
Countermeasures against side-channel attacks for EC cryptosystems 1

Countermeasures against Side-Channel Attacks
for Elliptic Curve Cryptosystems*

Antonio Bellezza**
November 2001

1 : Overview

In recent years, some attacks on cryptographic systems have been deviced, exploi-
ting the leakage of information through so-called “side channels”. When a real-life
device is performing a coding or decoding procedure, one can measure quantities such
as the time employed, the profile of power consumption, the contents of a particular
memory cell. If the algorithm is known, this information can get to the knowledge of
part or all of the secret hidden in the device. This is the case when an exponentiation
with secret exponent is performed according to a known deterministic algorithm, in
case one can detect the order of squarings and products performed. This setting is
common to several crypto-systems, involving computations in (Z/pqZ)∗, in F∗q or in

* An extended version of this paper may be submitted to the CHES 2002 workshop.
** abellezza@beautylabs.net

The author thanks Elena Trichina of Gemplus for introducing him to the subject
of side-channel attacks and for precious help during the preparation of this paper.

2 Countermeasures against side-channel attacks for EC cryptosystems

the set of Fq-rational points of an elliptic curve.
Some countermeasures are possible. We show that, in the case of elliptic curves

over a binary finite field, one can split point addition into two blocks which, through
the addition of a little overhead, can be made undistinguishable from a point doubling.
Thus, the whole exponentiation process is performed as a sequence of homogeneous
steps.

Another measure involves adding a degree of randomization to the algorithm,
so that statistical attacks become unfeasible. For elliptic curve systems, for instance,
one can move to a random isomorphic elliptic curve, or change the field representation
([J–T]) or add a random point to the input and subtract a suitable multiple after the
exponentiation is performed ([Cor]). This last method is very efficient if one stores a
perturbation point and the final correction once and then updates them by doubling
both. This presents the disadvantage that one has to keep two points stored in non-
volatile RAM. We suggest as an alternative the use of points of small order, that allow
on the fly computation of arbitrary multiples with reduced overhead.

Another technique ([Cor]) uses a so called “exponent blinding”, by substituting
an exponent e by e+kN , with k a small random number and N the order of the group.
We suggest a multiplicative variation of this, involving a two-phase exponentiation.

We describe and analyze computer experiments implementing some of these ideas.

2 : Introduction

In some of the most widely used cryptographic systems, an exponentiation with
a secret exponent is required at some stage. “Exponentiation” in this context is the
repeated application of a group operation to the same element. Thus in additive
notation it is multiplication by an integer. In RSA, the group is the multiplicative
group of integers modulo the product of two big primes, while in discrete log systems
it can be the multiplicative group of a finite field or the group of points of an elliptic
curve with point addition. Some general purpose exponentiation algorithms exist,
which work for all such settings and involve a sequence of squarings, multiplications
and possibly divisions (respectively doublings, additions and possibly subtractions in
additive notation). Knowing the sequence of operations can give information on the
exponent and in some cases uniquely determine it. For real life implementations, an
attacker can be able to perform measurements on the device. If the different operations

Countermeasures against side-channel attacks for EC cryptosystems 3

present different characteristics detectable from the outside (like power consumption
profile or duration), the sequence of operations can be discovered by the attacker
(see [K]). In order to avoid this, it is important that the sequence of operations in
the exponentiation process either be independent of the secret exponent or present
homogeneous computational characteristics. For our case of interest, namely elliptic
curve cryptosystems, the operations involved are point doubling, addition and subtra-
ction. The computational characteristics depend on the characteristic of the base field
and on the representation chosen for points. One is often interested in finite fields of
characteristic 2, for which doublings in projective coordinates and additions in mixed
affine-projective coordinates with projective result allow to avoid inversions in the
field. For this situation, one can split point addition and subtraction into couples
of subroutines, each of which is computationally similar to the doubling procedure.
Modulo computing some unnecessary operations in the process, one can get the same
kinds of field operations performed in the same order with just a little overhead.

Other kinds of side-channel attacks are possible, which employ a statistical ana-
lysis of a repeated number of runs. In order to prevent this, suggested techniques
require adding a degree of randomness to the process. One proposed method ([Cor])
involves adding a random multiple of the order of the group to the exponent. This
doesn’t change the outcome, but does change the exponent and thus the order of
operations. If e is the original exponent, N the order of the group (a big prime in the
elliptic curve case, (p− 1)(q− 1) in the RSA case, with p and q two big primes), then
exponentiation is performed with exponent e+ kN with k varying at the end of each
run. The disadvantage is that the bit-length of the exponent is increased by about
the bit-length of k. We suggest a similar method, expressing e as the product of two
numbers, which is always possible, again at the expense of some overhead.

Other techniques involve using an addition or addition/subtraction chain with
some degree of randomness. For instance, 9P (additive notation) can be got with the
two different sequences

a1 ←P
a2 ←2a1 = 2P

a3 ←2a2 = 4P

a4 ←2a3 = 8P

a5 ←a1 + a4 = 9P

b1 ←P
b2 ←2b1 = 2P

b3 ←2b2 = 4P

b4 ←b3 + b1 = 5P

b5 ←b3 + b4 = 9P

The two latter techniques still allow the attacker to control on the input being pro-
cessed in the exponentiation loop. This could be exploited somehow.

4 Countermeasures against side-channel attacks for EC cryptosystems

Other techniques mask the input by applying some bijective function for which
it’s easy to compute the final correction. For example, for an elliptic curve this
can be done by moving to an isomorphic curve ([J–T]) or adding to the input a
“perturbation point” ([Cor]). This latter technique involves storing a couple (R,−eR)
and updating it at each run by doubling both elements. Exponentiation of an input I
with exponent e (again in additive notation) is performed with the following steps:

L←I +R

L←eL = eI + eR

L←L+ (−eR) = eI

As the argument I + R of the exponentiation phase does not depend exclusively on
the input, it is not possible to choose points with particular properties (such as a
particularly fast or particularly expensive doubling).

We suggest a variation on this idea, choosing as perturbation point a point of
small order on the curve. This will allow an independent computation of the point
and the correction at each run with fewer curve operations.

3 : Preliminaries and notation

Since we are interested in elliptic curves, the notation will be additive. Thus
the basic operations will be doubling, addition and subtraction. We will keep the
denomination “exponent” for the integer factor.

We will focus on elliptic curves over finite fields of characteristic 2, which have
an affine equation of the form

y2 + xy = x3 + ax2 + b

for two elements a and b in the base field. A point on the curve is either identified
by a couple of affine coordinates (Px, Py) or is the special point P∞. Each point has
also a projective expression of the form (PX , PY , PZ). If the point is P∞, then its
projective coordinates are (1, 1, 0). Else they are related to the affine coordinates via
the trasformation rules

(Px, Py) 7−→ (Px, Py, 1)

(PX/P 2
Z , PY /P

3
Z)←−7 (PX , PY , PZ)

Countermeasures against side-channel attacks for EC cryptosystems 5

If P and Q are points on the curve, then an addition ⊕ is defined so that P ⊕ Q is
also a point on the curve and P∞ is the neutral element. Thus one can also define a
subtraction P 	Q.

Some of the algorithms we will describe will work with different exponentiation
procedures. In order to be able to interchange them, we will rely on an algorithm
that trasforms an integer into an array indicating the order of operations to perform.
Possible contents of the resulting array cells are

D Double the result
A Add the input to the result
S Subtract the input from the result

They can be coded in 1 bit if subtraction is never performed or in 2 bits if all
three possibilities can appear.

Given such an algorithm ES (for Exponentiation Sequence), one can exponentiate
with the following algorithm:
Input:
element to exponentiate I, array a[1], . . . , a[l] obtained by ES applied to exponent e.
Output:
eI.

- Set R as the zero element (P∞ in the elliptic curve case);

- For i← 1, . . . , l do:

- If a[i] = D:

- R← 2R;

- Else if a[i] = A :

- R← R⊕ I;

- Else if a[i] = S :

- R← R	 I;

- Return R.

Choosing an appropriate algorithm ES, one can reproduce the binary and signed-
binary left-to-right algorithms.

In case the input is a fixed I, one can speed up the process by precomputing and
storing the elements 2I, 4I, . . . , 2kI where 2k is the biggest power of 2 not exceeding
the order of I. In this case we will rely on an algorithm IES (from Indexed Expo-
nentiation Sequence) returning an array a[1], . . . , a[l], where a[i] is a structure made
of a field a[i].op which is either A or S and an integer field a[i].d from 0 to k which
indicates which of the 2i-th multiples of I one should add or subtract. To implement

6 Countermeasures against side-channel attacks for EC cryptosystems

the structure, one can just employ an additional bit for the field op, or even completely
avoid it if one knows a priori that the operation is always an addition.

An IES procedure together with the following algorithm would perform expo-
nentiation:
Settings:
Elements I, 2I, . . . , 2kI.
Input:
Array a[1], . . . , a[l] obtained by IES applied to exponent e.
Output:
eI.

- Set R as the zero element (P∞ in the elliptic curve case);

- For i← 1, . . . , l do:

- If a[i].op = A

- R← R⊕ 2a[i].dI;

- Else if a[i].op = S

- R← R	 2a[i].dI;

- Return R.

4 : Homogeneous point operations in characteristic 2

In the choice of doubling and addition algorithms for elliptic curves, it is often
advisable to work in projective coordinates, which allows us to avoid costly inversions
in the field. For elliptic curves over fields of characteristic 2, complexities for doubling
and addition are

Table 4.1

General case Case a = 1

Curve operation M S A M S A

Doubling 5 5 4 5 5 4
Addition 11 3 7 10 3 7
Subtraction 11 3 8 10 3 8

Countermeasures against side-channel attacks for EC cryptosystems 7

The doubling is performed on projective coordinates and addition and subtraction
on mixed affine-projective coordinates with projective result.

The problem we are trying to address is the relevant computational difference
between addition/subtraction and doubling, which in implementations reflects in dif-
ferences detectable by an attacker. Observing that the complexity for point doubling
is about half of the complexity for addition/subtraction, one can think of splitting the
complex subroutines into two parts, each one approximately equivalent to a doubling.
This is actually possible. Before proceeding, we observe that computing the sub-
traction P 	 Q of two points just corresponds to computing P ⊕ (−Q). If Q has
affine coordinates (Qx, Qy), then −Q has affine coordinates (Qx, Qy +Qx). Thus, the
algorithms for addition and subtraction only differ by a field addition performed in
the subtraction and we will consider them at the same time. Furthermore, if the affine
point to be subtracted is the same throughout a loop, one can just compute Qx +Qy
once.

Here are the subroutines:
Doubling

The input is given by the coordinates (AX , AY , AZ) of the point to double.
λ1 ← A2

Z

λ2 ← AXλ1

λ3 ← AYAZ
λ4 ← A2

X

λ5 ← λ2 + λ4

λ6 ← b̃λ1

λ7 ← AX + λ6

λ8 ← λ2
4

λ9 ← λ8λ2

λ10← λ5 + λ3

λ11← λ4
7 obtained by two squarings

λ12← λ10λ11

λ13← λ9 + λ12

Here b̃ is such that b̃4 = b. It can be computed once and for all when the curve
is set. The ouput point has projective coordinates (λ11, λ13, λ2).

The sequence of operations is SMMSAMASMASSMA.
Addition/subtraction - first subroutine

The input is given by the projective coordinates (AX , AY , AZ) and the affine
coordinates (Bx, By) of the points to add.

λ1 ← AZ
2

8 Countermeasures against side-channel attacks for EC cryptosystems

λ2 ← λ1Bx
λ3 ← λ1AZ
λ4 ← By (addition)

or
λ4 ← By +Bx (subtraction)
λ5 ← λ4λ3

λ6 ← AX + λ2

λ7 ← AZλ6

λ8 ← AY + λ5

λ9 ← λ8Bx
λ10← λ7λ4

λ11← λ7 + λ8

The sequence of operations is SMMAMAMAMMA.
Addition/subtraction - second subroutine

This soubroutine is executed right after the previous one, of which it uses some
of the partial results.

µ1 ← λ2
7

µ2 ← µ1a

µ3 ← λ8λ11

µ4 ← λ2
6

µ5 ← µ2 + µ3

µ6 ← λ6µ4

µ7 ← µ5 + µ6

µ8 ← µ7λ11

µ9 ← λ9 + λ10

µ10← µ9µ1

µ11← µ8 + µ10

The output point has projective coordinates (µ7, µ11, λ7).
The sequence of operations is SMMSAMAMAMA.
By adding unused operations, we can make the sequence of operations for the

three subroutines equal to SMMSAMASMASSMMA, which amounts to 6 products,
5 squarings and 4 additions.

Observe that the addition and subtraction algorithms are not valid if one of the
points is zero or the points are equal (resp. opposite for subtraction). One should
add a check at the beginning of the routines, but during the use in an exponentiation
algorithm one is usually sure not to be in one of these exceptional cases.

When choosing an elliptic curve, setting a = 1 allows us to skip the product

Countermeasures against side-channel attacks for EC cryptosystems 9

yielding µ2 in addition-subtraction-phase II subroutines. This makes the total number
of products in addition and subtraction exactly twice the number for doubling and
efficiency can be increased. To get the new subroutines, one has to move a product
from phase I of addition and subtraction to addition-subtraction-phase II. This is
achieved in the following subroutines, for which we keep as much as possible the
numeration of the previous ones:
Addition/subtraction - first subroutine (case a = 1)

As above, the input is given by the projective coordinates (AX , AY , AZ) and the
affine coordinates (Bx, By) of the points to add.

λ1 ← AZ
2

λ2 ← λ1Bx
λ3 ← λ1AZ
λ4 ← By (addition)

or
λ4 ← By +Bx (subtraction)
λ5 ← λ4λ3

λ6 ← AX + λ2

λ7 ← AZλ6

λ8 ← AY + λ5

λ9 ← λ8Bx
λ11← λ7 + λ8

The sequence of operations is SMMAMAMAMA.
Addition/subtraction - second subroutine (case a = 1)

This soubroutine is executed right after the previous one, of which it uses some
of the partial results.

µ1 ← λ2
7

µ2 ← λ7λ4

µ3 ← λ8λ11

µ4 ← λ2
6

µ5 ← µ1 + µ3

µ6 ← λ6µ4

µ7 ← µ5 + µ6

µ8 ← µ7λ11

µ9 ← λ9 + µ2

µ10← µ9µ1

µ11← µ8 + µ10

The output point has (again) projective coordinates (µ7, µ11, λ7).

10 Countermeasures against side-channel attacks for EC cryptosystems

The sequence of operations is SMMSAMAMAMA.
The shortest operation sequence including the two above and the sequence for

doubling is now SMMSAMASMASSMA, using 5 products, 5 squarings and 4 addi-
tions.

The complexity table for various possibilities is the following

Table 4.2

General case Case a = 1

Curve operation M S A M S A

Doubling (old) 5 5 4 5 5 4
Doubling (new) 6 5 4 5 5 4
Addition (old) 11 3 7 10 3 7
Addition (new) 12 10 8 10 10 8
Subtraction (old) 11 3 8 10 3 8
Subtraction (new) 12 10 8 10 10 8

Observe that (especially when working with normal basis), squarings in characte-
ristic 2 are very cheap. Thus we are wasting little more than one field multiplication
per curve operation in the general case, and only a few additions and squarings in the
case a = 1.

5 : An exponentiation algorithm using homogeneous point operations

The preceding algorithms can be used to implement an exponentiation algorithm
which shows to the outside a sequence of homogeneous rounds. The subroutines for
doubling, addition-phase I, subtraction-phase I and addition/subtraction-phase II are
implemented. In order to achieve homogeneity, they are invoked with the same kind of
parameters, i.e. with 5 field elements representing the projective and affine coordinates
of two curve points. The result is a point in projective coordinates, i.e. a triplet of field
elements. We suppose that phase I of addition and subtraction return the first input
point (the one in projective coordinates). The functions will be called Fi with i being

Countermeasures against side-channel attacks for EC cryptosystems 11

0 for doubling, 1 for addition/I, 2 for subtraction/I and 3 for addition-subtraction/II.
The functions F1 and F2 also have side-effects, namely they store in memory partial
results which will be used by F3.

Suppose the exponent e is stored as an array of symbols D, A and S as output
by an ES algorithm as described in Chapter 3. Then one creates an array where each
D is coded as 0, each A as the two adjacent cells containing 1 and 2 and each S as
two cells containing 1 and 3. This way we get an array coding the sequence of Fi’s to
use and we invoke them accordingly. This is resumed in the following algorithm. We
suppose the curve parameters to be accessible to the subroutines and thus we do not
specify them explicitly as input.
Input:
Point I = (Ix, Iy) in affine coordinates
Exponent e
Output:
Point eI in affine coordinates

Precomputations:
- Store ES(e) in array a[1], . . . , a[l] Compute the sequence of ope-

rations via an ES-algorithm.
- Set d← 1 The destination index, upda-

ted as the destination array is
filled

- For i← 1, . . . , l:

- Switch(a[i]):

- Case D: Set b[d]← 0; set d← d+ 1

- Case A: Set b[d]← 1; set b[d+ 1]← 3; set d← d+ 2

- Case S: Set b[d]← 2; set b[d+ 1]← 3; set d← d+ 2

Main loop:
- Set (SX , SY , SZ)← (1, 1, 0) Projective coordinates of P∞.

This is going to contain the
result in projective coordina-
tes

- For i← 1, . . . , d− 1:

- Set (SX , SY , SZ)← Fb[i](SX , SY , SZ , Ix, Iy) In case b[i] = 1, 2, this also
stores in memory some values
used in the following F3.

12 Countermeasures against side-channel attacks for EC cryptosystems

Final conversion:
- Set Sx ← SX/S

2
Z

- Set Sy ← SY /S
3
Z

- Return the point with affine coordinates (Sx, Sy)

In the loop in the precomputation phase, case D differs from cases A and S. If
the exponent is costant through several runs, this phase can be performed only when
the exponent is set on the device and one doesn’t have to worry. If e varies at each
run (for instance if random multiples of the group order are added to it), then care
must be taken to mask this phase.

6 : Randomizing the input point

A component of some statistical attacks is the choice of inputs for which some
quantity appearing in the exponentiation process is known to have particular proper-
ties ([Kocher]). For instance, one could choose a point such that its 2i-th multiple
has a zero coordinate and check whether a particularly efficient addition appears
in the process. A suggested countermeasure ([Cor]) involves perturbating the input
point by adding a random point R and adding −eR at the end of the exponentiation
loop. Computing a couple (R,−eR) would increase too much the complexity of the
algorithm (unless one exploits some kind of parallelism), so one stores such a couple
and updates it by multiplying each of the two points by a same small factor at the end
of each run. With this method, the attacker has no control whatsoever on the point
processed, as the outcome of the perturbation can be any point in the group. Besides,
this adds a degree of variability to the field operations involved and this constitutes a
defense against a wide spectrum of statistical attacks. A disadvantage of this method
is that it requires two supplementary points to be stored in non-volatile RAM. On
devices with constraints, one would prefer to avoid this.

We suggest a variation using points of small order which presents some disadvan-
tages but allows on-the-fly computation of the perturbation point and the final corre-
ction.

Elliptic curves of use for cryptographic purposes have a group of points with order
a big prime N times a cofactor h. As the order of the total group is about the size of
the base field (with difference being at most of the order of twice the square root of

Countermeasures against side-channel attacks for EC cryptosystems 13

the size of the field), in order to exploit efficiently the field one usually requires the
cofactor to be as small as possible. We suggest choosing as the perturbation point R
a point of order h. We set the following hypotesis:

i. We call lN and lh the bit-lengths of N and h respectively.
ii. We require the subgroup of order h, which is either cyclic or the product of two

cyclic groups, to be cyclic with a generator we will call Q.
iii. We suppose the cofactor not to be too small (a cofactor of 2 would be no good)

but such that lh is not bigger than, say, lN/5. [ANSI] contains an example
with lh = 16 and lN = 161.
We compute a random point of order h as the multiple of Q by a random factor r

between 0 and h − 1. The final correction to apply is T := −erQ. We can actually
compute it as (−ermodh)Q. The factor is again between 0 and h − 1. As the bit-
length of h is considerably less than the bit-length of N , the exponentiations to get R
and T are faster than the main exponentiation. We will examine the overhead later.
One can speed up this phase by storing 2Q, 4Q, . . . , 2lh−1Q.

The computation of rQ and (−ermodh)Q must be masked. If the attacker could
get simultaneous information on r and (−ermodh), with h being public, that would
reveal information on the secret exponent e. As r changes after each run, one has to
take care mostly of single-run analysis. Storing 2Q, 4Q, . . . , 2lhQ allows us to perform
only additions (or additions and subtractions) and in any order. We code the sequence
of which additions to perform on which destination in an array and shuffle it according
to another random register s.

The following algorithm relies on a procedure IES as described in Chapter 3.
Apart from the fields op and d, the blocks computed also store in an additional bit-
field c the point involved. This allows us to shuffle the blocks related to different
points while keeping able to perform the desired operations.
Settings:
The curve parameters;
The affine coordinates of point Q generating the subgroup of order h;
Input:
A “random” integer r between 0 and h;
A “random” lh-bit integer s;
Output:
The projective coordinates of rQ and (−ermodh)Q = tQ.

Computation of the index array:
- t← (−re) modh

14 Countermeasures against side-channel attacks for EC cryptosystems

- Store IES(e) in the array b[1], . . . , b[l1], setting the field b[i].c to 0;

- Store IES(t) in the array b[l1 + 1], . . . , b[l1 + l2], setting the field b[i].c to 1;

Shuffling:
- Set w ← dlog2(l1 + l2)e; 2w is at least the dimension of

array b
- For i = 0, . . . , lh − w do:

- Set start← si + 2si+1 + . . .+ 2w−1si+w−1 start represents the slice of s
from bit i to bit i+ w − 1.

- Set end← slh−i−1 + 2slh−i−2 + . . .+ 2w−1slh−i−w the reversed slice of s from
bit lh− i− 1 to bit lh− i−w.

- For j = 0, . . . ,
⌊

(end−start) mod (l1+l2)
2

⌋
do:

- swap b
[(

(start+ j) mod (l1 + l2)
)

+ 1
]

and b
[(

(end− j) mod (l1 + l2)
)

+ 1
]
.

Computation:
- Set (RX , RY , RZ) = (1, 1, 0) Projective coordinate of P∞.

This point will evolve into rQ.
- Set (TX , TY , TZ) = (1, 1, 0) Projective coordinate of P∞.

This point will evolve into tQ.
- For i = 1, . . . , l1 + l2 do:

- If b[i].c is set: then we are working on T

- If b[i].op = A

- compute (TX , TY , TZ)← (TX , TY , TZ)⊕ (2b[i].dQ)

- else (b[i].op = S):

- compute (TX , TY , TZ)← (TX , TY , TZ)	 (2b[i].dQ)

- Else (b[i].c not set):

- If b[i].op = A :

- compute (RX , RY , RZ)← (RX , RY , RZ)⊕ (2b[i].dQ)

- else (b[i].op = S):

- compute (RX , RY , RZ)← (RX , RY , RZ)	 (2b[i].dQ)

- Return points (RX , RY , RZ) and (TX , TY , TZ).

The number of additions and subtractions required by this algorithm depends on
the procedure chosen for IES. In case of ordinary binary exponentiation it equals the

Countermeasures against side-channel attacks for EC cryptosystems 15

number of bits set, i.e. an average of lh additions (twice lh/2). In case of signed NAF
exponentiation, this reduces to 2

3 lh.
We have to point out that the choice of a curve with cofactor of adequate size

has a further cost. In fact, lN + lh is about the bit-size of the base field. Thus one is
forced to use larger fields to achieve the same degree of security.

7 : Masking the exponent

One way to add randomness to the exponentiation process, regardless of the
algorithm used, consists in masking the exponent. One known method consists in
adding a multiple of the element order to the exponent (see [Cor]). We will refer
to this as additive blinding. If N is the group order, then ea = (e + kN)a for any
integers e and k and for any element a in the group. As e usually is the size of the
group order, choosing an l-bit integer k increases the size of the exponent by about
l bits.

We suggest a multiplicative analogue of this idea, which we will call multiplicative
blinding. LetN be the group order. If k is a unit in the multiplicative group (Z/NZ,×)
and we call k−1 its inverse, then

e = k(k−1e) (mod N)

for any exponent e. This means that calling e′ := k−1emodN , for any group element a
one has the following equivalent exponentiations:

1. a
e7−→ ea

2. a
k7−→ ka

e′7−→ (e′k)a
3. a

e′7−→ e′a
k7−→ (ke′)a

4. a
ke′7−→ (ke′)a

Sequence 1. is the straightforward exponentiation, sequence 4. is a subcase of the
additive blinding technique. Sequences 2. and 3. are performed in two phases. We will
focus on sequence 2. The overhead is given by the exponentiation with exponent k,
since both e and e′ are on average the size of N . To keep overhead low, one can
choose k to yield a fast exponentiation, for instance by choosing it randomly among
the elements of (Z/NZ)∗ of at most l bits, with a small l. As in the additive blinding,
one can trade-off the degree of randomization (and thus the security) for speed.

16 Countermeasures against side-channel attacks for EC cryptosystems

If sequence 2. is used, the element fed to the second phase is not controlled
by an attacker. The first phase, on the other hand, doesn’t leak any information
whatsoever on the secret exponent, depending uniquely on the input element and the
random integer k. Thus one gets at the same time a change in the sequence of point
operations and, in the second phase, a randomization of the processed point.

8 : Computer experiments

We implemented some of the idea explained in the previous chapters. For finite
fields, we implemented basic operations from scratch in C following [Impl]. For
multiplication we implemented right to left and left to right comb methods, plus a
base 16 left to right comb method. As the inversion algorithm we chose the extended
euclidean algorithm. The resulting libraries are available for download at [BFFL].
Sample timings for a few fields are given below

Table 8.1(Timings for field operations in µs)

F2163 F′2163 F2233 F2283

Operation

Addition 0.16 0.16 0.17 0.16

Squaring 0.34 0.37 0.38 0.53

Products:
RL comb 7.00 7.13 9.86 18.76
LR comb 10.04 10.10 14.93 18.72

Base 16 LR comb 2.78 2.80 3.61 4.59

Inversion 36.02 36.05 60.50 77.97

Timings where taken on an AMD Duron 600 Mhz running Linux. As polynomial
basis, we followed [Impl] and [ANSI], choosing

F2163 = F2[x]/(x163 + x7 + x6 + x3 + 1)

F′2163 = F2[x]/(x163 + x8 + x2 + x+ 1)

F2233 = F2[x]/(x233 + x74 + 1)

F2283 = F2[x]/(x283 + x12 + x7 + x5 + 1)

Countermeasures against side-channel attacks for EC cryptosystems 17

We implemented both binary and signed NAF exponentiation for elliptic curves
over F2163 , choosing a curve E1 with a = 1 and a general curve E2. Point opera-
tions were performed using the standard sequence of operations and the homogeneous
versions. Both binary and NAF exponentiations were used. The parameters were the
following:

Table 8.2(Elliptic curve parameters)

E1 (from [Impl])

F F2[x]/(x163 + x7 + x6 + x3 + 1)
a 01

b 02 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD

N 04 00000000 00000000 000292FE 77E70C12 A4234C33

h 02

Qx 03 FB02D922 0A5E7980 D9C7C192 AFC7EDC4 19B261E4

Qy 05 F8692B70 5F82AAF2 7E41D4D3 82D9E359 98979F99

E2 (from [ANSI])

F F2[x]/(x163 + x8 + x2 + x+ 1)
a 07 2546B543 5234A422 E0789675 F432C894 35DE5242

b 00 C9517D06 D5240D3C FF38C74B 20B6CD4D 6F9DD4D9

N 04 00000000 00000000 000292FE 77E70C12 A4234C33

h 02

Qx 07 AF699895 46103D79 329FCC3D 74880F33 BBE803CB

Qy 06 434AB98E 1F769093 2FA04BCA 9ED0479D 4B5FC954

To get the following timings, the generating points were multiplied by a random
exponent both with standard and homogeneous operations. For E1 the fact that a = 1
was taken into account in both versions.

18 Countermeasures against side-channel attacks for EC cryptosystems

Table 8.3(Exponentiation timings in µs)

binary NAF

E1

standard 5355 4699
homogeneous 5512 4847
overhead 2.9% 3.1%

E2

standard 5642 4932
homogeneous 6581 5770
overhead 16.6% 17.0%

The expected overhead for the general case, only taking into account field multi-
plications, would be

6 + 12/2
5 + 11/2

− 1 ∼= 14.3%

in the case of binary exponentiation and

6 + 12/3
5 + 11/3

− 1 ∼= 15.4%

for NAF exponentiation. Taking also squarings and additions into account, the
experimental results closely reflect the expected increase in complexity. The case a = 1
as expected presents a very low computational cost with respect to standard imple-
mentations.

Bibliography

[ANSI] ANSI working draft x9.62-1998

[BFFL] Antonio Bellezza Binary Finite Field Library

http://www.beautylabs.net/software/finitefields.html

[Cor] J. S. Coron Resistance against differential power analysis attacks for

elliptic curve cryptosystems Proc. CHES 1999 LNCS 1717 (1999)

[Impl] Darrel Hankerson, Julio López Hernandez, Alfred Menezes Software im-

plementation of elliptic curve cryptography over binary fields

Proc. CHES 2000 LNCS 1965 (2000)

[J–T] Marc Joye, Cristophe Tymen Protections against Differential Analysis

for Elliptic Curve Cryptography – An Algebraic Approach Proc. CHES
2001 LNCS 2162 (2001)

[K] Paul C. Kocher Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems Proc. Advances in Cryptology–Crypto’96
LNCS 1109 (1996)

[O–A] Elisabeth Oswald, Manfred Aigner Randomized Addition-Subtraction

Chains as a Countermeasure against Power Attacks Proc. CHES 2001
LNCS 2162 (2001)

Contents

1 : Overview . 1
2 : Introduction .2
3 : Preliminaries and notation .4
4 : Homogeneous point operations in characteristic 2 . 6
5 : An exponentiation algorithm using homogeneous point operations 10
6 : Randomizing the input point . 12
7 : Masking the exponent . 15
8 : Computer experiments . 16

