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To a cryptographer the claim that “Shannon Security was achieved with keys smaller than the 
encrypted message" appears  unworthy of attention, much as the claim of “perpetuum  mobile” is to 
a physicist. Albeit, from an engineering point of view solar cells which power satellites exhibit an 
“essential perpetuum  mobile” and are of great interest.   Similarly for Shannon Security, as it is  
explored in this article.  We discuss  encryption schemes designed to confound a diligent cryptanalyst 
who works  his way from a captured ciphertext to a disappointing  endpoint where more than one 
otherwise plausible plaintexts are found to be associated with  keys that encrypt them to that 
ciphertext. Unlike some previous researchers who explored this equivocation as a special case of 
existing schemes, this approach is aimed at devising a symmetric encryption for that purpose per se. 
 
 
 
Introduction 
The prevailing cryptographies feature committed ciphertexts. Their effectiveness is based on an 
expected computational difficulty facing an adversary. Once this computational distance has been 
crossed, the plaintext lays “naked” and non-repudiative.  This state of affairs suffers from certain 
weaknesses. The most important one is the general lack of proof  with respect to computational 
difficulty.(∗ )  The threat of additional  relevant mathematical insight is everpresent.  An adversary may 
possess a combination of computing power and brain power that will invalidate the user’s assumptions 
with respect to infeasibility of  cryptanalysis.  There may also be special case weaknesses. Certain keys, 
or ciphertexts may be “weak” in some fashion. An adversary might  discover such special case 
weakness, while the user might not.  Psychologically speaking, non-repudiation is troublesome. The user 
might feel uncomfortable about having his confidential matters at the mercy of an adversary who might 
eventually dig it out. 
 
If H(ΠΠ ) is the entropy of the plaintext space Π, then cryptanalyzing the prevailing committed ciphertexts 
                                                                 
∗ Menezes, Oorschot and Vanstone [Ref 5] assert (page 32): “No public-key scheme has been proven to be secure 
(the same can be said for block ciphers). The most effective public-key encryption schemes found to date have their 
security based on the presumed difficulty of a small set of number-theoretic problems.” 
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is a process where  the entropy generally begins with H(Π)=lg(n), (n is the size of Π), and ends with 
H(Π)=0 (all but a single plaintext have lost their candidacy as the pre-encrypted message).   
 
This committed ciphertext situation is considered a necessary step-down from what has been defined by 
Claude Shannon as information-theoretical secrecy, (“Shannon Security”).  Shannon [Ref 1] defined it 
as a case where knowledge of the ciphertext is not at all helpful with respect to arriving at the pre-
encrypted plaintext.  We may write: 
 
(eq-1)              H(ΠΠ|C=?) = H(ΠΠ|C=!) 
 
The entropy of  Π is the same  whether the ciphertext C  is not known (C=?) or known (C=!).  
 
We may now concern ourselves with a case where after as much cryptanalysis as desired: 
 
(ineq-2)           H(ΠΠ|C=?)  > H(ΠΠ|C=!) > 0 
 
The knowledge of C diminishes the entropy of the plaintext space but  it would never vanish.  Such will 
happen if Pi ,Pj   ∈ Π end up with probability 0.5 each, leading to H=1; or H=2  if four plaintext 
messages end up with probability p=0.25 each.   Since H(Π)=0 is the definition of a successful 
cryptanalysis, it will be sufficient to insure H>0 to defeat an adversary. While  Shannon Security (eq-1) 
is preferable, one may settle for some point in the range [ H(P|C=?) ---- 0 ], to claim what we designate 
as “essential  Shannon security” or say, “Meta Shannon Security”.  
 
Shannon proved [Ref  1] that  in order to achieve what he referred to as “Perfect Security” (eq-1), the 
encryption key can not be shorter than the encrypted message.   The familiar "One Time Pad" (OTP) 
cipher exhibits Shannon Security:  any ciphertext, C, can be matched with same size plaintext, P, by 
XOR-ing it with a key, K,  which  in turn, is computed as:  K = C r P. 
 
We consider the general case where all the members of the plaintext set are of equal likelihood to be the 
encrypted message:  p=(1/n).  In this case H(Π)=lg(n) and remains lg(n) even after capturing  ciphertext 
C – as long as the key, K, which was used to encrypt P is of size n. What happens when the  key is one 
bit shorter than the message?   This would reduce the lowest entropy to lg(n)-1. (Assuming for 
convenience n is even). This is the highest security case for Meta Shannon Security: 
 
(ineq-3)           H(ΠΠ|C=?) = lg(n)  > H(ΠΠ|C=!) = lg(n)-1       
 
 
If OTP is used then an (n-1) bits key may serve as a “seed” to generate an n-bit key to XOR P. The n-
th bit can be computed as, say, the parity of the (n-1) bits key. The computed n-bits key will be XOR-
ed with P to generate C.  This will reduce the number of plaintext candidates in half (hence  H(P)=lg(n)-
1)). The more bits we drop from the key, the lower the final entropy of the plaintext space, but as long 
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that it is not zero, one can claim that one has prevented a successful cryptanalysis. 
 
In a practical case the initial entropy of the plaintext space will be much lower than the lg(n) maximum. 
Let’s consider the extreme case where some circumstantial information led to a state where Pk à 0 for 
k ≠i , j  and  Pi= Pj= 0.5.  (Pi,Pj,Pk ∈ Π) In that case a pseudo-OTP with (n-1) bits key will eliminate 
half of the Π space, and while the encrypted message, say Pi, will not be eliminated, Pj, may, or may 
not be eliminated (probability 50%), so the cryptanalyst may or may not be able to identify Pi as the true 
message.  If  both Pi and Pj  are included in the surviving (0.5n size) subset of Π, then this meta 
Shannon security case is equivalent to the full (Perfect Security) Shannon case.  
 
Consider now a case where on account of circumstantial evidence only m messages ( ∈ Π) end up 
above a given probability threshold, T. If by using a certain key K of size s < n , all of the m plausible 
messages fall in the subset of surviving plaintext candidates, then the cryptanalyst is facing the same 
difficulty that would have been posed to her by a full Shannon Security system. 
 
The competing claimant to the rank of “Almost Shannon Security” is the notion of  Semantic Security 
defined as a case where for all values of H(Π),  (eq.1) holds against an adversary limited to polynomial 
time.  Much as with  Meta Shannon Security, Semantic Security opens the door for keys smaller than 
the encrypted message. 
 
All this leads us to the conclusion that in reality a key smaller than the message may be as effective as 
message-size key.  And if not, its effectiveness may be at various levels above the committed ciphertext 
state.  If only (m-1) messages end up in the surviving subset of Π, then the effective security is lower 
than the perfect Shannon security case – but not much lower (especially for large m).  
 
All in all, the above defined meta Shannon security offers parts or whole of the venerated Perfect 
Shannon Security, using key of no predetermined minimum size.  
 
Related Work: 
Shannon security is a classic chapter in cryptography and as such enjoys an honorable mention in every 
serious, or semi-serious text book.  The admitted theoretical security is quickly followed with statements 
that lament the impracticality of the method, owing to the size of the key.  Since all the prevailing 
cryptographies feature committed ciphertexts, there was not much that was done in terms of tying that 
theoretical Shannon security with practical algorithms.   
 
Ganetti, Dwork, Naor and  Ostrovsky  [ Ref 2]  present an important discussion of  Meta Shannon 
Security.  Their angle is “deniability”: the ability of a sender, a receiver, or both, to credibly deny the 
fact that plaintext P0 was communicated, and falsely maintain that a different message P1 was the one 
which the sender dispatched to the receiver. The purpose they see in  the various schemes they propose 
is mainly  resistance to coercion, as in vote-buying, and in multi-party computation  facing an adaptive 
adversary.  That work lists the One Time Pad as a case in point, and then offers a technique in which 
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the true message P0 is listed along n decoy messages P1, P2,…Pn. Each such message is encrypted with 
a respective key: K0, K1, K2,…Kn, and the resulting ciphertexts: C0, C1, C2, ….Cn are concatenated in 
some order into Ct. When  coerced, the sender (or the receiver) might choose any of the n decoy 
messages, and claim that it was the “true” one on account of the corresponding  portion of Ct.  As the 
authors admit, this is a very tedious practice and rather impractical.  
 
The more interesting, and rather ingenious part of the Ganetti et al article [Ref 2] is focused on non-
deterministic cryptography.  When a ciphertext bit c  is generated from plaintext bit p with the aid of a 
random sequence r,  the sender may be able to find a different, pseudorandom sequence, r*, such that c 
can be claimed to represent a fake plaintext bit p* .  The authors envision a publicly known faking 
algorithm: 
 
(eq…4)       r* = φ(c,r)   
 
r* should exhibit the property: 
 
(eq…5)        c= E(p*,r*) 
 
Where E is the encryption algorithm. It must be necessary for the adversary to be fooled into 
determining that r* is truly random (like r).  Because of the probabilistic nature of the scheme, the faking 
claim must be associated with a faking error δ(s), where s is the security parameter.   The article 
describes sender-deniable public-key encryption for which the error, δ, can be made as small as 
desired at the expense of  the ciphertext size which  is linear with 1/δ,  and thus bloats into super-
polynomial size.  
 
The various schemes discussed in [Ref 2]  appear quite cumbersome for implementation (no doubt 
protocol improvements will follow suit), and are aimed at a single faked plaintext with which to establish 
deniability.  The proposed schemes don’t appear to utilize deniability as a security element. Security 
there remains vested in the expected computational distance. By contrast,  Meta Shannon Security aims 
at preventing an adversary of achieving H(Π)=0 regardless of  her resource abundance. 
 
R. Ganetti, U. Feige, O. Goldreich and M. Naor [Ref 3]  describe certain non-committing encryption. 
That construct does not generally allow a sender or a receiver to deny the true plaintext to an adversary 
with possession of the ciphertext. It is rather a simulated ciphertext that is constructed for the purpose of 
deniability. 
 
Entropy Reduction Through Key Discrimination. 
The original plaintext space entropy H0 = H(Π)=lg(n) is generally reduced through assumptions of 
language redundancy, contents-expectations and suchlike. It comes down to H1=  H(Π|C=?). If 
ciphertext C is generated through some Meta Shannon Security Encryption, then, even the most 
unrestricted attack on C will depress the entropy to Hc= H(Π|C=!)>0.  Hc will be computed on 
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account of  those elements  of Π which were associated with non negligible probability before the 
capture of C, and which are related to C through some key: 
 
(eq…6)          C = E(Pi,Ki) 
 
where i=1,2,…m ; m being the number of such plaintexts. 
 
One must now mind the following question: To what extent is the new information (the identity of the m 
keys) valuable in terms of further diminishing the entropy of Π? 
 
Elaboration:  The objective of an adversary is to eliminate (m-1) plaintexts and identify the one plaintext 
which corresponds to the key which is kept by the receiver. Whatever information that was available 
with respect to the P1,P2,…Pm plaintexts was already expressed in H1. The new information which is 
available only after a thorough cryptanalysis of C is the identity  of  the m keys. The question is what can 
be deduced from this new information.  In other words, a cryptanalyst is now concerned with the 
entropy of K={K1, K2, K3, …Km}. If H(Κ)=0 then H(Π)=0.  
 
 It is therefore necessary for any viable Meta Shannon Security system to mind the identity of these K1, 
K2,…Km  keys (namely: the equivocation keys). Their value should not undo the residual entropy which 
gives this encryption its strength. 
 
For example consider a stream cipher where a message Pi of size n bits, is encrypted with key Ki into  
ciphertext C of same size (n).  And let Kj be  a key which encrypts Pj into C:    
 
(eq…7)        C = E(Ki,Pi) = E(Kj,Pj) 
 
Let Ki be of size s bits (s << n).  And let Kj be of size n .  In that case Pi will look much more plausible 
than Pj, since we know how easy it is to match a message-size key with a given message.  
 
Constructing  Meta Shannon Security Encryption 
The following construction is inspired by the notion that the basic reason for the prevalence of 
committed ciphertexts is that they are generated by a rather complex algorithm. A simple encryption 
algorithm might be easier to work with for the purpose of constructing Meta Shannon Security.  Alas, if 
the algorithms P ßà C are to be simple, then where would the necessary complexity reside?  (to foil 
an adversary).  Looking around, one’s finger naturally points to the left-out element which has not 
undergone conceptual changes in decades: the key.  
 
The cryptographic key, K, and the encryption algorithm E are the two elements that are necessary for P 
to be computed into C. While the intuitive notion of complexity has traditionally been divided between 
K and E, the two have seen a clear division with  respect to exposure. Following Kerckhoff’s principle 
E is fully in the open and K is fully secret. Moreover, a functional definition of K may be: The 
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cryptographic key K, is the sum total of what must be changed in order to fully reconstitute a 
compromised encryption system – regardless of the nature of the compromise. Accordingly, the more 
complexity and variability in K, the more secure the system. (Since a new K means a big change).   For 
some reason, whenever the key needed more complexity, it was supplied in terms of additional bits in 
the sequence.  When now we look for the key to shoulder more of that stuff, we may seek to broaden 
the sequential order into a network. 
 
Specifically, consider a graph K,  constructed with Kv vertices which are interconnected with Ke 
directional edges. Further consider the case where the plaintext, P, is represented via an alphabet Av 
comprised of Lv symbols (letters),  and where the ciphertext C is represented via an alphabet Ae 
comprised of Le symbols (letters).  Such representation, of course, does not diminish the generality of P 
and C. The graph K is constructed so that every vertex can be connected through a directional edge to 
any other vertex.  We shall mark each  vertex with a single letter from the Av alphabet, and mark each 
edge with a single letter from the Ae alphabet. The common key which is a simple binary sequence can 
be viewed as a special case for the K-map, (or K-graph).  In this case  Av:[0,1], and Ae:[R], (R for 
right pointing edge). Each vertex (except the rightmost), points to the next vertex (only). 
 
 We now iterate two (very mild) restrictions on this construction: 
 
Restriction 1 (R-1): No two edges which emanate from the same vertex would be marked with the 
same symbol. 
 
Restriction 2 (R-2):  Also dubbed, the “full access condition” is informally described as follows: From 
every vertex in the graph there should be access to all other letters in the Av alphabet. Meaning: if a a 
given vertex marked by symbol X∈Av, does not have an edge leading from it to any choice Y ∈ Av  (Y 
� X) marked vertex, then that given vertex will be edge-connected to another X-marked vertex which 
will either have an edge to a Y marked vertex, or would be connected to yet another X-marked vertex, 
and so on until one such X-marked vertex will be edge-connected to a Y-marked vertex.  
 
Apart from these two restrictions, K can be of any size, complexity and interconnectivity.  
 
The Encryption Algorithm, E:  
Do: 
E-1:  Represent plaintext P through alphabet Av’ which is constructed as alphabet Av minus the Lvth 
letter. P is thereby represented as P’ 
E-2: Eliminate letter duplication in P’ by interjecting the Lvth letter between any two consecutive 
elements in P’ which are marked by the same letter (symbols) in P’. This changes P’ to P”. 
E-3: Mark a path on K such that it corresponds to the Av letters that constitute P”.  The path should 
connect vertices through existing edges.  Restriction  R-2 will insure that whatever the sequence in P”,  
there would be at least one path that would reflect that order, either on a one to one basis (letter in P” 
matched with a vertex in K), or by substituting some letters in P” with a string of same letter. In case of 
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such substitution (resulting in P’”), there would be no confusion as for transforming P”’ à P” since P” 
was constructed to be free of any  letter duplication. Thus all consecutive strings of same letter in P”’ 
will be reduced to a single (same) letter,  thereby reconstructing P” from P”’.  
E-4: Read off the edges that capture the path that was marked in E-3.  That sequence is the ciphertext. 
C. 
 
To decrypt C into P with the help of  K, one would need to know the starting vertex, and from there 
use the C sequence to identify the path in E-3 which instantly yields P”’.  P”’ as seen above, readily 
generates P” and so on:   C à P”’ à P” à P’ à P. 
 
An adversary capturing C and ignorant about K might try to guess it. In the process of  trying out 
possible maps, the adversary will find various maps which decrypt C into several plausible plaintexts. 
Hence: Meta Shannon Security. 
 
As described above the transformation C ßà P is based on the notion that a sequence on the graph 
can be described either by identifying the sequence vertices, or by  listing the respective edges. By 
letting the vertices reflect the plaintext and by allowing the edges to reflect the ciphertext, the 
transformation becomes a very quick process (both ways) provided the graph K is at hand. It remains 
an undecided question without that graph.  The latter will be proven by construction. 
  
Tailored Key Encryption (TaKE).  The general concept was presented in [Ref 4].  One is posing the 
challenge to find a key K so that for a given encryption algorithm E, a known ciphertext C, and a 
chosen plaintext P, it will hold that: 
 
(eq.8)         C = E(P,K) 
 
Applying to the above described encryption algorithm we proceed below: 
 
Challenge:  Given C as a sequence of letters of Ae, and given P” as a non-repeat sequence constructed 
from alphabet Av, find a map K that will satisfy  C = E(P”,K).  P” is chosen to be of same or smaller 
size with respect to C. 
 
A simple solution will proceed as follows:  
 
If  P” is smaller than C, then replace some letters in P” with a string of several consecutive letters (all of 
the same symbol). Do so until the size of the resulting P”’ is equal to C.  Let n be that size. 
 

a1. Construct n vertices marked as the sequence in P”’. 
a2. Connect the vertices in (a1) with edges marked according to the sequence in C 
a3. Add additional vertices and  edges, at will, to comply with restriction R-1, and R-2. 
This creates a graph  K which according to the above described  procedure does satisfy 
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C=E(P”,K) as required. 
 
While this will work, it is not very encouraging since it has the flavor of One Time Pad. The key here will 
even be larger than the encrypted message. 
 
We will show now a procedure to cut down the size of K (with no preset lower limit): 
 
 b1. Construct the full size K as in a1, a2 above. 
 b2. Perform as many back-pointing procedures as possible. A back-pointing procedure will be 
described here in a sample case which is easy to formalize. The advantage in the selected  description is 
that it is rather intuitive.  
 
 Let X,Y,Z ∈Av, and let  P”’ contain a sequence  XYZXZ: 
 
(eq…..9).       P”’ =  ……..XYZXZ………. =  á-X-Y-Z-X-Z-â 
 
where á and â represent the leading and trailing strings of P”’.  
 
Now remove the edge that connects the first Z with the second X in the P”’ string, and substitute it with 
an edge that connects that Z with the first X.   Then construct a vertex marked Z (for the second Z), and 
draw an edge from the first X to the second Z. There is a chance that the symbol corresponding to that 
edge (from C) will be the same as the one that leads from the first X to the Y vertex. In that case, this 
procedure will not work for this instance, since it violates restriction R-1. If that conflict does not 
happen then the construction of K will continue from the first X. An edge will point from it to a Z vertex 
(the 2nd Z), and from there to â. In case of a conflict as above, simply try with another instance of such 
back-pointing. A single such instance, will reduce the size of K. There are in general many opportunities 
for back-pointing. Each such occurrence  cuts  the K size by one vertex.  Intuitively this procedure will 
reduce the key size dramatically. The exact odds depending on  the size of  Av, and Ae,  and on  P”’, 
and C.  Complete the process with step (a3). 
 
Note that the above construction simulates a chosen plaintext attack. An adversary trying to build the 
key that connects a known plaintext and a matching ciphertext. This most advantageous attack option 
challenges the attacker with the full measure of key equivocation as is evident from the above 
procedure. 
 
While demonstrating Meta Shannon Security, as shown above, this key-heavy, algorithm-light 
procedure offers additional interesting properties.  One was mentioned already: the computational load 
for bona fide translation back and  forth between ciphertext and plaintext (C ßà P) is extremely fast, 
opening up some new vistas and applications. Such are (1) telecommunication (cellular devices), instant 
messaging, VPN, etc.; (2) Instant encryption for files as they are being saved on disk, and equally fast 
decryption as they are loaded to an application.  
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Another is the fact that  in any given encryption, it is not clear to an adversary if the entire key material 
has been used or just a part (even a small part) thereof.  Recall step (a3) above. This characteristics 
means that even if somehow an adversary was able to deduce the correct key that was used in the past, 
she might still be in the dark versus some future encryption where an unused portion of that key is being 
utilized. 
 
Yet another important attribute is the one-to-many encryption characteristics,   combined with many-to-
one decryption.  K can be constructed with a zone of  interconnected vertices all marked with the same 
letter X ∈ Av.  One (or more) of these vertices is also connected to a vertex marked Y (see R-2).  
Now consider:  P” = á,X,Y,â, where á and â are leading and trailing strings in P”.  One could chart 
numerous paths in which the zone of  X-marked vertices is being traversed in any which way, as long as 
it eventually emerges into a Y-marked vertex. If such traversals are comprised of t X-marked vertices 
then the corresponding P”’ string will look as:   
 
(eq.10)          P”’ = á,X,X,…….        .,X,Y,â 
                        {ß  t times      à} 
 

And regardless of the value of t, the reverse transformation P”’ à P” will be unequivocal.  
 
This important degree of freedom (which can be exercised for any letter in P”) can be used either in a 
deterministic fashion, or randomly. The latter will endow this encryption with the same advantages that 
are known for other probabilistic encryptions. A given plaintext will appear as different ciphertexts each 
time it is encrypted. The deterministic option offers a host of possibilities in the category of digital 
watermarks, and subliminal messages. 
 
Wrapping up this limited presentation, it bears to mention that the very same procedure that is vying for 
the venerated rank of “almost a Shannon grade” is also applicable in fast and small setting. Consider:  
Av: {X,Y,Z,W};  Ae: {U,D,R,L}.  One may construct a 3x3 matrix like: 
 

X  X  Y 
    K3x3 = Z  W  Y 

Z  Z  Y 
 

And define the edges as follows: (definition d.1)  each vertex is connected to the vertex left to it (if it 
exists) with an edge marked L; connected to the vertex right to it (if it exists) with an edge marked R; 
connected to the vertex below it (if it exists) with an edge marked D, and connected to a vertex above it 
(if it exists) with an edge marked U. 
 
This simple K3x3 key satisfies R-1,2, and is capable of encrypting and decrypting any size plaintext.  For 
a sufficiently long P, this small K=K3x3 will not exhibit Meta Shannon Security since each vertex will be 
visited several times over, and thus the ciphertext here will become “committed”.  Yet,  one could 
construct a key by concatenating two K3x3 keys (or some other extension), and only after a certain time 
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point, or encryption-length point, actually utilize the extended key part. Hence an adversary who will 
crack K3x3 will be surprised when the new key part comes into play. 
 
Summary:   
We have presented a key-heavy, algorithm-light encryption procedure which exhibits Meta Shannon 
Security defined as a situation where a cryptanalyst can not pinpoint a single member of the plaintext 
space (entropy zero), as the message that generated a captured ciphertext.  There remain two or more 
viable plaintext candidates, and that equivocation can  not be resolved without possession of the 
encryption key, regardless of  any measure of computing power. This fundamental equivocation 
suggests some interest in exploring a proper role for this method within the heavy-duty end of the 
encryption spectrum.  The simple and quick algorithm, in turn, renders this method into a prospective 
evaluation item for applications where speed is of the essence. It was also shown that this procedure 
lends itself to digital watermarking and related applications.  
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