)(q + 1)) = 1. Then the public key is PK=(n, e), where n = pq, and
the private key is SK=(p, q, d), where d = e−1 mod lcm(p + 1, q + 1).
Encryption. To encrypt a message m ∈ Zn we compute C = ψe(x, y, m), where
(x, y) is randomly chosen in Λ.
Decryption. To recover the message m from C = (cx, cy) = e#(x, y) + Om,
the randomness (x, y) is computed firstly and, afterwards, m is easily obtained
from Om = C − e#(x, y), where the operations take place on the curve En2(0, b),
with b = (c2

y − c3
x)modn2. Let us see how to compute (x, y) from C. Notice that

C = KMOV[n, e](x, y), where overline stands for reduction modulo n. Now, (x, y) =
d#C on En(0, b), because d is the trapdoor of KMOV[n, e]. Since 0 ≤ x < n, then
x = x and the point (x, y) is obtained by Property 2.

4.1 Semantic security

The scheme is semantically secure under the following assumption:
Decisional Small-x e-Multiples assumption (DSM assumption).
Let p, q be randomly chosen `-bit long primes, with p, q ≡ 2 mod 3, n = pq, and
let e be an integer such that gcd(e, n(p + 1)(q + 1)) = 1. The following probability
distributions are polinomially indistinguishable

De−multiple = (n, e#(x, y)) where (x, y) ∈R Λ
Drandom = (n, (x′, y′)) where (x′, y′) ∈R Ω.

¿From now on we will denote by D1 ≈ D2 the fact that two probability distri-
butions D1 and D2 are polinomially indistinguishable. Notice that if g is a bijec-
tion such that g and g−1 can be computed in probabilistic polynomial time, then
D1 ≈ D2 is equivalent to g(D1) ≈ g(D2).

Proposition 4 The proposed scheme is semantically secure if and only if the DSM
assumption holds.

Proof : Semantic security is equivalent to indistinguishability of encryptions, so we
have to prove that for all m0 ∈ Zn, the distributions

D0 = (n, e#(x, y) + Om0) where (x, y) ∈R Λ , and
D = (n, e#(x, y) + Om) where (x, y) ∈R Λ, m ∈R Zn.
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are polynomially indistinguishable. From the definition of sum of an affine point
and a point at infinity given at the end of section 2, it is easy to see that the map

Ω −→ Ω
P 7−→ P −Om0

is a polynomial time bijection. Then, D0 ≈ D is equivalent to

(n, e#(x, y)) ≈ (n, e#(x, y) + Om′), with (x, y) ∈R Λ, m′ ∈R Zn .

Note that the distribution on the left side is De−multiple. Besides, since e#(x, y) +
Om′ = ψe(x, y,m′), and ψe is a bijection, then D and Drandom are identically dis-
tributed.

4.2 Hardness of the Small-x e-Multiple Problems

In this subsection we argue why one should be confident on the hardness of the new
decisional problem presented in this paper. In [17] (Section 3, ex. 3.7) one proves
that given Q = (x, y) ∈ Ep(a, b) and e odd, then

e#Q =
(

φe(x)
ηe(x)2

,
ωe(x)
ηe(x)3

y

)
(1)

where φe(x), ηe(x) and ωe(x) ∈ Zp[x], whenever e#Q is defined. Moreover,

φe(x) = xe2
+ lower order terms,

ηe(x)2 = e2xe2−1 + lower order terms,

and they are relatively prime polynomials in Zp[x].
Thus, given (t1, t2) = e#(x0, y0), x0 is a root of the univariate polynomial

Pe(x) = φe(x)−t1ηe(x)2 ∈ Zn2 [x] whose degree is e2. Then, the DSM assumption is
related to the difficulty of deciding if the polynomial φe(x)− tηe(x)2, with t ∈R Zn2 ,
has a root smaller than n.

Similarly, the semantic security of Catalano et al. scheme is related to the
difficulty of deciding if the polynomial xe − t, with t ∈R Zn2 , has a root smaller
than n. The best known way to attack the above decisional problems is to solve their
computational versions. The problem of finding small roots of polynomials modulo a
large integer with unknown factorisation has been directly studied in the literature.
The most powerful result in this area was obtained by Coppersmith in [6]. This
result ensures that one can efficiently compute (i.e. in polynomial time) all roots
x0 of a polynomial p ∈ ZN [x] with degree d such that |x0| < N1/d. Up to now, no
improvement on this bound has been made. The result by Coppersmith implies we
cand find the roots |x0| < n2/e2

of the polynomial Pe(x). Taking into account that
in our case e ≥ 5, this does not affect the validity of the DSM assumption. In this
way, it makes sense to use the degree of the polynomials as a security parameter to
compare both primitives. Therefore, our primitive with parameter e could achieve
the same security level than Catalano et al. primitive with exponent e2.
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5 Efficiency analysis

We have argued it makes sense to use the degree of the polynomials xe − t and
Pe(x) as a security parameter to compare Catalano et al. scheme with ours. Since
the degree of Pe(x) is e2, we will study the computational encryption cost of both
schemes, first for the same security level, e2, and next for the same exponent e in
Ee and ψe.

Since operations modulo a large number are involved, we neglect the cost of
performing additions, multiplications and divisions by small integers. We will ex-
press the cost in terms of multiplications modn2, because modular inverses can be
computed within a constant number of modular multiplications. The main cost
in encryption is due to the computation of re modn2 and e#P ∈ En2(0, b) respec-
tively, and the amount of operations depends on the addition chain used. We will
suppose these addition chains are obtained by using the binary algorithm. Doubles
and addition of points on En2(0, b) are performed with the usual tangent-and-chord
formulas.

We point out that a−1 mod n2 can be obtained by computing a−1 modn and then
performing two multiplications modulo n2. Let c be the number of multiplications
modulo n needed to compute a−1 mod n. Since the cost of multiplying two numbers
mod n2 is roughly the cost of 4 multiplications modulo n, we deduce that a−1 mod n2

can be computed in 2 + c/4 multiplications modulo n2.
For the same security level, e2, the computational cost (in terms of modular

multiplications modulo n2) of Ee and ψe is 4blog2 ec+ 2 and (11 + c/2)blog2 ec+ 5,
respectively. ¿From this, we deduce that for the same security level, our scheme
is roughly 11

4 + c
8 times slower than Catalano et al. cryptosystem. Practical im-

plementations, suggests than the value c = 8 can be taken (see [3]), so our scheme
would be only 3,75 times slower than Catalano et al. scheme at the same security
level.

Thus we have proved that our scheme is drastically more efficient than the
previous semantically secure elliptic curve cryptosystems (ECC) in the standard
model based on factoring. If our scheme is implemented with the standard exponent
e = 17, we deduce from the table above that the number of multiplications modulo
n2 needed is bounded by 65, but using the special form of the exponent, this number
is trivially reduced to 44 multiplications modulo n2.

It is interesting to compare our scheme with existing semantically secure ECC in
the standard model over finite fields. We will compare the efficiency of our scheme
with the well-known El Gamal ECC scheme. We assume that El Gamal ECC is
performed over Z∗p, where p is 170 bits long, and our scheme is performed over Z∗n2 ,
where n is 1024 bits long (cf. [12]). We will express both encryption costs in terms
of multiplications modulo n2.

In El Gamal ECC the most time consuming operation is the computation of two
multiples r#P and ra#P , where r is a random integer which size is roughly the
same as the modulus p, and a is a fixed integer. Then, using the double and add
algorithm, the computation of these two multiples requires on average k additions
of points and 2k doublings, where k is the bit length of r. Assuming that a point
addition or doubling requires about 12 modular multiplications, then El Gamal ECC
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would take approximately 3·170·12 multiplications modulo p. Since the time needed
to perform a modular multiplication is quadratic in the size of the modulus, the
ratio between the time of a multiplication modulo p and a multiplication modulo
n2 is 1702

(2·1024)2
. It follows that the encryption time of El Gamal ECC would be

equivalent to 42 multiplications modulo n2.

6 Further research

Recently, Catalano, Nguyen and Stern [5], show that the one-wayness of Catalano
et al. scheme is equivalent to the one-wayness of the RSA[n, e] primitive. It remains
an open problem to study if this result extend to our scheme.

Security against adaptive chosen ciphertext attack, IND-CCA for short, can be
given in the random oracle model applying the technique introduced by Pointcheval
in [16]. Also, it would be interesting to provide IND-CCA security in the standard
model to Catalano et al. scheme as well as to ours. To achieve this goal, the recent
work of Cramer and Shoup [7] could provide useful ideas.

Appendix: proof of Lemma 3

The following function is well defined and bijective:

ψe : Λ× Zn −→ Ω
(x, y, m) −→ e#P + Om .

• ψe is well-defined.

¿From the addition formula for an affine point and a point at infinity (at the
very end of section 2), we deduce

ψe(x, y, m) ∈ Ω ⇐⇒ e#(x, y) ∈ Ω.

Therefore, it suffices to prove that, if y ∈ Z∗n2 , then e#(x, y) = (xe, ye),
with ye ∈ Z∗n2 . For the sake of contradiction, suppose ye ≡ 0mod p for
a prime factor p of n. Then, the point (xe, ye) has order 2 on the curve
Ep(0, b). Since gcd(e, |Ep(0, b)|) = 1, also the point (x, y) has order 2 on
Ep(0, b), contradicting the assumption y ∈ Z∗n2 .

• ψe is injective.

Let us suppose ψe(x, y, m) = ψe(x′, y′,m′). Reducing this equality modulo n,
we obtain e#(x, y) = e#(x′, y′) on En(0, b). Since gcd(e, |Ep(0, b)|) = 1, we
have the equality (x, y) = (x′, y′) on En(0, b). Now, taking into account that
(x, y), (x′, y′) belong to the same curve En2(0, b), and that 0 ≤ x, x′ < n, we
use Property 2 to deduce (x, y) = (x′, y′) on En2(0, b). Finally, it is easy to
see that Om = Om′ , and it follows that m = m′.

• ψe is surjective.
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Let Q ∈ Ω, d = e−1 mod lcm(p+1, q +1), and P = d#Q = (x, y) on the curve
En(0, b). Let P ′ = (x, y′) be the point on En2(0, b) given in Property 2. Then,
e#P ′ −Q is a point at infinity, Om. Therefore, Q = ψe(x, y′,m).
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