
Robustness for Free
in Unconditional Multi-Party Computation

Martin Hirt and Ueli Maurer

ETH Zurich, Switzerland

Manuscript, February 12, 2001

Abstract. We present a very efficient multi-party computation protocol unconditionally secure
against an active adversary. The security is maximal, i.e., active corruption of up to t < n/3 of
the n players is tolerated. The communication complexity for securely evaluating a circuit with
m multiplication gates over a finite field is O(mn2) field elements, including the communication
required for simulating broadcast. This corresponds to the complexity of the best known protocols
for the passive model, where the corrupted players are guaranteed not to deviate from the protocol.
Even in this model, it seems to be unavoidable that for every multiplication gate every player must
send a value to every other player, and hence the complexity of our protocol may well be optimal.
The constant overhead factor for robustness is small and the protocol is practical.

1 Introduction

1.1 Secure multi-party computation

Secure multi-party computation (MPC), as introduced by Yao [Yao82], allows a set of n players
to compute an arbitrary agreed function of their private inputs, even if an adversary may cor-
rupt up to t arbitrary players. Almost any distributed cryptographic protocol can be seen as a
multi-party computation, and can be realized with a general MPC protocol. Multi-party com-
putation protocols are an important building block for reducing the required trust and building
secure distributed systems. While currently special-purpose protocols (e.g., for collective sign-
ing) are considered practical, this paper suggests also that general-purpose protocols may well
be practical for realistic applications.

Two different notions of corrupting are usually considered. A passive (or curious) adversary
may only read the information stored by the corrupted players, without controlling the player’s
behavior. Hence only privacy of the inputs is an issue to consider, but not the correctness of the
result. In contrast, an active adversary can take full control of the corrupted players. Assuring
not only the privacy of the inputs, but also the correctness of the outputs (robustness) appears
to entail a substantial overhead. For instance, all known protocols make (usually heavy) use of
a broadcast sub-protocol for which the optimal known complexity is O(n2).

We briefly review the classical results on secure MPC. Goldreich, Micali, and Wigderson
[GMW87] presented a protocol, based on cryptographic intractability assumptions, which allows
n players to securely compute an arbitrary function even if an active adversary corrupts any t <
n/2 of the players. In the secure-channels model, where bilateral secure channels between every
pair of players are assumed, Ben-Or, Goldwasser, and Wigderson [BGW88] and independently
Chaum, Crépeau, and Damg̊ard [CCD88] proved that unconditional security is possible if at most
t < n/3 of the players are corrupted. In a model where additionally physical broadcast channels
are available, unconditional security is achievable if at most t < n/2 players are corrupted
[RB89,Bea91b,CDD+99].

1.2 Previous work on efficiency

In the past, both the round complexity and the communication complexity of secure multi-
party protocol were subject to many investigations: Protocols with low round complexity
[BB89,BFKR90,FKN94,IK00] suffer either from an unacceptably high communication complex-
ity (even quadratic in the number of multiplication gates), or tolerate only a very small number
of cheaters.

First steps towards better communication complexity were taken by Franklin and Yung
[FY92] and Gennaro, Rabin, and Rabin [GRR98], where first a private but non-resilient com-
putation is performed (for the whole protocol in [FY92], and for a segment of the protocol in
[GRR98]), and only in case of faults the computation is repeated with a slow but resilient pro-
tocol. Although this approach can improve the best-case complexity of the protocol (when no
adversary is present), it cannot speed up the protocol in the presence of a malicious adversary: a
single corrupted player can persistently enforce the robust but slow execution, annihilating any
efficiency gain.

Recently, Hirt, Maurer, and Przydatek [HMP00] proposed a new protocol for perfectly secure
multi-party computation with considerably better communication complexity than previous pro-
tocols: A set of n players can compute any function (over a finite field F) which is specified as a
circuit with m multiplication gates (and any number of linear gates) by communicating O(mn3)
field elements, contrasting the previously best complexity of O(mn6). Subsequently, the same
complexity was achieved by Cramer, Damg̊ard, and Nielsen [CDN01] in the cryptographic model
(where more cheaters can be tolerated).

1.3 Contributions

The main open question in this line of research was whether security against active cheaters
can be achieved with the same communication complexity as security against passive cheaters,
namely with O(mn2). We answer this question in the affirmative: The only (and unavoidable)
price to to pay for active security is a reduction in the number of tolerable cheaters (t < n/3
instead of t < n/2). The computation complexity of the new protocol is on the order of the
communication complexity and hence not relevant. The achieved communication complexity of
O(mn2) appears to be optimal. Even in the passive case, it appears unavoidable that every
player sends a value to every other player for each multiplication gate.

The new protocol uses Beaver’s circuit-randomization technique [Bea91a] and the player-
elimination framework from [HMP00].

2 Model

We consider the well-known secure-channels model as introduced in [BGW88]: The set P =
{P1, . . . , Pn} of n players is connected by bilateral synchronous reliable secure channels. Broad-
cast channels are not assumed to be available. The goal of the protocol is to compute an agreed
function, specified as an arithmetic circuit over a finite field F with |F| > n. The number of
multiplication gates in the circuit is denoted by m. To each player Pi a unique public value
αi ∈ F \ {0} is assigned, where for computation efficiency we assume that αi = ωi for some n-th
root of unity ω (see Appendix B for details). The computation of the function is secure with
respect to a computationally unbounded active adversary that is allowed to corrupt up to t of
the players, where t is a given threshold with t < n/3. Once a player is corrupted, the adversary

2

can read all his information and can make the player misbehave arbitrarily. The security of our
protocol is unconditional with an arbitrarily small probability of error. Formal definitions of
security can be found in [Can00] and in [MR98], and our protocols are secure for any of these
definitions.

3 Protocol Overview

The protocol proceeds in two phases: In a preparation phase, which could actually be performed
as a pre-computation independent of the circuit (except an upper bound on the number m of
multiplication gates must be known), m random triples (a(i), b(i), c(i)) (for i = 1, . . . ,m) with
c(i) = a(i)b(i) are shared among the players. In the computation phase, the circuit is evaluated
gate by gate, where for each multiplication gate one shared triple from the preparation phase is
used [Bea91a].

In the preparation phase, some of the players in P might be eliminated, and the sharings
are only among the set P ′ ⊆ P of remaining players. However, it will be guaranteed that the
number of corrupted players in P ′ is smaller than (|P ′| − t)/2, which is sufficient for evaluating
the circuit.

As the underlying secret-sharing scheme we use the scheme of Shamir [Sha79], like in most
threshold protocols: A value s is t-shared among the players means that every player Pi holds a
share si, and there exists a polynomial f(x) of degree at most t such that f(0) = s and f(αi) = si

for i = 1, . . . , n.

4 Preparation Phase

The goal of this phase is to generate m t-shared random triples (a(i), b(i), c(i)) with c(i) = a(i)b(i)

in such a way that the adversary obtains no information about a(i), b(i), and c(i) (except that
c(i) is the product of a(i) and b(i)). The generation of these triples makes extensive use of the
player-elimination framework of [HMP00]:

Therefore, the triples are generated in blocks of ` = dm/ne triples. The triples of a block
are generated (in parallel) in a non-robust manner; only at the end of the block, consistency
is checked jointly for all triples of the block in a single verification procedure (fault detection).
In case of an inconsistency, a set D ⊆ P of two players, at least one of whom is corrupted, is
identified (fault localization) and excluded from further computations (player elimination). The
triples of the failed block are discarded. Player elimination ensures that at most t blocks fail,
and hence in total at most (n + t) blocks must be processed.

More precisely, the consistency verification takes place in two steps. In the first verification
procedure (fault detection I), the degree of all involved sharings is verified. In other words, the
players jointly verify that all sharings produced for generating the triples are of appropriate
degree. The second verification step (fault detection II) is performed only if the first verification
step is successful. Here, the players jointly verify that for every triple (a(i), b(i), c(i)), every player
shared the correct values such that c(i) = a(i)b(i). If a fault is detected (in either fault-detection
procedure), then all triples in the actual block are discarded. Furthermore, a set D ⊆ P of two
players, one of whom is corrupted, is found (fault localization I, resp. fault localization II) and
eliminated from further computations. Note that in the fault-localization procedure, the privacy
of the triples is not maintained. Due to the circuit-randomization technique [Bea91a], the triples
contain completely random values unrelated with all values of the actual computation.

3

Both verification steps use n “blinding triples”, and the privacy of these triples is annihilated
in the verification procedure. Therefore, in each block, ` + 2n triples are generated. The first
verification step verifies the degree of all sharings of the first `+n triples, using (and destroying)
the remaining n triples for blinding. The second verification step verifies the first ` triples, using
the remaining n triples for blinding. Note that the second verification step requires that the
sharings of all ` + n involved triples are verified to be correct.

During the generation of the blocks, players can be eliminated. We denote the actual set
of players with P ′, the actual number of players with n′ = |P ′|, and the maximum number of
cheaters in P ′ with t′. Without loss of generality, we assume that P ′ = {P1, . . . , Pn′}. During
the computation, the inequality 2t′ < n′ − t will hold as an invariant. In the beginning, P ′ = P,
n′ = n, and t′ = t, and trivially 2t′ < n′−t is satisfied. In player elimination, n′ will be decreased
by 2, and t′ by 1. Clearly, this preserves the invariant.

0. Set P ′ = P, n′ = n, and t′ = t.
1. Repeat until n blocks (i.e., n` ≥ m triples) succeeded:

1.1 Generate ` + 2n′ triples (in parallel) in a non-robust manner (Sect. 4.1).
1.2 Verify the consistency of all sharings involved in the first `+n′ triples (fault detection I,

Sect. 4.2). If a fault is detected, identify a set D ⊆ P ′ of two players such that at least
one player in D is a cheater, and set P ′ to P ′ \ D, n′ to n′ − 2 and t′ to t′ − 1 (fault
localization I).

1.3 If no fault was detected in Step 1.2, then verify that in the first ` triples, every player
shared the correct values (fault detection II, Sect. 4.3). If a fault is detected, identify a
set D ⊆ P ′ of two players, at least one of whom is corrupted, and set P ′ to P ′ \D, n′ to
n′ − 2 and t′ to t′ − 1 (fault localization II).

1.4 If both verification steps were successful, then the generation of the block was successful,
and the first ` triples can be used. If either verification procedure failed, then all triples
of the actual block are discarded.

4.1 Generate one t-shared triple (a, b, c)

The purpose of this protocol is to generate one t-shared triple (a, b, c), where c = ab. The
generation of this triple is non-robust: verification will take place only at the end of the block.
In particular, in order to share a value, the dealer simply computes the shares and sends them
to the players; the consistency verification of the sent shares is delayed.

The generation of the triple is straight-forward: First, the players jointly generate t′-sharings
of two random values a and b. This is achieved by having every player share two random values,
one for a and one for b, which are then summed up. Then, a t′-sharing of c = ab is computed
along the lines of [BGW88,GRR98] (passive model): Every player computes the product of his
share of a and his share of b. These product shares define a 2t′-sharing of c, and c can be
computed with Lagrange interpolation. This interpolation is a linear function on the product
shares. Hence, a t′-sharing of c can be computed as a linear combination of t′-sharings of the
product shares. Finally, the degrees of the sharings of a, b, and c must be increased from t′ to
t. In order to do so, the players jointly generate three random sharings of 0, each with degree t,
and add one of them to the t′-sharings of a, b, and c, respectively.

Note that the protocol for computing a sharing of c = ab relies on the fact that the degree of
the sharings of a and b is less than one third of the number of actual players, and it would not

4

work if a and b would be shared with degree t for 3t ≥ n′. On the other hand, it is important that
finally the sharings of all blocks have the same degree (otherwise the multiplication protocol of
Section 5 would leak information about the factors), and t′ can decrease from block to block.
Therefore, first the triple is generated with degree t′, and then this degree is increased to t.

Protocol “Generate”
We give the exact protocol for generating one t-shared triple (a, b, c):
1. The players jointly generate t′-sharings of random values a and b:

1.1 Every player Pi ∈ P ′ selects two random degree-t′ polynomials f̃i(x) and g̃i(x), and
hands the shares ãij = f̃i(αj) and b̃ij = g̃i(αj) to player Pj for j = 1, . . . , n′.

1.2 The polynomial for sharing a is f̃(x) =
∑n′

i=1 f̃i(x) (thus a = f̃(0)), and the polynomial
for sharing b is g̃(x) =

∑n′
i=1 g̃i(x) (thus b = g̃(0)), and every player Pj ∈ P ′ computes

his shares of a and b as

ãj =
n′∑

i=1

ãij , and b̃j =
n′∑

i=1

b̃ij.

2. The players jointly compute a t′-sharing of c = ab:
2.1 Every player Pi ∈ P ′ computes his product share ẽi = ãib̃i, and shares it among the

players with the random degree-t′ polynomial h̃i(x) (with h̃i(0) = ẽi), i.e., sends the
share ẽij = h̃i(αj) to player Pj for j = 1, . . . , n′.

2.2 Every player Pj computes his share c̃j of c as

c̃j =
n′∑

i=1

wiẽij, where wi =
n′∏

j=1
j 6=i

αj

αj − αi
.

3. The players jointly increase the degree of the sharings of a, b, and c to t (this step is performed
only if t′ < t):
3.1 Every player Pi ∈ P ′ selects three polynomials f̄i(x), ḡi(x), h̄i(x) of degree t − 1 at

random, and sends the shares āij = f̄i(αj), b̄ij = ḡi(αj), and c̄ij = h̄i(αj) to player Pj

for j = 1, . . . , n′.
3.2 Every player Pj ∈ P ′ computes his t-shares aj , bj , and cj of a, b, and c, respectively, as

follows:

aj = ãj + αj

n′∑
i=1

āij , bj = b̃j + αj

n′∑
i=1

b̄ij, cj = c̃j + αj

n′∑
i=1

c̄ij .

Security analysis
At the end of the block, two verifications will take place: First, it will be verified that the degree
of all sharings is as required (t′, respectively t − 1, Section 4.2). Second, it will be verified that
in Step 2.1, every player Pi indeed shares his correct product share ẽi = ãib̃i (Section 4.3). In
the sequel, we analyze the security of the above protocol under the assumption that these two
conditions are satisfied.

After Step 1, obviously the assumption that the degree of all sharings is as required imme-
diately implies that the resulting shares ã1, . . . , ãn′ (respectively b̃1, . . . , b̃n′) lie on a polynomial

5

of degree t′, and hence define a valid sharing. Furthermore, if at least one player in Pi ∈ P ′

honestly selected random polynomials f̃i(x) and g̃i(x), then a and b are random and unknown
to the adversary.

In Step 2, we need the observation that c can be computed by Lagrange interpolation
[GRR98]:

c =
n′∑

i=1

wiẽi, where wi =
n′∏

j=1
j 6=i

αj

αj − αi
.

Assuming that every player Pi really shares his correct product share ẽi with a polynomial h̃i(x)
of degree t′, it follows immediately that the polynomial h̃(x) =

∑n′
i=1 wih̃i(x) is also of degree

t′, and furthermore

h̃(0) =
n′∑

i=1

wih̃i(0) =
n′∑

i=1

wiẽi = c.

The privacy is guaranteed because the adversary does not obtain information about more than
t′ shares of any polynomial h̃i(x) (for any i = 1, . . . , n′).

Step 3 is only performed if t′ < t. Assuming that the polynomials f̄i(x), ḡi(x), and h̄i(x) of
every player Pi ∈ P ′ have degree at most t − 1, it immediately follows that all the polynomials
defined as

f̄(x) =
n′∑

i=1

f̄i(x), ḡ(x) =
n′∑

i=1

ḡi(x), h̄(x) =
n′∑

i=1

h̄i(x)

also all have degree at most t− 1. Hence, the polynomials xf̄(x), xḡ(x), and xh̄(x) have degree
at most t, and they all share the secret 0. Thus, the sums f̃(x) + xf̄(x), g̃(x) + xḡ(x), and
h̃(x) + xh̄(x) are of degree t and share a, b, and c, respectively. The privacy of the protocol is
obvious for t′ ≤ t − 1.

Complexity analysis
We briefly analyze the communication complexity of the above protocol: Every sharing requires
n field elements to be sent, and in total there are 6n sharings, which results in a total of 6n2

field elements to be communicated per triple.

4.2 Verification of the degrees of all sharings in a block

The goal of this fault-detection protocol is to verify the degree of the sharings of ` + n′ triples
in a single step, using (and destroying) another n′ triples.

The basic idea of this protocol is to verify the degree of a random linear combination of the
polynomials. More precisely, every player distributes a random challenge vector of length ` + n′

with elements in F, and the corresponding linear combinations of each involved polynomial is
reconstructed towards the challenging player, who then checks that the resulting polynomial is
of appropriate degree. In order to preserve the privacy of the involved polynomials, for each
verifier one additional blinding polynomial of appropriate degree is added. If a verifier detects
a fault (i.e., one of the linearly combined polynomials has too high degree), then the triples of
the actual block are discarded, and in a fault-localization protocol, a set D ⊆ P ′ of two players,
at least one of whom is corrupted, is found and eliminated.

6

Protocol “Fault-detection I”
The following steps for verifying the degree of all sharings in one block are performed in parallel,
once for every verifier Pv ∈ P ′:
1. The verifier Pv selects a random vector [r1, . . . , r`+n′] with elements in F and sends it to

each player Pj ∈ P ′.
2. Every player Pj computes and sends to Pv the following corresponding linear combinations

(plus the share of the blinding polynomial) for every i = 1, . . . , n′:

ã
(Σ)
ij =

`+n′∑
k=1

rkã
(k)
ij + ã

(`+n′+v)
ij

b̃
(Σ)
ij =

`+n′∑
k=1

rk b̃
(k)
ij + b̃

(`+n′+v)
ij

c̃
(Σ)
ij =

`+n′∑
k=1

rk c̃
(k)
ij + c̃

(`+n′+v)
ij

ā
(Σ)
ij =

`+n′∑
k=1

rkā
(k)
ij + ā

(`+n′+v)
ij

b̄
(Σ)
ij =

`+n′∑
k=1

rkb̄
(k)
ij + b̄

(`+n′+v)
ij

c̄
(Σ)
ij =

`+n′∑
k=1

rk c̄
(k)
ij + c̄

(`+n′+v)
ij

3. Pv verifies whether for each i = 1, . . . , n′, the shares ã
(Σ)
i1 , . . . , ã

(Σ)
in′ lie on a polynomial of

degree at most t′. The same verification is performed for the shares b̃
(Σ)
i1 , . . . , b̃

(Σ)
in′ and for the

shares c̃
(Σ)
i1 , . . . , c̃

(Σ)
in′ , for i = 1, . . . , n′. Furthermore, Pv verifies whether for each i = 1, . . . , n′,

the shares ā
(Σ)
i1 , . . . , ā

(Σ)
in′ lie on a polynomial of degree at most t − 1. The same verification

is performed for the shares b̄
(Σ)
i1 , . . . , b̄

(Σ)
in′ and for the shares c̄

(Σ)
i1 , . . . , c̄

(Σ)
in′ for i = 1, . . . , n′.

4. Finally, Pv broadcasts (using an appropriate sub-protocol) one bit according to whether all
the 6n′ verified polynomials have degree at most t′, respectively t − 1 (confirmation), or at
least one polynomial has too high degree (complaint).

Protocol “Fault-localization I”
This protocol is performed if and only if at least one verifier has broadcasts a complaint in Step 4
of the above fault-detection protocol. We denote with Pv the verifier who has reported a fault.
If there are several such verifiers, the one with the smallest index v is selected.
5. The verifier Pv selects one of the polynomials of too high degree and broadcasts the lo-

cation of the fault, consisting of the index i and the “name” of the sharing (ã, b̃, c̃, ā,
b̄, or c̄). Without loss of generality, we assume that the fault was observed in the sharing
ã

(Σ)
i1 , . . . , ã

(Σ)
in′ .

6. The owner Pi of this sharing (i.e., the player who acted as dealer for this sharing) sends to the
verifier Pv the correct linearly combined polynomial f̃

(Σ)
i (x) =

∑`+n′
k=1 f̃

(k)
i (x)+ f̃

(`+n′+v)
i (x).

7. Pv finds the (smallest) index j such that ã
(Σ)
ij (received from Pj in Step 2) does not lie on

the polynomial f̃
(Σ)
i (x) (received from the owner Pi in Step 6), and broadcasts j among the

players in P ′.

8. Both Pi and Pj send the list ã
(1)
ij , . . . , ã

(`+n′)
ij , ã

(`+n′+v)
ij to Pv .

9. Pv verifies that the linear combination [r1, . . . , r`+n′] applied to the values received from
Pi is equal to f̃

(Σ)
i (αj). Otherwise, Pv broadcasts the index i, and the set of players to

be eliminated is D = {Pi, Pv}. Analogously, Pv verifies the values received from Pj to be

7

consistent with ã
(Σ)
ij received in Step 2, and in case of failure broadcasts the index j, and

D = {Pj , Pv}.
10. Pv finds the (smallest) index k such that the values ã

(k)
ij received from Pi and Pj differ, and

broadcasts k and both values ã
(k)
ij from Pi and ã

(k)
ij from Pj .

11. Both Pi and Pj broadcast their value of ã
(k)
ij .

12. If the values broadcast by Pi and Pj differ, then the localized set is D = {Pi, Pj}. If the
value broadcast by Pi differs from the value that Pv broadcast (and claimed to be the value
received from Pi), then D = {Pi, Pv}. Else, D = {Pj , Pv}.

Security analysis
It follows from simple algebra that if all players are honest, then the above fault-detection
protocol will always pass. On the other hand, if at least one of the involved sharings (in any
of the ` + n′ triples) has too high degree, then every honest verifier will detect this fault with
probability at least 1/|F|. For at least n′ − t′ ≥ n− 2t honest players, this gives an overall error
probability of at most |F|−(n−2t).

The correctness of the fault-localization protocol can be verified by inspection. There is no
privacy issue in this protocol; the generated triples are discarded.

Complexity analysis
The fault-detection protocol requires n(n(`+n)+6n2)= n2`+7n3 field elements to be sent and
n bits to be broadcast. For fault localization, up to n + 2(` + n + 1) = 2` + 3n + 2 field elements
must be sent and 2 log n + log 6 + log(` + n + 1) + 4 log |F| bits must be broadcast.

4.3 Verification that all players share the correct product shares

It remains to verify that in each triple k = 1, . . . , `, every player Pi shared the correct product
share ẽ

(k)
i = ã

(k)
i b̃

(k)
i (Step 2.1 of protocol Generate). Since it is already verified that the sharings

of all factor shares are of degree t′, it is sufficient to verify that the shares ẽ
(k)
1 , . . . , ẽ

(k)
n′ lie on a

polynomial of degree at most 2t′. Note that the at least n′− t′ > 2t′ shares of the honest players
uniquely define this polynomial. The key idea of this verification protocol is the same as in the
previous verification protocol: Every verifier Pv distributes a random challenge vector, and the
corresponding linear combination of the polynomials (plus one blinding polynomial) is opened
towards Pv . If a fault is detected, then a set D of two players (one of whom is corrupted) can
be found with the fault-localization protocol.

Protocol “Fault-detection II”
The following steps are performed for each verifier Pv ∈ P ′ in parallel.
1. The verifier Pv selects a random vector [r1, . . . , r`] with elements in F and sends it to each

player Pj ∈ P ′.
2. Every player Pj computes and sends to Pv the following linear combinations (with blinding)

for every i = 1, . . . , n′:

ẽ
(Σ)
ij =

∑̀
k=1

rkẽ
(k)
ij + ẽ

(`+v)
ij .

8

3. Pv verifies whether for each i = 1, . . . , n′ the shares ẽ
(Σ)
i1 , . . . , ẽ

(Σ)
in′ lie on a polynomial of

degree at most t′, and if so, whether the secrets ẽΣ
1 , . . . , ẽΣ

n′ of the above sharings (computed
by interpolating the corresponding share-shares) lie on a polynomial of degree at most 2t′.
Pv broadcasts one bits according to whether all polynomials have appropriate degree (confir-
mation), or at least one polynomial has too high degree (complaint).

Protocol “Fault-localization II”
We denote with Pv the verifier who has reported a fault in Step 3 of the above fault-detection
protocol. If there are several such verifiers, the one with the smallest index v is selected.
4. If in Step 3, the degree of one of the second-level sharings ẽ

(Σ)
i1 , . . . , ẽ

(Σ)
in′ was too high, then

Pv applies error-correction to find the smallest index j such that ẽ
(Σ)
ij must be corrected

(cf. Appendix B). Since all sharings have been verified to have correct degree, Pv can conclude
that Pj has sent the wrong value ẽ

(Σ)
ij . Pv broadcasts the index j, and the set of players to

be eliminated is D = {Pj , Pv} (and the following steps need not be performed).

5. Every player Pi sends to Pv all his factor shares ã
(1)
i , . . . , ã

(`)
i , ã

(`+v)
i and b̃

(1)
i , . . . , b̃

(`)
i , b̃

(`+v)
i .

6. Pv verifies for every k = 1, . . . , `, ` + v whether the shares ã
(k)
1 , . . . , ã

(k)
n′ lie on a polynomial

of degree t′. If not, then Pv applies error-correction and finds and broadcasts the (smallest)
index j such that ã

(k)
j must be corrected. The set of players to be eliminated is D = {Pj , Pv}.

The same verification is performed for the shares b̃
(k)
1 , . . . , b̃

(k)
n′ for k = 1, . . . , `, ` + v.

7. Pv verifies for every i = 1, . . . , n′ whether the value ẽΣ
i computed in Step 4 is correct, i.e.,

whether

ẽΣ
i

?=
∑̀
k=1

rkã
(k)
i b̃

(k)
i + ã

(`+v)
i b̃

(`+v)
i .

This test will fail for at least one i, and Pv broadcasts this index i. The players in D = {Pi, Pv}
are eliminated.

Security analysis
It follows from simple algebra that if all players are honest, then the above fault-detection
protocol will always pass. On the other hand, if the degree of at least one of the involved
sharings is higher than 2t′, then every honest verifier will detect this fault with probability at
least 1/|F|. For at least n′ − t′ ≥ n − 2t honest players, this makes an overall error probability
of at most |F|−(n−2t).

The correctness of the fault-localization protocol can be verified by inspection. There is no
privacy issue in this protocol; the generated triples are discarded.

Complexity analysis
The fault-detection protocol requires n(n`+n2) = n2`+n3 elements to be sent, and n bits to be
broadcast. The fault-localization protocol requires 2n(` + 1) field elements to be sent and log n
bits to be broadcast.

5 Computation Phase

The evaluation of the circuit is along the lines of the protocol of [Bea91a]. Slight modifications
are needed because the degree t of the sharings and the upper bound t′ on the number of

9

cheaters need not be equal. Furthermore, special focus is given to the fact that in our protocol,
also eliminated players must be able to give input to and receive output from the computation.

From the preparation phase, we have m random triples (a(i), b(i), c(i)) with c(i) = a(i)b(i),
where the sharings are of degree t among the set P ′ of players. The number of corrupted players
in P ′ is at most t′ with 2t′ < n′ − t, where n′ = |P ′|. This is sufficient for efficient computation
of the circuit.

5.1 Input sharing

First, every player who has input secret-shares it (with degree t) among the set P ′ of players.
We use the verifiable secret-sharing protocol of [BGW88] (with perfect security), with a slight
modification to support t 6= t′. The dealer is denoted by P, and the secret to be shared by s. We
do not assume that P ∈ P ′ (neither P ∈ P).
1. The dealer P selects at random a polynomial f(x, y) of degree t in both variables, with

p(0, 0) = s, and sends the polynomials fi(x) = f(αi, x) and gi(x) = p(x, αi) to player Pi for
i = 1, . . . , n′.

2. Every player Pi ∈ P ′ sends to Pj for j = i + 1, . . . , n′ the values fi(αj) and gi(αj).
3. Every player Pj broadcasts one bit according to whether all received values are consistent

with the polynomials fj(x) and gj(x) (confirmation) or not (complaint).
4. If no player has broadcast a complaint, then the secret-sharing is finished, and the share of

player Pj is fj(0). Otherwise, every player Pj who has complaint broadcasts a bit vector of
length n′, where a 1-bit in position i means that one of the values received from Pi was not
consistent with fj(x) or gj(x). The dealer P must answer all complaints by broadcasting the
correct values f(αi, αj) and f(αj, αi).

5. Every player Pi checks whether the values broadcast by the dealer in Step 4 are consistent
with his polynomials fi(x) and gi(x), and broadcasts either a confirmation or an accusation.
The dealer P answers every accusation by broadcasting both polynomials fi(x) and gi(x) of
the accusing player Pi, and Pi replaces his polynomials by the broadcast ones.

6. Every player Pi checks whether the polynomials broadcast by the dealer in Step 5 are con-
sistent with his polynomials fi(x) and gi(x), and broadcasts either a confirmation or an
accusation.

7. If in Steps 5 and 6, there are in total at most t′ accusations, then every player Pi takes fi(0)
as his share of s. Otherwise, clearly the dealer is faulty, and the players take a default sharing
(e.g., the constant sharing of 0).
It is clear that an honest player never accuses an honest dealer. On the other hand, if there

are at most t′ accusations, then the polynomials of at least n′ − 2t′ > t honest players are
consistent, and these polynomials uniquely define the polynomial f(x, y) with degree t. Hence,
the polynomials of all honest players are consistent, and their shares f1(0), . . . , fn′(0) lie on a
polynomial of degree t.

This protocol communicates 3n2 field elements, and it broadcasts n bits (in the best case),
respectively n2 + 3n + 2t2 log |F| bits (in the worst case).

5.2 Evaluation of the circuit

The circuit is evaluated gate by gate. Linear gates can be evaluated without any communication
due to the linearity of the used sharing. Multiplication gates are evaluated according to [Bea91a]:

10

Assume that the factors x and y are t-shared among the players. Furthermore, a t-shared triple
(a, b, c) with c = ab is used. The product xy can be written as follows:

xy = ((x − a) + a)((y − b) + b) = ((x − a)(y − b)) + (x − a)b + (y − b)a + c.

The players in P ′ reconstruct the differences dx = x − a and dy = y − b. This reconstruction is
possible because 2t′ < n′ − t (cf. Appendix B). Note that reconstructing these values does not
give any information about x or y, because a and b are random. Then, the following equation
holds:

xy = dxdy + dxb + dya + c.

This equation is linear in a, b, and c, and we can compute linear combinations on shared values
without communication. This means that the players can compute the above linear combination
on their respective shares of x and y and they receive a t-sharing of the product xy. More details
can be found in [Bea91a].

This multiplication protocol requires two secret-reconstructions per multiplication gate.
Secret-reconstruction requires every player in P ′ to send his share to every other player (who then
applies error-correction to the received shares and interpolates the secret). The communication
costs per multiplication gate are hence 2n2. Broadcast is not needed.

5.3 Output reconstruction

Any player P can receive output (not only players in P ′ or in P). In order to reconstruct a
shared value x towards player P, every player in P ′ sends his share of x to P, who then applies
error-correction and interpolation to compute the output x. In the error-correction procedure,
up to (n′ − t − 1)/2 ≥ t′ errors can be corrected (see Appendix B).

Reconstructing one value requires n field elements of communication, and no broadcast.

5.4 Probabilistic functions

The presented protocol is for deterministic functions only. In order to capture probabilistic
functions, one can generate one (or several) blocks with single values a(i) only (with simplified
verification), and use these values as shared randomness.

Alternatively, but somewhat wastefully, one just picks the value a(i) from a shared triple
(a(i), b(i), c(i)), and discards the rest of the triple. Then, m denotes the number of multiplication
gates plus the number of “randomness gates”.

5.5 On-going computations

In an on-going computation, inputs and outputs can be given and received at any time during
the computation, not only at the beginning and at the end. Furthermore, it might even not be
specified beforehand which function will be computed. And example of an on-going computation
is the simulation of a fair stock market.

In contrast to the protocol of [HMP00], the proposed protocol can easily be extended to
capture the scenario of on-going computations. First, the players generate ` triples (a, b, c) with
c = ab, and perform the computation until all triples are exhausted. Then, a new block of `
triples is generated, and so on.

11

6 Complexity Analysis

A detailed complexity analysis is given in Appendix A. Here we summarize the most important
results: Let n denote the number of players, F the field over which the function (circuit) is
defined, m the number of multiplication gates in the circuit, Cd the depth of the circuit, nI

the number of inputs and nO the number of outputs of the function. Evaluating this circuit
securely with respect to an active adversary corrupting any t < n/3 of the players is possible
with communicating 14mn2 +O(nIn

4 +nOn+n4) field elements. The number of communication
rounds is Cd + O(n2). All complexities include the costs for simulating broadcast.

This complexity should be compared with the complexity of the most efficient protocols.
In the secure-channels model, the most efficient protocol for unconditionally secure multi-party
protocols [HMP00] requires O(mn3) field elements in O(Cd + n2) rounds (where both hidden
constants are slightly higher than ours).

For completeness, we also compare the complexity of our protocol with the complexity of
the most efficient protocol for the cryptographic model [CDN01]. This protocol requires a com-
munication complexity of O(mn3) field elements in O(Cdn) rounds. The high round complexity
results from the fact that the protocol invokes a broadcast sub-protocol for each multiplication
gate. The most efficient broadcast protocols require O(n) rounds. Constant-round broadcast pro-
tocols are known [FM88], but they have higher communication complexities and would results
in a communication complexity of O(mn5) field elements.

Finally, we compare the protocol with the most efficient known protocol for passive security,
namely [BGW88] with the simplification of [GRR98]. This protocol communicates mn2+O(nIn+
nOn) field elements. Hence, providing robustness can be achieved with a communication overhead
of about factor 14.

7 Conclusions and Open Problems

We have presented a protocol for secure multi-party computation unconditionally secure against
an active adversary which is (up to a small constant factor) as efficient as protocols with passive
security. The protocol provides some (arbitrarily small) probability of error. Note that due to the
player-elimination technique, this error-probability does not grow with the length of the protocol
(like in all previous MPC protocols with error probability), but only in the upper bound t of
the number of corrupted players.

It remains open whether quadratic complexity can also be achieved in the model of an active
computationally-bounded adversary (cryptographic model), where up to t < n/2 of the players
may be corrupted. The most efficient result for this model requires communication of O(n3) field
elements (and O(n) rounds!) per multiplication gate [CDN01].

Also, it would be interesting to combine the techniques of this paper with techniques of papers
with protocols that require a constant number of rounds only (but have a high communication
complexity), to achieve a multi-party protocol which has both low communication complexity
and very low round complexity.

Furthermore, the presented protocol is for the synchronous model. Some real-world networks
appear to be more appropriately modeled by the asynchronous model, and the protocol must be
adapted for this setting. It seems that this can be done along the lines of [BCG93,Can95,SR00].

Finally, it would be interesting to have a proof that quadratic complexity is optimal for
passive security. This would immediately imply that the protocol of this paper is optimally
efficient (up to a constant factor).

12

References

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number of rounds
of interaction. In Proc. 8th ACM Symposium on Principles of Distributed Computing (PODC), pp.
201–210, Aug. 1989.

[BCG93] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In Proc. 25th ACM
Symposium on the Theory of Computing (STOC), pp. 52–61, 1993.

[Bea91a] D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptology —
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pp. 420–432, 1991.

[Bea91b] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority.
Journal of Cryptology, pp. 75–122, 1991.

[BFKR90] D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Security with low communication overhead. In
Advances in Cryptology — CRYPTO ’90, volume 537 of Lecture Notes in Computer Science. Springer-
Verlag, 1990.

[BGP89] P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed consensus (extended abstract).
In Proc. 21st ACM Symposium on the Theory of Computing (STOC), pp. 410–415, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. 20th ACM Symposium on the Theory of Computing (STOC),
pp. 1–10, 1988.

[Bla84] R. E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley, 1984.

[Can95] R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann
Institute of Science, Rehovot 76100, Israel, June 1995.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols (extended ab-
stract). In Proc. 20th ACM Symposium on the Theory of Computing (STOC), pp. 11–19, 1988.

[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. In Advances in Cryptology — EUROCRYPT ’99, volume 1592
of Lecture Notes in Computer Science, pp. 311–326, 1999.

[CDN01] R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold homomorphic
encryption. In Advances in Cryptology — EUROCRYPT ’01, Lecture Notes in Computer Science,
2001. To appear.

[FKN94] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In Proc. 26th ACM
Symposium on the Theory of Computing (STOC), pp. 554–563, 1994.

[FM88] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In Proc. 20th ACM Symposium
on the Theory of Computing (STOC), pp. 148–161, 1988.

[FY92] M. K. Franklin and M. Yung. Communication complexity of secure computation. In Proc. 24th ACM
Symposium on the Theory of Computing (STOC), pp. 699–710, 1992.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a completeness theorem for
protocols with honest majority. In Proc. 19th ACM Symposium on the Theory of Computing (STOC),
pp. 218–229, 1987.

[GRR98] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computations with
applications to threshold cryptography. In Proc. 17th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 101–111, 1998.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party computation. In T. Okamoto, editor,
Advances in Cryptology — ASIACRYPT ’00, volume 1976 of Lecture Notes in Computer Science, pp.
143–161. Springer-Verlag, Dec. 2000.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications to
round-efficient secure computation. In Proc. 41st IEEE Symposium on the Foundations of Computer
Science (FOCS), Oct. 2000.

[MR98] S. Micali and P. Rogaway. Secure computation: The information theoretic case. Manuscript, 1998.
Former version: Secure computation, In Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture
Note in Computer Science, pp. 392–404, Springer-Verlag, 1991.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In
Proc. 21st ACM Symposium on the Theory of Computing (STOC), pp. 73–85, 1989.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

13

[SR00] K. Srinathan and C. P. Rangan. Efficient asynchronous secure multiparty distributed computation. In
Indocrypt 2000, Lecture Notes in Computer Science, Dec. 2000.

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symposium on the Foundations of
Computer Science (FOCS), pp. 160–164. IEEE, 1982.

A Detailed Complexity Analysis

We summarize the complexities of all involved sub-protocols. For each sub-protocol, we indicate
both the message complexity (MC, in communicated field elements) and the broadcast complex-
ity (BC, in bits) of the protocol involved once, and specify how often the protocol is called at
least (when no adversary is present) and at most (when the corrupted players misbehave in the
most effective way). The complexity of the verifiable secret-sharing protocol of [BGW88], which
is used for giving input, depends on whether or not some of the players misbehave. We list both
complexities.

In the table, n denotes the number of players, t the upper bound on the number of actively
corrupted players, m the total number of multiplication gates, ` the number of multiplication
gates per block, nI the number of inputs to the function, and nO the number of outputs of the
function.

The indicated complexities are upper bounds: In particular, when a player has to send a
message to all players, we count this as n messages (instead of n − 1).

What
MC

(field elements)
BC

(bits)
#Calls

(min. . .max)

Generate triples 6n2 —
n(`+2n) . . .

(n+t)(`+2n)
(1)

Fault detection I `n2 + 7n3 n n . . . n+t (2)

Fault localization I 2` + 3n + 2
2 log n + 4 log |F|

+ log(`+n+1) + log 6
0 . . . t (3)

Fault detection II `n2 + n3 n n . . . n+t (4)

Fault localization II 2`n + 2n log n 0 . . . t (5)

Give input (best) 3n2 n nI (6)

Give input (worst) 3n2 n2 + 3n + 2t2 log |F| nI (7)

Multiply 2n2 — m (8)

Get output n — nO (9)

We add up the above complexities for ` ≤ m/n + 1, n ≥ 4, and t ≤ n/3. In order to simplify
the expressions, some of the terms are slightly rounded up.

In the best case (when no cheating occurs), 10mn2 + 22n4 + 3nIn
2 + nOn field elements are

communicated and 2n2 + nIn bits are broadcast. Applying the broadcast protocol of [BGP89]
(which communicates 9n2 bits for broadcasting one bit), this results in a total complexity of less
than 10mn2 log |F| + 22n4(log |F| + 1) + nIn

2(3 log |F| + 9n) + nOn log |F| bits.
In the worst case, the protocol communicates 13mn2 +30n4 +3nIn

2 +nOn field elements and
broadcasts 3n2 +2n log |F|+ n

3 log m+nIn
2 log |F| bits. Simulating broadcast with [BGP89], this

gives less than 14mn2 log |F| + 35n4(log |F| + 1) + 9nIn
4 log |F| + nOn log |F| bits. This is about

14mn2 + O(nIn
4 + nOn + n4) field elements.

14

B Error-correction with Erasures

In the protocol of this paper, we often need to interpolate a shared value from a subset of
the shares. In this appendix, we briefly summarize the techniques used for performing these
interpolations efficiently.

We assume that to each player Pi ∈ P a unique value αi ∈ F \ {0} is assigned. We say that
a secret s is t-shared among the players in P if there exists a degree-t polynomial f(x) with
f(0) = s, and every player Pi ∈ P holds a share si = f(αi). It is well-known that correcting
up to tf faulty shares in a codeword s1, . . . , sn is possible as long as 2tf < n − t. Furthermore,
when αi = ωi (for i = 1, . . . , n) for an n-th root of unity ω, the shares s1, . . . , sn correspond to a
codeword in a Reed-Solomon code of length n with minimum distance n−t, and error-correction
can be performed efficiently (polynomial in n).

This error-correction procedure can be slightly generalized to capture erasures in the code-
word: Error-correction in a Reed-Solomon code is possible and efficient if up to tf shares are
faulty and up to te shares are omitted (erasures), as long as 2tf + te < n − t (see e.g. [Bla84,
Sect. 9.2] for details).

This generalized procedure can be used for two purposes: First, instead of requiring existence
of an n-th root of unity in F, it is sufficient to require existence of an n̄-th root of unity for some
n̄ ≥ n. The n̄ − n missing shares in each sharing are treated as erasures of the code. Note that
an n-th root of unity exists in F if and only if n divides |F| − 1, and for many settings of n and
F, such a root simply does not exist.

Second, it captures the setting with player elimination. After a sequence of k player elimina-
tions, we have n′ = n− 2k remaining players, where up to t′ = t− k of them are corrupted. The
n′ shares of the remaining players define a codeword with te = n̄−n′ = n̄−n + 2k erasures and
tf = t′ = t−k faults. Such a sharing can be interpolated efficiently for 2(t−k)+(n̄−n+2k) < n̄−t,
which is satisfied for t < n/3.

15

